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Abstract

High-resolution connectomics data allows for the identification of dysfunctional mitochon-
dria which are linked to a variety of diseases such as autism or bipolar. However, manual
analysis is not feasible since datasets can be petabytes in size. We present a fully automatic
mitochondria detector based on a modified U-Net architecture that yields high accuracy
and fast processing times. We evaluate our method on multiple real-world connectomics
datasets, including an improved version of the EPFL mitochondria benchmark. Our results
show an Jaccard index of up to 0.90 with inference times lower than 16ms for a 512×512px
image tile. This speed is faster than the acquisition speed of modern electron microscopes,
enabling mitochondria detection in real-time. Our detector ranks first for real-time detec-
tion when compared to previous works and data, results, and code are openly available.

Keywords: Mitochondria Detection, Connectomics, Electron Microscopy, Biomedical Imag-
ing, Image Segmentation

1. Introduction

Connectomics research produces high-resolution electron microscopy (EM) images that al-
low to identify intracellular mitochondria (Schalek et al., 2016; Suissa-Peleg et al., 2016).
Limitations or dysfunction within these structures are associated with several neurolog-
ical disorders such as autism and a variety of other systemic diseases such as myopathy
and diabetes (Zeviani and Di Donato, 2004). Studies also suggest that mitochondria may
occupy twice as much volume in inhibitory dendrites than in excitatory dendrites and ax-
ons (Kasthuri et al., 2015). Identifying mitochrondria is therefore an important task for
neurobiological research and requires a fast automatic detection method that keeps up with
the acquisition speed of modern electron microscopes. In EM images, mitochondria mostly
appear sparsely as dark round ellipses or, rarely, irregular structures with sometimes visi-
ble inner lamellae. Despite the relatively high contrast of their membranes, automatically
identifying mitochondria is hard since they float within the cells and exhibit high shape
variance, especially if the structures are not sectioned orthogonal when the brain tissue is
prepared.

A de facto standard benchmark dataset for mitochondria detection was published by
Lucchi et al. as the EPFL Hippocampus dataset (Lucchi et al., 2012b), and is used by
segmentation methods based on traditional computer vision methods (Vitaladevuni et al.,
2008; Narasimha et al., 2009; Seyedhosseini et al., 2013) and deep neural networks (Cheng
and Varshney, 2017; Oztel et al., 2017; Xiao et al., 2018; Urakubo et al., 2019; Mekuč et al.,
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2020). While Lucchi’s dataset includes a representative selection of mitochondria in large
connectomics datasets, the community observed boundary inconsistencies and several false
classifications in the accompanying ground truth labelings (Cheng and Varshney, 2017).
We introduce the updated version of this benchmark dataset, Lucchi++, re-annotated by
three neuroscience and biology experts. This dataset is based on Lucchi’s original image
data and includes as ground truth consistent mitochondria boundaries and corrections of
misclassifications. Another mitochondria dataset was released by Kasthuri et al. (Kasthuri
et al., 2015). To counter similar boundary inconsistencies as in Lucchi’s dataset, our ex-
perts also re-annotate these mitochondria segmentation masks in order to provide a second
benchmark dataset, Kasthuri++. Figure 1 illustrates the annotation refinements.

(a) (b)

Figure 1: Our Lucchi++ Mitochondria Benchmark Dataset. (a) Lucchi et al.’s
original EPFL Hippocampus mitochondria segmentation dataset (Lucchi et al.,
2012b). (b) Our refined annotation of the dataset to counter boundary inconsis-
tencies (examples in blue and red) and to correct misclassifications (yellow).

