
Medical Image Analysis (1999) volume ?, number ?, pp 1–34
c Oxford University Press

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color,
and Opacity Buffering

Abhir Bhalerao1 , Hanspeter Pfister2, Michael Halle3 and Ron Kikinis4

1University of Warwick, England. Email: abhir@dcs.warwick.ac.uk
2Mitsubishi Electric Research Laboratories, Cambridge, MA. E-mail: pfister@merl.com
3Media Laboratory, MIT, Cambridge. E-mail: halazar@bwh.harvard.edu
4Surgical Planning Laboratory, Brigham and Women’s Hospital and Harvard Medical School,
Boston. E-mail: kikinis@bwh.harvard.edu

Abstract
A method for quickly re-rendering volume data consisting of several distinct materials and
intermixed with moving geometry is presented. The technique works by storing depth, color and
opacity information, to a given approximation, which facilitates accelerated rendering of fixed
views at moderate storage overhead without re-scanning the entire volume. Storage information
in the ray direction (what we have called super-z depth buffering), allows rapid transparency
and color changes of materials, position changes of sub-objects, dealing explicitly with regions
of overlap, and the intermixing or separately rendered geometry. The rendering quality can
be traded-off against the relative storage cost and we present an empirical analysis of output
error together with typical figures for its storage complexity. The method has been applied to
visualization of medical image data for surgical planning and guidance, and presented results
include typical clinical data. We discuss the implications of our method for haptic (or tactile)
rendering systems, such as for surgical simulation, and present preliminary results of rendering
polygonal objects in the volume rendered scene.

Keywords: Volume Rendering, Classification in Volume Rendering, Combining Volume and
Surface graphics, Haptic Rendering

Received December 1998; revised March 1999; accepted June 1999

1. Introduction

Visualization plays a central role in the presentation of 3D
medical image data, such as Magnetic Resonance (MR),
Computerized Tomography (CT), MR Angiography (MRA),
or a combination of these (Wells et al., 1996b), to the
radiologist or surgeon for diagnosis and surgery planning.
However, the typically large data sizes involved (anywhere
between 10 and 70 million voxels for a single examination)
is stretching the limits of the currently available rendering
hardware. Also, with the growing use of pre-operative and
intra-operative images during the surgical intervention itself,
where the rate of update can be more critical, the problem of

Corresponding author, Department of Computer Science, University of
Warwick, England.
(e-mail: abhir@dcs.warwick.ac.uk)

efficient rendering of volume and surface graphics is a still a
pertinent topic for study.
In this paper, we describe a volume compositing scheme

that uses a specialized depth buffer which facilitates the rapid
re-rendering of fixed viewpoints without the traversal of the
entire volume. For volumes characterized by disjoint materi-
als, which is common for medical image data that is classified
into separate anatomical parts, it is possible to quickly re-
render the data after transparency and color changes of
any material. By separately rendering each material, the
intermediate structure can also support shape and position
changes of the sub-objects without rendering the entire scene.
Additionally, we demonstrate how moving surface geometry
can be intermixed into the volume rendering.
Both volume and surface rendering methods are used

for surgical planning and guidance tasks. Each has its

2 A. Bhalerao et al.

advantages and drawbacks, some of which are well known.
Volume rendering is mainly favored because of its ability
to give a qualitative feel for the density changes in the data
and precludes the need for classifying or segmenting the
data (Levoy, 1988) - indeed it is particularly adept at showing
structurally weak and “fuzzy” information. One of the main
sources of error in volume rendering is partial voluming (Jacq
and Roux, 1997), when the voxels ostensibly represent
multiple materials, or tissues types in the case of medical
data. Another disadvantage is that currently special purpose
hardware (Pfister and Kaufman, 1996) (Pfister et al., 1999)
or shared memory processor architectures (Lacroute, 1996)
are required to achieve visualization speeds approaching real
time (e.g. 30 frames a second).
Surface rendering has the advantage that accelerated hard-

ware is commonly available, but the disadvantage that iso-
surfaces have to be defined in the volume data in order to
construct the triangle meshes (Lorensen and Cline, 1987).
This may be satisfactory when the data to be visualized
has already been segmented, e.g. using accurate statistical
methods (Wells et al., 1996a) (Warfield et al., 1995), since
the model surfaces have been defined. The time penalty for
segmentation, whether manual or semi-automatic, and model
generation is tolerated to gain real time performance during
visualization.
A rendering pipeline that can incorporate the efficiency of

polygonally defined objects into the realism of a volumetric
scene is desirable, especially in medical applications (Kauf-
man et al., 1990) (Ebert and Parent, 1990) such as virtual
endoscopy surgery simulation (Geiger and Kikinis, 1995).
In such a system, sampled volume data, such as CT or
MR images can be directly combined with synthetic objects
such as surgical instruments, probes, catheters, prostheses
and landmarks displayed as glyphs. In some instances,
preoperatively derived surface models for certain anatomical
structures such as skin are can be more efficiently stored
and better visualized as a polygon mesh. A straightforward
way of mixing volume and polygonal graphics is to convert
the polygonal models into sampled volumes and then render
them using a volume rendering pipeline e.g. (Kaufman et al.,
1990). Another way is to simultaneously cast rays through
both the polygonal and volume data, at the same sample
intervals, and then composite the colors and opacities in
depth sort order (Levoy, 1990). In the former, the all-volume
approach simplifies the rendering but is expensive in speed
and and storage. Both methods require compensation for
aliasing if a realistic ray sample rate is to be used.
Two scenarios that require careful consideration of the