With these two datasets, we are able to further study the problem of fast mitochon-
dria detection. We propose an end-to-end mitochondria detection method based on a deep
convolutional neural network (CNN). Our method is inspired by the original U-Net ap-
proach (Ronneberger et al., 2015), operates purely on 2D images to allow detection with-
out computationally expensive pre-alignment, and is specifically designed to operate at a
faster processing speed than the acquisition speed of modern single-beam scanning electron
microscopes (11 Megapixels/s) (Schalek et al., 2016). We evaluate our method on Luc-
chi’s original EPFL Hippocampus dataset, the re-annotated Lucchi++ dataset, and the
Kasthuri++ neocortex dataset. Our results confirm segmentation accuracy with an IoU
(intersection-over-union) within the range of 0.845–0.90 and an average inference speed of
16 milliseconds which is suitable for real-time processing. We compare these numbers to
previously published results and rank first among all real-time capable methods, and third
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Table 1: Expert Corrections of Mitochondria Datasets. We observed membrane
inconsistencies and misclassifications in two publicly available datasets. We asked
experts to correct these shortcomings in a consensus driven process and report the
resulting changes. Experts spent 32-36 hours annotating each dataset.

Lucchi++

Before After

# Mitochondria 99 80
Avg. 2D Area [px] 2,761.69 3,319.36
Avg. Boundary Distance 2.92 (±1.93) px

Kasthuri++

Before After

# Mitochondria 242 208
Avg. 2D Area [px] 2,568.38 2,640.76
Avg. Boundary Distance 0.6 (± 1.36) px

overall. The created datasets and our mitochondria detection code are available as free and
open source software1.

2. Datasets

EPFL Hippocampus Data. This dataset was introduced by Lucchi et al. (Lucchi et al.,
2012b). The images were acquired using focused ion beam scanning electron microscopy
(FIB-SEM) and taken from a 5 × 5 × 5µm section of the hippocampus of mouse brain
(voxel size 5 × 5 × 5nm). The whole image stack is 2048 × 1536 × 1065vx and manually
created mitochondria segmentation masks are available for two neighboring image stacks
(each 1024 × 768 × 165vx). These two stacks are commonly used as separate training
and testing data to evaluate mitochondria detection algorithms (Vitaladevuni et al., 2008;
Narasimha et al., 2009; Seyedhosseini et al., 2013; Cheng and Varshney, 2017; Oztel et al.,
2017). However, the community observed boundary inconsistencies in the provided ground
truth annotations (Cheng and Varshney, 2017) and, indeed, our neuroscientists confirm that
the labelings include misclassifications and inconsistently labeled membranes (Table 1).

The Lucchi++ Dataset. Our experts re-annotated the two EPFL Hippocampus
stacks to achieve consistency for all mitochondria membrane annotations and to correct
any labeling errors. First, a senior biologist manually corrected mitochondria membrane
labelings using in-house annotation software. For validation, two neuroscientists were then
asked to separately proofread the labelings to judge membrane consistency. We then com-
pared these judgments. In cases of disagreement between the neuroscientists, the biologist
corrected the annotations until consensus between them was reached. The biologist anno-
tated very precisely and only a handful of membranes had to be corrected after proofreading.
To fix misclassifications, our biologist manually looked at every image slice of the two Hip-
pocampus stacks for missing and wrongly labeled mitochondria. The resulting corrections
were then again proofread by two neuroscientists until agreement was reached. In several
cases it was only possible to identify structures as partial mitochondria by looking at pre-
vious sections in the image stacks. This could be the reason for misclassifications in the
original Lucchi dataset (Figure 1).

The Kasthuri++ Neocortex Dataset. We use the mitochondria annotations of the
3-cylinder mouse cortex volume of Kasthuri et al. (Kasthuri et al., 2015). The tissue is

1. https://sites.google.com/view/connectomics
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Figure 2: Our Mitochondria Detector. We design a light-weight 2D U-Net inspired
architecture to output dense predictions at full resolution (512× 512).

dense mammalian neuropil from layers 4 and 5 of the S1 primary somatosensory cortex,
acquired using serial section electron microscopy (ssEM). We asked our experts to correct
membrane inconsistencies through re-annotation of two neighboring sub-volumes leveraging
the same process described above for the Lucchi++ dataset. The stack dimensions are
1463× 1613× 85vx and 1334× 1553× 75vx (voxel size 3× 3× 30nm).