trade-offs between the type, quality and speed of rendering
used are: visualization during surgical intervention, and
haptic rendering systems such as proposed for surgical sim-

ulation (Massie and Sailsbury, 1994) (Avila and Sobierajski,
1996). For example, using pre-operative data for intra-
operative guidance in an Interventional MR (iMR) scanner,
which is able to provide regular intra-operative updates to the
imaged scene. It has already been demonstrated that it is pos-
sible to perform pre-operative segmentation by elastic match-
ing of surfaces e.g. (Warfield et al., 1995). However, for intra-
operative segmentation and virtual surgery simulation, physi-
cal tissue modeling using voxels is being advocated (Gibson,
1997) - hence the need for volume graphics. Such systems
raise the question of speed of update, i.e. being able to
quickly reflect changes in the voxel volume, whether these
are intermediate results from an elastic matching scheme or
more simply the result of “volume sculpting”. An important
characteristic of both these situations, which we have sought
to exploit in this work, is the observer’s viewpoint being fixed,
or not changed during interaction.

2. Super-Z Depth Buffering

The basic approach is to render multiple volumes separately,
keeping the depth information for each volumetric object, and
then compositing the projected data with information about
object color and transparency. We have called this method
super-z buffer rendering, as each intermediate image is a
2D pixel plane with 3D z-buffer information that controls
the subsequent compositing process. One way to regard this
approach is that each object rendering produces a separate
view plane, with its own transparency value. Comparisons to
“sprite” based graphics used in computer animation can be
drawn. However, as described below, the depth information
at each pixel is richer than a simple Z and alpha blending
coefficient.
The idea of compositing individually rendered volumes

is not new. Machiraju and Yagel (Machiraju and Yagel,
1993) employ a similar rendering method to parallelize the
volume rendering pipeline, however they do not attempt to
store intermediate images for re-compositing. More recently,
Gortler et. al (Gortler et al., 1997) suggest a Layered Depth
Image (LDI), an almost identical structure to our super-z
lists, as the basis of their image based rendering. They
are principally interested in accelerating the image warping
process to quickly generating multiple views. Also, our
colleagues (Umans et al., 1997), are using a Multi-Layer
Image (MLI) for reducing the data bandwidth between off-
line renderings of fixed views of a networked browsing ap-
plication implemented in Java. In this work, the MLI allows
pseudo-3D capabilities on a non-graphics workstation. What
we report here generalizes the MLI and LDI compositing
schemes to include volume rendered objects and separately
rendered polygonal objects.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 3

Brady et. al (Brady et al., 1995) describe a virtual
navigation system which uses a compositing structure they
term Approximate Discrete Radon Transform (ARDT). This
is a local, hierarchical based structure that is a a super-set of
our global super-z lists and can be used to accelerate local
view point transformations (translations, and rotations). As
the user navigates, parts of the ARDT are updated, and the
virtual endoscopic view can be rendered at interactive speeds.
Sobierajski and Kaufman (Sobierajski and Kaufman,

1994) described a much more generalized pipeline for ac-
celerating volumetric ray tracing with global illumination.
Different classes of volumetric objects can be defined (e.g.
geometric, iso-surface, maximum intensity projection) and
ray-intersection calculation and shading is performed sepa-
rately. The intersection information is passed to the shader
in a similar manner to that described here and we borrow
their “segment” terminology to describe groups of contiguous
voxels. Their method is general enough to produce illumi-
nation effects such as shadows, which can give important
depth cue information - this is one limitation of our tech-
nique. However, they do not describe an intermediate storage
methodology and solely use a volume rendering framework.
Fig. 19 shows an overview of super-z based rendering.

Each volumetric object is separately rendered parameterized
by the global camera and lighting model (the material proper-
ties controlling the shading of each volume can be defined
differently if required). This does not necessarily imply
multiple traversals of the volume. A voxel representation
that includes the material labeling and/or tissue occupancy
values allows the intermediate depth structures (see below) to
be built in a single pass. During the rendering, a specialized
depth buffer is formed which describes, in list form, the
segments encountered by each cast ray. The final stage is to
composite the multiple image and depth-buffer combinations
controlled by color and transparency information.
Assume that the voxel represents multiple materials, such

as in an MR or CT scan. Following the ray r for a picture
plane pixel through the image volume as it enters and leaves
an image voxel i, the accumulated opacity and color can be
expressed as recursive formulae (Wilhelms and van Gelder,
1991):

Aout r i 1 Ain r i α r i Ain r i (1)
Cλout r i 1 Ain r i cλ r i Cλin r i (2)

where,

λ either r g or b
i Sample location along ray r
r Ray through picture image pixel

α r i Opacity at sample i, (3)

Material 1

Material 2

Depth Buffer 1

Depth Buffer 2

Composite

Render

Picture Plane

Figure 1. Overview of depth buffer volume rendering

cλ r i Color at sample i
A r i Accumulated opacity for ray r upto sample i,
Cλ r i Accumulated color for ray r upto sample i. (4)

The pair of equations represent a front-to-back (FTB) com-
positing through the voxels. The amount of light entering the
voxel 1 Ain is modulated by the opacity of the voxel itself
in Equation 1 while Equation 2 separately sums the color con-
tribution of the voxel. For the separate rendering/compositing
to work it is necessary to store opacities and color information
along each ray, for all materials. For each ray with n samples,
there will beM sets of information consisting of opacity-color
pairs at each ray sample point r:

M

m
R r i

M

m
αm r 0 cλm r 0 αm r 1 cλm r 1

αm r n cλm r n (5)

If we make the assumption that materials will be exclusive,
for the most part, the compositing along each ray will be
restricted to a single material type, other than in the overlap
or partial volume regions.
Two conditions are tested to reduce the ray set size:

1. Exclude opacity color pairs for voxels where the opacity
is below some minimum threshold α r i αmin (very
transparent voxels) e.g. αmin 0 005.

2. Contiguous sets of voxels (segments) are grouped to-
gether if the differential opacity between pairs of voxels
is less than an opacity-delta value, δ α i 1 α i .

4 A. Bhalerao et al.

Condition 1 is the scheme adopted by the Lacroute
shear/warp factorization to reduce the storage overhead for
the classified volume by run-length encoding the data (RLE)
and speed up the subsequent compositing for each scanline
- basically the renderer only does work when there is a non-
transparent voxel run (Lacroute and Levoy, 1994). Condition
2 is an approximation control factor which deals with non-
uniformity in the opacity over a voxel run.
The ray sets are considerably reduced by only keeping

opacity-color pairs for contiguous, non-transparent voxels,
where the opacity ‘gradient’ is below δ. Note that at δ 1 0,
the poorest approximation is achieved and assumes uniform
opacity over a voxel segment. With δ 0, all opacity
variation is captured by the segment ray set and is in fact
equivalent to a full voxel-by-voxel ray cast. The use of
the linear differential opacity δ α k 1 α k to control
the opacity approximation is simple but crude. Examining
the underlying density emitter model, opacity through one
voxel traversal depends on the optical depth per unit length
ρ; opacity of an unit length voxel may be expressed as α k
1 exp ρk (Blinn, 1982). In order to account for this
intrinsic non-linearity, a better choice of threshold parameter
is given by the magnitude of the quantity:

δ ρ k 1 ρ k log
1 α k 1
1 α k

(6)

The simple linear form is used in the experiments presented
below.
In this way we minimize the quantity of stored depth

information, by allowing the FTB compositing to take place
independently for each material, approximating the opacity
variation to construct a ray set Rm which contains only the
start and end opacity-color pairs.

Rm r Sm r 1 Sm r 2 Sr m N (7)

consists of sets Sm of depth sorted and accumulated opacity-
color pairs, Am r Cm r , one for each the start and end of a
set of contiguous, non-transparent voxels. Thus

Sm r k Am r s k Cλm r s k
Am r e k Cλm r e k e k s k (8)

The set subscript k indexes the start s k and end e k sample
positions along the ray. The set Sm then contains the accumu-
lated opacity-color pairs for the front-to-back compositing for
material m at picture pixel r. Although only the end value is
required for the compositing, the start values play a role when
explicitly handling overlapping regions (Section 2.1).
The segment opacity and color values, α r k cλ r k , can

be obtained from the accumulated opacity and color values,

Am r i Cm r i , by resetting the accumulation variables to
zero at the start of a new segment (determined by conditions
1 and 2 above) as the rendering proceeds.
Fig. 20 illustrates an example of a ray cast front-to-back

through two uniformmaterials,m 1 andm 2, showing the
voxel segments encountered. The horizontal axis represents
the depth i.e. z. This illustrates the ray set of Eqn. 7 for
m 1 and m 2 showing the extent of the volume segments
represented by the opacity values α 1 α 2 α 3 .

Projection Ray

R

R

 1

 2

α(1) α(3)

α(2)

S (1) 11

2S (2)

S (3)

Figure 2. The same ray cast through two materials showing image
segments encountered

To determine the output color for segment ray-sets there-
fore, which are an encoding of the voxels encountered during
the rendering, we merge all the segment sets, sorting by depth
order, and compositing in the same manner as Eqns. 1 and 2:

A r k 1 1 A r k α r k A r k
Cλ r k 1 1 A r k cλ r k Cλ r k (9)

where

A 0 0
Cλ 0 0 (10)

This accumulation is performed over the total number of
merged segments, after merge sorting the Sm r k ray sets,
rather than a sampling of the ray at n points. The start z values
are used for the merge sorting of segments along the ray, and
the end opacity values are used to perform the compositing.

2.1. Overlapping segments
In our implementation, we ignore the problem of overlapping
segments by merge sorting the super-z lists only on the front
z value s k . So, for example, the rays in the top of Fig. 21
will be merge sorted to the depth line shown at the bottom.
Compositing would take place in the order S1 1 S2 2 S1 3

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 5

R 1

R 2 S (2)

1

a b cR

S (3)S (1)1

2

Figure 3. Merge sorting super-z lists on the front z value.

R

R ’

α(1) α(2) α(3)

α (2)α (1)’ ’

Figure 4. Overlapping sub-segments are handled by separate
blending strategies.

for the given segments. Depth values a c b become sample
points for the segment opacities and colors. This is clearly
an approximation because if the individual volumes contain
long runs of semi-transparent data, and two volumes have
a large region of overlap, then the resulting image will be
grossly wrong. However, the surgical type volumes presented
here do not show visible artifacts, although for δ 0 some
rendered data will be misrepresented. If necessary, a more
refined blending strategy, such as that suggested by Jacq and
Roux (Jacq and Roux, 1996), could be developed. Although
we have not implemented this strategy, one obvious applica-
tion is the study of registration error in multi-modality fusion.