3. Mitochondria Detection

Architecture. We build our mitochondria detector by adopting an architecture similar
to the 2D U-Net architecture proposed by Ronneberger et al. (Ronneberger et al., 2015).
The authors have reported excellent segmentation results on connectomics images similar
to ours but target neurons rather than intracellular structures such as mitochondria. Our
input and output sizes are 512 × 512 pixels, respectively, with the input being fed in as a
grayscale image and the output being a binary mask, highlighting mitochondria as the posi-
tive class. We exclusively train and predict 2D image slices to allow processing immediately
after image acquisition and to avoid waiting for a computationally expensive pre-alignment
procedure (Haehn et al., 2017).

Differences to Original U-Net. Based on experimental evaluation, we are able to
decrease the number of parameters compared to the original U-Net architecture. First,
we reduce the number of convolutional filters throughout the network. We then replace
transpose convolutions in the decoder with light-weight bilinear upsampling layers that
require no parameters. For the encoder, we reach a parameter reduction of 94%, from
19,505,856 to 1,178,480. For the decoder, we reach a 93.6% reduction (from 12,188,545 to
780,053). Lastly, we replace center-cropping from the original U-Net with padding to output
densely at full resolution. This modification increases the throughput by an additional 40%.
A graphical representation of our architecture can be found in Figure 2.

To verify the effectiveness of our design decisions, we run several ablation studies. We
trained both our optimized and the original U-Net using the same setup. On the Lucchi++
dataset, we measure a foreground IoU of 0.888 (overall 0.940) compared to 0.887 (overall
0.939) using the original U-Net, showing equivalent performance. Seemingly the learning
capacity of the original U-Net is larger than needed for this task. To investigate, we inspect
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(a) (b)

(c) (d)

Figure 3: Example results on EPFL Hippocampus. (a) An example input image slice.
(b) The output of our detector. (c) Expert groundtruth. Our detector finds 16
out of 17 mitochondria in the re-annotated Lucchi++ dataset. (d) The average
spatial error distribution of the entire test stack confirms that errors are mainly
found at the boundaries.

the trained models for permanently inactive (‘dead‘) ReLU activations and find that in
practice, 33.53% of the filters in the original U-Net stay inactive and waste significant
compute. In contrast, our optimized U-Net reaches 99.7% utilization.

Data Augmentation. We employ an on-the-fly data augmentation pipeline, exploiting
known invariances of EM images as much as possible. More specifically, we extract patches
in arbitrary orientation and with a varying size that covers at least 60% of the lesser image
dimension. This way, each patch covers a large image area and improves robustness towards
different voxel sizes. We also apply random bidirectional flipping. Finally, we down- or up-
sample the image to 512× 512 before feeding it into the network.

Training and Inference. We minimize a standard binary crossentropy loss using
Adam optimizer and employ a batchsize of 4 for training. We regularize our network using
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a dropout rate of 0.2. Our network fully converges after training for about two hours on
a modern Tesla GPU, equivalent to 100, 000 steps. Our detector outputs accurate 2D-
segmentation maps. For 3D reconstructions, however, we are able to include additional
knowledge across sections as part of post-processing. Inspired by (Oztel et al., 2017), we
use a median filter along the z-dimension to filter mitochondria which are not present on
consecutive sections (Z-Filtering).

4. Experiments

Performance Metrics. Similar to related works, we report segmentation performance
as foreground IoU (intersection-over-union/Jaccard-index) and overall IoU. The foreground
IoU can be calculated as J = TP

TP+FP+FN where TP are the true positives, FP are the
false positives of our positive class (foreground), and FN are false negatives (missing fore-
ground). For a binary classification task like mitochondria detection, the overall IoU is
simply defined as the average of the foreground and background IoU. We note that overall
IoU is not necessarily a good assessment of classifier performance since the high proportion
of background trivially inflates the score, leading to confusion in previous work (Cheng and
Varshney, 2017). However, for comparison, we report both measures in addition to inference
time and pixel throughput.

Experimental Setup. We evaluate our classifier on three datasets. All experiments
involve training with the same, fixed parameters (Section 3) and predicting mitochondria
on previously unseen test data. Optionally, we apply Z-filtering. We then threshold the
predictions and compute similarity measures with respect to manual ground truth labels.
For timings, we average multiple runs.