2.2. Global Sub-volume transparencies
Global transparencies for the materials can be set to make
them visible or not without re-rendering the material by
adding an intensity multiplier term t m to the material opac-
ity αm r k in equation 9:

αm r k t m αm r k (11)

For a given viewpoint, it is possible to control multiple
transparencies at the final compositing stage. Thus, once
the z-lists have been created, it is trivial to adjust the final
compositing scheme to suit the rendering required.
For 0 t m 1 0 this final compositing will be an

approximation since the segment opacities may represent
multiple voxels. In the normal case, globally changing the
opacity of a material would have a transmittance effect on the
opacities of successive voxels along the ray. Our compositing

approximates this process (depending on the quality set by
δ), regarding all segments as surfaces (see Section 4.1 for
an empirical analysis). This approximation problem does not
arise for applications such as the Java based anatomy browser
described by Umans (Umans et al., 1997), where only pre-
rendered surface models are interactively blended. Neverthe-
less, the result of modifying transparency are convincing and
the super-z structure does enable interaction and necessary
depth information in which to composite polygons.

3. Combining Volume Data and Surface Rendered
Geometry

3.1. Merging Geometry with Super-z
In the method outlined below, polygonal data is rasterized
separately by accelerated graphics and color, opacity and
depth information is merged using the super-z depth infor-
mation. Our method bears some similarity to that sketched
by Lacroute (Lacroute, 1995). Fig. 23 illustrates the general
scheme. The algorithm details are defined in Fig. 24.

Volume DataPolygon Models

Su
rfa

ce
 R

en
de

rin
g

Pi
pe

lin
e

Volume Object
Depth Buffers

Super−z Volume
Rendering

RBGAz

Combined Surface/Volume Graphics

Rasterization

RBGAz Depth Clipping

Composite

Volum
e Rendering Pipeline

(shear warp)

Figure 5. Mixing surface geometry and volume rendered graphics
using super-z depth buffering. Polygon rasterization is controlled by
the depth buffering. Polygon pixels and volume segment pixels are
composited in an interleaved fashion by arithmetic and logic in the
compositer.

6 A. Bhalerao et al.

1. Create a set Z of minimum and maximum segment start values taken over all output pixels
for the current compositing.
Z consists of values Min s k and Max s k from the merged ray sets R r k , where 0 k Nmax,
plus the depth values 0 ∞ for the space up to and beyond the object:

Z 0 Min s 0 Max s 0 Min s Nmax 1 Max s Nmax 1 ∞ (12)

where Nmax is the total number of merged ray sets.

2. Sort Z into ascending order:
Sorted Z z 0 z 1 z Nz 1 (13)

where z 0 0 and z Nz 1 ∞.

3. For each pair of planes z p z p 1 Sorted Z , 0 p Nz 1, interleave the geometry-pixel and
the segment-pixel compositing as follows. All pixel operations are clipped against the
current depth planes z p and z p 1 .

(a) Send the depth hull: the s k values of the segment-pixels, across the entire picture
plane.

(b) FTB composite rasterized geometry that is in front of the depth hull, but behind the
current front plane z p 1 .

(c) FTB composite segment-pixels

(d) FTB composite rasterized geometry that is behind the depth hull, but in front of the
current back plane z p 1 .

Figure 6. Algorithm for combining volume and surface graphics using super-z

z1 z2 z3 z4 z1 z2 z3 z4

(a) (b)

Figure 8. Min-max segment values and depth hulls for torus shaped volumes seen side on. In (b) the inner hull overlaps the outer hull and z2
and z3 planes are reversed in comparison to (a).

Stage 1 determines the depth clipping planes which are
used to gate the sending of geometry through the rasteriza-
tion. Consecutive segments across the output picture plane
are considered together: all first, all second, all third, and

so on. Fig. 25 illustrates the positions of the depth planes
for a volume which has at most 2 voxel segment along any
ray (this torus shaped volume is viewed side on). All the
first segments have a range of start depth values between z1

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 7

and z2. Similarly, all the second segments have a range of
start depth values between z3 and z4. Figs. 26(a) and 26(b)
illustrate the segment voxel depth hulls for two different torus
shaped volumes, which are to be merged with any geometry.
These appear as backface culled surfaces. Note that this
is a limitation for multiple transparent objects as it may be
misleading not being able to see both front and back facing
polygons of the back-face culling.

z1 z2 z3 z4

Figure 7. Minimum and maximum segment start depth values for a
simple torus shaped volume are at: z 1 2 for the first segment of all
rays, and z 3 4 for the second segment. Therefore, z 1 2 3 4 define
depth planes used to control the order of polygon rasterization. The
pseudo planes z 0 and z ∞ are added to this list.

In figure 27(a), six possible positions of triangles within
the volumetric scene are shown. Types 1 and 2 fall outside
the depth bounds of the volume and do not require any special
treatment. They will be sent first and last, respectively. Types
3 and 4 intersect the depth hull and are handled at stage 3 of
the merge. Triangle 6 overlaps two clip planes, and therefore
must be rasterized three times because pixels within it lie in
front, in between, and behind planes z2 and z3.
Fig. 27(b) illustrates all the possible ways triangles can

be encountered by a pair of planes. Types 3, 4, 5 and
6 will be sent during the segment-geometry compositing
between pair of planes. Some geometry will have to be
sent more than once, however, only those rasterized pixels
which pass the depth test at stage 3(c) and 3(d) need to be
composited. In our implementation, the compositing is being
done outside the geometry engine. However, we invision that
it will be possible to use the primitive operations available
in the OpenGL pipeline (Neider et al., 1992) to perform the
compositing wholly in the frame graphics (Westermann and

Ertl, 1998). Amongst a number of issues being investigated
is the performance of the operations involved in the merging
process, such as the depth culling of the geometry every time
its position and orientation is changed. These problems will
definitely arise in cases where the geometry is complex in
shape and/or changing at each frame.

4. Results and Discussion

Fig. 15(a)-(k) are volume/surface renderings of interpenetrat-
ing, anti-aliased solids within a 256 256 256 bounding
volume: a sphere, a cone and a cylindrical bar. In the left col-
umn, all the objects are volumetric. On the right, the sphere
is replaced by a polygon model consisting of 1200 triangles.
The first row is with all solids opaque. Next, the sphere is
made semi-transparent, and then the cone. In the next row,
both the cone and sphere are shown semi-transparent. Finally,
the sphere is turned off to reveal the intersection of the bar
with the cone in the volume rendered only scene, where as
it is shown as wireframe in the combined rendering. Note
that the combined volume-geometry rendering using super-
z works regardless of the type of geometric primitive used,
whether it be a surface shaded polygon or a line.
Fig. 15(k) shows the super-z buffer as a color-coded

images (receding to the back). Where objects overlap the
following color coding is used: red, green, blue, yellow, cyan,
magenta, for overlaps of 1, 2, 3, 4, 5 and 6; and white for
overlaps of greater than 6. Depth is shaded in the original
object color from light (at the front) to dark at the back.
Where the cone is occluded by the sphere, the color is bright
red. Where the sphere occludes both the cone and vertical
bar, the color is bright green.

4.1. Analysis of the Opacity Approximation Error
The degree of approximation used by super-z rendering is
controlled by δ. If δ is small, more subtle inter-voxel opacity
variation is admitted at a higher storage and computational
cost. When δ 0 all voxels are encoded in the segment list
and a full ray casting is achieved. Consequently, the chosen
level of approximation will compound light transmittance
errors as the global opacity of materials/geometrical objects
is changed.
To quantify these effects, we used the synthetic volume

data shown in cross-section in Fig. 28(a). This consists
of 3 concentric anti-aliased spheres (data size 128 128
128), with differing gray values. The full quality volume
rendering (δ 0) at a global opacity of t m 0 5 is
shown in Fig. 28(b). For opacity error measurements with
intermixed geometry, we used the cylindrical bar and cone
shown in Fig. 28(c). Output opacity values of renderings
at different values of δ 0 and tvolume or tgeometry were

8 A. Bhalerao et al.

z1 z2 z3 z4

1

2

3
4

5

6

Front Back

1
23

4 5

6

(a) (b)

Figure 9. (a) Possible triangle positions rendered within an example volumetric scene. Types 1 and 2 lie in front and behind all voxel data.
Triangle types 3 and 4 intersect surfaces of volume data. Type 5 intersects a “backface” and will be treated the same as type 2. Type 6 intersects
the surface of a volume and straddles two clipping planes. (b) Triangle types clipped against a pair of depth planes. Types 1 and 2 are not sent.
Types 3, 4, 5 and 6 are rasterized.

(a) (b)

(c) (d)

Figure 10. Synthetic volume and geometry data used for opacity error quantification. (a) Cross-section through the concentric spheres volume
data. (b) Full ray-cast of (a) at global opacity 0 5. (c) Geometry data consisting of a cylindrical bar and cone. (d) Intermixed volume and
geometry (volume opacity 0 5).

compared with renderings at δ 0. The mean opacity error,
rendering/compositing time (ms), and average storage were
measured.

Fig. 29 shows variation in mean opacity error against
global opacity t at different approximations (δ). The com-
parison was made against a full ray cast image. The error

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 9

SuperZ Delta-Opacity Approximation Errors

"results2"
 0.184
 0.147
 0.111
 0.0737
 0.0368

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0 0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0

0.05

0.1

0.15

0.2

0.25

Alpha (Global Opacity)
Delta-Opacity

Mean Opacity Error

Figure 11. The variation in mean opacity error against global opacity t at different approximations (δ). The comparison was made against a
full ray cast image. The error increases both with the degree of compositing approximation used (δ 0) and lower object opacity.

increases both with the degree of compositing approximation
used (δ 0) and the lower the object opacity. This confirms
the supposition that the light transmittance effects at higher
transparencies are compromised at higher δ thresholds. The
steps at δ 0 3 and δ 0 7 are probably data dependent. The
contour lines show that the average per-pixel opacity error can
be kept below roughly 0.1 at δ 0 5 and for tvolume 0 5.
The variation in mean opacity error for different volume-

geometry opacities for δ 1 0 (zeroth order super-z) is shown
in Fig. 30. The comparison was made against a full ray
cast image. The error minimizes with increasing volume and
geometry opacity, i.e., the more solid the objects are. The
error peaks at a geometry opacity of around 0.3. The effect
of the volume opacity on the overall error is fairly linear. The
mean error can be kept below about 0.1 per pixel for semi-
transparent renderings when tvolume 0 5 and tgeometry 0 4.