Datasets. The EPFL Hippocampus Data is the de facto benchmark in the community
despite known shortcomings. We evaluate on this dataset and compare against previously
reported foreground IoU scores (if not reported, we infer lower bounds for foreground IoU
based on the provided overall IoU). We then detect mitochondria in the new Lucchi++ and
Kasthuri++ datasets—both with now consistent boundary labelings.

5. Results

Detection Accuracy. Table 2 summarizes our mitochondria detection performance on
previously unseen test images. Averaged across all datasets, we measure a foreground IoU
score of 0.870 (±0.018) in 2D, and 0.879 (±0.023) with Z-filtering using depth d ∼ 15. Our
average Precision and Recall AUC is 0.979 (±0.007) and average testing accuracy is greater
than 0.993 (±0.001). We additionally show example qualitative results in Figure 3.

Inference in Real-time. The average throughput of our method is between 11 and
35.4 Megapixels/s on a consumer-grade GPU (Table 4). This matches or outperforms the
acquisition time of modern single beam electron microscopes (11 Megapixels/s) (Schalek
et al., 2016). We are able to process a 512×512 pixels region on average in 16 milliseconds,
allowing mitochondria detection in real-time. We also measure inference speed of Lucchi et
al.’s method (Lucchi et al., 2015) with a modern CPU (12x 3.4 GHz Intel Core i7—since
it is not executable on GPU)and of the original U-Net (Ronneberger et al., 2015). We
also report equivalent timings provided by Xiao et al. (Xiao et al., 2018). Other methods
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Table 2: Mitochondria Detection Results. We show the performance of our mito-
chondria detector without and with Z-filtering on three datasets. Z-filtering is
beneficial and does not require full 3D stack information. Metrics were computed
on the entire 3D volume.

Accuracy Prec. / Recall (AUC) FG-IoU IoU

EPFL Hippocampus 2D U-Net 0.993 0.932 / 0.939 (0.982) 0.878 0.935
with Z-filtering 0.994 0.946 / 0.937 (0.986) 0.890 0.942

Lucchi++ 2D U-Net 0.992 0.963 / 0.919 (0.986) 0.888 0.940
with Z-filtering 0.993 0.974 / 0.922 (0.992) 0.900 0.946

Kasthuri++ 2D U-Net 0.995 0.925 / 0.908 (0.969) 0.845 0.920
with Z-filtering 0.995 0.932 / 0.902 (0.971) 0.846 0.920

Table 3: Performance Comparison on EPFL Hippocampus. We compare our
method to previous work, ordered by foreground IoU score (the higher, the better).
If not reported in the respective papers, we infer lower bounds from the reported
overall IoU as indicated by +. More specifically, IoUFG = 2IoU − IoUBG ≥
2IoU − 1. Furthermore, IoUBG ≈ 1 is typically a good approximation given the
class imbalance.

Methods inherently requiring pre-alignment are marked as (†).
Method Description FG-IoU IoU Real-Time

Oztel 2017 (Oztel et al., 2017) Sliding window CNN + post-proc. 0.907 -
Xiao 2018a (Xiao et al., 2018) 3D U-Net + Res. Blocks 0.900 -
Lucchi 2015 (Lucchi et al., 2015) Working set + inference autostep 0.895+ 0.948
Ours With Z-filtering 0.890 0.942 3

Cheng 2017 (Cheng and Varshney, 2017) 3D U-Net (†) 0.889 0.942 3

Human Expert Human trial designed by us 0.884 0.938
Ours 2D U-Net 0.878 0.935 3

Xiao 2018a (Xiao et al., 2018) 3D U-Net 0.874 -
Cheng 2017 (Cheng and Varshney, 2017) 2D U-Net 0.865 0.928 3

Cetina 2018 (Cetina et al., 2018) PIBoost (multi-class boosting) 0.76 -
Marquez 2014 (Márquez-Neila et al., 2014) Random fields 0.762 -
Lucchi 2014 (Lucchi et al., 2014) Ccues + 3-class CRF 0.741 -
Lucchi 2013 (Lucchi et al., 2013) Working set + inference k. 0.734+ 0.867
Lucchi 2012 (Lucchi et al., 2012a) Kernelized SSVM / CRF 0.680+ 0.840
Lucchi 2011 (Lucchi et al., 2012b) Learned f. 0.600+ 0.800

were not open-source and timings not obtainable. However, based on information about
the specific method, we were able to classify whether it can reach real-time performance or
not (Table 3).