4.2. Super-Z list sizes
The final FTB compositing in our scheme is relatively low
both in storage and calculation cost because of the sparse
sampling along the ray that the super-z list sets produce.
For δ 1, we investigated typical list sizes for segmented
and unsegmented data sets. Our segmented data was volume
rendered as voxel shells of four voxel depth, which was par-
ticularly amenable to run-length encoding and our method.

The unsegmented volumes were presented in raw form to the
built-in classifier. The depth complexity of the super-z buffers
for two clinical data sets are given in tables 1 and 2.
Table 1 shows the depth complexity of the segmented MR

knee data shown in Fig. 16 which consists of approximately
10.8M voxels (equivalent to a cubic data set of size 220
220 220). It shows that the rendering can be made with a
maximum of 17 opacity segments at any pixel, out of a po-
tential of around 256, and with an average complexity of just
under 3 segments over the entire picture plane. The numbers
for the anatomical parts are for a left view and the bottom
two figures are for left and anterior views. Table 2 shows
the depth complexity of the multi-modality surgical guidance
case consisting of 25.6M voxels (equivalent to cubic a data
set of size 295 295 295). Again, the maximum super-z
depth does not exceed 18 and the average is around 3. If the
data is fairly homogeneous then only the interfaces between
materials have an impact on the depth complexity which is
linear with the number of possible objects encountered along
the ray path, but if there is great variation in the opacity then
the opacity approximations made might become visible.
An implementation requires, for each segment, the storage

of only the start z value s k and the end opacity Am s k and
color valuesCλ e k , which amounts to one short integer and
4 floating point values (16 bytes). In our examples with δ 1,

10 A. Bhalerao et al.

Volume-Geometry Merge Approximation Errors

"results3"
 0.145
 0.116
 0.0872
 0.0582
 0.0292

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

0.05

0.1

0.15

0.2

0.25

Volume Opacity
Geometry Opacity

Mean Opacity Error

Figure 12. The variation in mean opacity error for different volume-geometry opacities for δ 1 0 (zeroth order super-z). The comparison
was made against a full ray cast image. The error minimizes with increasing volume and geometry opacity i.e. the more solid are the objects.
The error peaks at a geometry opacity of around 0.3. The effect of the volume opacity on the overall error is fairly linear.

Sub-volume size Anatomy Voxel-Segments (MBytes) Ave. Storage
Total Max. Ave.

106 162 93 femur 14305 8 1.16 1.7
96 112 85 tibia 14213 9 1.68 2.4
50 71 33 fibula 3008 5 1.22 1.8
40 72 48 patella 2702 7 1.23 1.8
115 87 89 fem. cart. 7023 8 1.49 1.7
91 42 84 tib. cart. 3336 10 1.25 1.8
34 59 50 pat. cart. 1599 6 1.09 1.6
239 237 118 skin 84545 17 1.93 2.9
220 220 220 all (left) 13071 17 2.91 4.2
10.8M voxels all (anterior) 79402 15 2.98 4.3

Table 1. Depth complexity values (in total voxel-segments, and maximum/average per view-plane pixel) for rendering of the MR knee data.
Average total storage calculated using 22 bytes per node for a 256 256 output image.

the average super-z list length (per output pixel) is 3, and
if we assume the storage of one pointer (4 bytes) per depth
list node yields a total of 18 4 3 66 bytes per pixel.
The total storage overhead for a 256 256 output image is
approximately 4.3M bytes.

4.3. Computational Costs

Creation of the super-z list structure requires only compare
operations (on average 3 per pixel). The lists are automat-
ically sorted by insertion sorting, i.e., the next depth node
placed in the correct point along any existing list. The
tabulated figures from the typical data suggests at most 18
compares (“greater than” operation) for any segment inser-
tion, and on average only 3 compares per output pixel. A

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 11

(a)
0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
e
r
a
g
e

S
u
p
e
r
-
Z

L
i
s
t

S
i
z
e

Delta-Opacity

(b)
0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
m
p
o
s
i
t
e

T
i
m
e

(
m
s
)

Delta-Opacity

Figure 13. Plots showing effect of various opacity approximation thresholds (δ-Opacity) against: (a) Average Super-z list length, (b) Composite
time (ms). Comparing (a) and (b) there is clearly a 1:1 relationship between compositing time and the length of the super-z list at each pixel.
In (a), the list size reduces dramatically from an average of 20 to about 3 after an approximation δ 0 3 or greater. The steps at δ 0 3 and
δ 0 7 are probably data dependent (see main text for explanation).

12 A. Bhalerao et al.

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
n
d
e
r

T
i
m
e
/
C
o
m
p
o
s
i
t
e

T
i
m
e

R
a
t
i
o

Delta-Opacity

Figure 14. Plot showing effect of various opacity approximation thresholds (δ-Opacity) against ratio of Render/Composite time. The best
Render/Composite ratios are at low approximation thresholds. The relationship is roughly linear ranging from 7 times to 35 times faster
compositing.

Sub-volume size Anatomy Voxel-Segments (MBytes) Ave. Storage
Total Max. Ave.

256 217 113 skin 47845 18 1.08 1.6
225 197 101 grey 19122 5 1.09 1.6
223 195 102 white 15688 4 1.07 1.5
256 256 122 vessels 18805 7 1.36 2.0
109 184 59 tumor 1550 2 1.01 1.5
167 161 46 cyst 169 1 1.00 1.4
295 295 295 all (left) 103179 18 2.33 3.4
25.6M voxels all (anterior) 54419 17 2.69 3.9

all (superior) 59894 13 2.86 4.1

Table 2. Depth complexity values (in total voxel-segments, and maximum/average per view-plane pixel) for rendering of surgical data:
grey/white matter from post-contrast SPGR, tumor from T2 weighted MR, and vessels from MRA. Average total storage calculated using 22
bytes per node for a 256 256 output image.

binary chop-type sort method could be used to reduce the
overall list creation time.

To assess the computation required for re-compositing, we
apply eqns. 9 and 11, (5 multiplies and 6 additions) itera-
tively, again on average, 3 times per pixel. On average, this
requires a total of 15 multiplies and 18 additions per pixel.
For a fixed viewpoint the computation for re-compositing is
thus quite low. We have found that it is possible to turn

objects off and on, or change their opacities at interactive
rates, on a moderately powered workstation (Sun Ultra Sparc
167MHz, with 256M RAM).

An analysis of typical timings for single and multi-CPU
machines is given in Table 3. The timings are given for
rendering, compositing, and warping stages for each frame
using an implementation of our method with Lacroute’s
Shear-Warp factorization. Note that although Shear-Warp

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 13

Stage Timing (ms)
Ultra SPARC 8-CPU Ultra

Render 10653 1506
Composite 422 60
Warp 65 16

Table 3. Example of computation costs for super-z rendering. An
implementation using Lacroute’s VolPack rendering system with
shear-warp factorization was used. Timings are given for a 256
256 pixel output image on the knee data set consisting of 10.8M
voxels in total (see Table 1). The right column gives results for a
multi-threaded implementation on a 8-CPU SMP machine.

is view-independent, our method cannot be, as the super-
z structure is not built until the compositing stage, which
happens after the shear and per-slice interpolation within the
volume. A detailed analysis of computation and timings for
the rendering and warping are given by Lacroute in (Lacroute
and Levoy, 1994) (Lacroute, 1996). Our results are given
for color rendering (3 channel) and are proportionally slower
than Lacroute’s as our multi-threaded implementation was
added as an extension to the original library and is therefore
not fully optimized.
For the knee data (δ 1), the ratio for re-compositing to

rendering is approximately 1 : 25. The timings show a worst-
case re-compositingwhen all object colors are re-composited.
Further optimization can be achieved by restricting the 2D
composite operation to be within the pre-calculated bounding
boxes of the modified object. Fig. 31 shows experimental
timings and storage requirements across a range of opacity
approximation values 0 δ 1. This gives an indication
of the effect of greater approximation on the average super-z
list size (per pixel) and the corresponding composite time.
Not surprisingly, comparing Figs. 31(a) and (b) reveals a
1:1 relationship between list size and composite time. In
Fig. 31(a), the list size reduces dramatically from an average
of 20 to about 3 after an approximation δ 0 3 or greater.
The steps at δ 0 3 and δ 0 7 are probably data dependent
due to the opacity peaks in the chosen image.
The ratio of Render/Composite time is plotted in Fig. 32

for a range of δ values, for the ‘spheres’ data set. As
the approximation is made worse (increasing delta), the
Render/Composite time ratios increase from about 7 to 35.
The relationship is roughly linear over the 0 δ 1 range.

4.4. Results on Medical Image Data
Typical renderings of a segmented MR knee scan, size
256 256 118 are presented in Figs. 16(a)-(c). Fig. 16(a)
shows the skin semi-transparent revealing the bones (femur,
tibia, fibula and patella). The skin has been peeled away
in Fig. 16(b). In Fig. 16(c), the femur and tibia have been

made semi-transparent to showing the inside surfaces of the
femural and tibial cartilage as it wraps around the ends of
the joint. Fig. 16(d) shows the overlaps in the super-z depth
buffer for the same view. Most of the image has the original
anatomical colors, with mainly red (indicating an overlap of
2), in the bone-cartilage areas and then green (overlap of 3)
and blue (overlap of 4) at the joint and behind the knee cap.
There is sporadic color indicating higher depth complexity
(white is greater than 6). A polygon rendered sphere is
added to the knee renderings in Fig. 16(e) and (f). Correct
interpenetration of the surface of the sphere with the bones
is achieved. In Fig. 16(f) the sphere is wireframed and the
shading and correct depth compositing are unaffected.

A series of renderings for a multi-modality surgical plan-
ning/guidance case are presented in Fig. 17. The grey and
white matter were segmented from post-contrast SPGR MR,
the tumor from a T2 weighted MR. The blood vessels were
from a separate MR Angiogram (MRA) that was later co-
registered to the tissue scans. Moving from Fig. 17(a) to (d),
superficial anatomy has been successively made transparent
and then turned off to reveal the tumor and its relation to the
vasculature in 17(d). Note that the vessels in this rendering
are presented unsegmented as they have a sufficiently high
contrast. In Fig. 17(e) and (f), the volumetric model of
the skin (rendered as a 4-voxel thick shell) are replaced by
a polygon surface model of 43,104 triangles. Comparing
Fig. 17(e) and (a) shows howmuch smoother the skin surface
is as it does not show the aliasing artifacts visible in (a) which
is a result of the poorer out-of-plane resolution of the scanned
data. In Fig. 17(f), the skin is made semi-transparent to
reveal the unclassified volume rendered blood vessels and the
volumetric, segmented tumor.