Comparison with Other Methods and Human Performance. We list previously
published results on the EPFL Hippocampus dataset in Table 3 and order them by classifi-
cation performance (high to low). Our detector yields the highest IoU score of all real-time
methods. While the difference in accuracy to Chengs’ 3D U-Net (Cheng and Varshney, 2017)
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Table 4: Timings. Our method is able to predict faster than the acquisition speed of
modern electron microscopes (11 MP/s) on three datasets. For the EPFL Hip-
pocampus dataset, we compare against Lucchi et al. (Lucchi et al., 2015), Xiao et
al. (Xiao et al., 2018), and the original U-Net (Ronneberger et al., 2015)

.
GPU Full stack [s] Slice (512× 512px) [s] Throughput [MP/s]

EPFL Hippocampus
Lucchi et al. (Lucchi et al., 2015) 815.2 (±41) 0.609 (±0.02700) 0.16 (±0.007)
Xiao et al. (3D U-Net + Res.) (Xiao et al., 2018) 356 2.157 0.364
Xiao et al. (3D U-Net) (Xiao et al., 2018) 265 1.552 0.490
Ronneberger et al. (2D U-Net) (Ronneberger et al., 2015) 22.1 (±0.824) 0.030 (±0.00106) 5.872 (±0.227)
Ours (2D U-Net) 3 8.570 (±0.072) 0.016 (±0.00004) 15.142 (±0.126)
Ours (with Z-filtering) 3 11.659 (±0.0082) 0.023 (±0.00002) 11.130 (±0.008)

Lucchi++
Ours (2D U-Net) 3 8.644 (±0.202) 0.016 (±0.00009) 15.019 (±0.334)
Ours (with Z-filtering) 3 11.785 (±0.0141) 0.022 (±0.00003) 11.010 (±0.013)

Kasthuri++
Ours (2D U-Net) 3 4.387 (±0.0317) 0.016 (±0.00006) 35.421 (±0.255)
Ours (with Z-filtering) 3 5.122 (±0.0092) 0.017 (±0.00001) 30.332 (±0.054)

is only marginal, we predict single images, require no pre-alignment and thus, even with
Z-filtering as post-processing, require less computation for end-to-end processing. Com-
pared to offline methods, we rank fourth with a foreground IoU delta of 0.017. These offline
methods are far from real-time capable, with throughput at least 22x lower than ours (Xiao
et al., 2018; Lucchi et al., 2015). The best performing method (Oztel et al., 2017) requires
extensive sliding-window applications, and multiple CPU-intensive post-processing steps,
such as a watershed-based boundary refinement.

We also compare performance to expert annotators on the original EPFL Hippocampus
dataset. Some methods, including our 2D U-Net with Z-filtering, yield better IoU scores
than human annotators. This is not surprising since CNN architectures are recently able
to outperform humans on connectomics segmentation tasks (Lee et al., 2017).

6. Conclusions

Our end-to-end mitochondria detector uses 2D images and automatically produces accu-
rate segmentation masks in real-time. This is crucial as connectomics datasets approach
petabytes in size. By predicting mitochondria in 2D, processing sections individually can
further increase throughput and also support 3D stack alignment with biological priors.
We correct the shortcomings and inconsistencies of two existing mitochondria benchmark
datasets and provide data and code for free in order to facilitate further research.
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Aurélien Lucchi, Carlos Becker, Pablo Márquez Neila, and Pascal Fua. Exploiting enclosing
membranes and contextual cues for mitochondria segmentation. In MICCAI, pages 65–72.
Springer, 2014.
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