By way of illustration of a haptic scenario, in Fig. 18 we
show a simulated probing of a volumetric rendered tibia from
the knee data set. In these images, the probe is represented
by a polygonal cylinder and sphere (a total of 1160 trian-
gles), which is separately rasterized by standard frame buffer
graphics and combined using super-z rendering. As the haptic
probe is moved around the scene, only re-compositing in the
bounding box of the polygon rendered objects is required. We
have not attempted to perform collision detection and haptics
(in its true sense) in this simulation (Pflesser et al., 1991).
Note that although the depth coding that the super-z produces
is more efficient for segmented data (such as the knee bones),
it does not exclude mixing unclassified volumes. If a fast
volume renderer is available then qualitative explorations of
heterogeneous data is possible, independent of subsequent
interaction in the fixed view.

14 A. Bhalerao et al.

5. Conclusions

A technique for quickly re-rendering volume data consisting
of several distinct materials and intermixed with moving
geometry was presented. An intermediate depth based
buffering scheme, which stores color and differential opacity
information to a given approximation was described. The
method enables rapid transparency and color changes of
materials, position changes of sub-objects, dealing explicitly
with regions of overlap, and the intermixing or separate
rendering of moving geometry, without re-scanning the entire
volume. The main assumption throughout is that the view-
point is fixed, or at least still during interaction. We presented
rendering results using both synthetic volumes and models,
and typical clinical data which was used for surgery planning.
The rendering quality can be traded-off against the relative

storage cost, and we gave an empirical analysis of output
error together with typical figures for its storage complexity.
Reducing the approximation threshold, which controls the
degree of opacity encoded by the depth buffering, corre-
spondingly reduces the output error. At the same time, the
amount of intermediate storage and compositing time in-
creases. Although the error increases for higher transparency
compositing, our results show that average per-pixel opacity
errors can be kept below 0 1 for variations in transparency
above about half for both volume and geometry. In our
experiments, the render/re-compositing time ratio ranged
between 7 and 40 for the best and worst case approximation.
Both the ability to rapidly re-generate renderings of chang-

ing data, and to effectively combine volume and surface
graphics have important implications for intra-operative vi-
sualization and haptic rendering systems, e.g., surgical sim-
ulators, where the fixed view limitation is less important.
Although our methodology can support strategies for dealing
with overlapping regions, we have not investigated their
effect on quality and performance, and this might be a good
topic for further study. We acknowledge that acceleration
methodologies like ours may become obsolete as general-
purpose techniques become faster or less expensive, but
believe that our method will fill a gap in current technology.
Furthermore, the use of intermediate depth structures provide
one practical way of combining volume and surface graphics
using separate volume and geometry rendering engines.

Acknowledgements

We would like to sincerely thank Carl-Fredrik Westin (SPL)
for discussions on this work and his help in revision of this
manuscript. We also thank the referees for their constructive
and helpful comments.
The work is funded in part by the collaborative Sun

Microsystems/SPL Cluster Computing Project.

References

Avila, R. and Sobierajski, L. (1996). A haptic interaction method for
volume visualization. In Proc. of IEEE VIS’96, pp. 197–204.

Blinn, J. (1982). Light reflection functions for simulation of clouds
and dusty surfaces. Computer Graphics, 16(3), 21–29.

Brady, M. L., Higgins, W. E., and Ramaswamy, K. (1995). Inter-
active navigation inside 3d radiological images. In Proc. IEEE
Visualization 95, pp. 33–40.

Ebert, D. and Parent, R. (1990). Rendering and animation of gaseous
phenomena by combining fast volume and scanline A-buffer
techniques. In Proc. SIGGRAPH’90.

Geiger, B. and Kikinis, R. (1995). Simulation of endoscopy. In
Comp. Vision Virtual Reality and Robotics in Med., pp. 227–281,
Nice, France.

Gibson, Sarah F. F. (1997). 3D chainmail: a fast algorithm for
deforming volumetric objects. In Cohen, Michael and Zeltzer,
David (eds), 1997 Symposium on Interactive 3D Graphics, pp.
149–154. ACM SIGGRAPH. ISBN 0-89791-884-3.

Gortler, S. J., He, L-W, and Cohen, M. F. (1997). Rendering layered
depth images. Technical Report MSTR-TR 97-09, Microsoft
Inc.

Jacq, J-J and Roux, C. (1996). A direct multi-volume rendering
method. application to visual assessment of 3-D image registra-
tion algorithms. In Proc. of Vis. in Biomed. Computing. Lecture
Notes in Computer Sciences 1131, pp. 53–62, Berlin, Germany.

Jacq, J-J and Roux, C. (1997). A direct multi-volume rendering
method aiming at comparisons of 3-D images and models. IEEE
Trans. on Information Technology in Biomedicine, 1(1), 30–43.

Kaufman, A., Yagel, R., and Cohen, R. (1990). Intermixing surface
and volume rendering. In K. H. Hoehne et. al. (eds), 3D Imaging
in Medicine: Algorithms, Systems, applications, Vol. 60, pp.
217–227, Berlin. Springer-Verlag Berlin.

Lacroute, P. (1995). Fast Volume Rendering Using a Shear-Warp
Factorization of the Viewing Transformation. Ph.D. Thesis,
Stanford University.

Lacroute, P. (1996). Analysis of a parallel volume rendering system
based on the shear-warp factorization. IEEE Visualization and
Computer Graphics, 2(3), 218–231.

Lacroute, P. and Levoy, M. (1994). Fast volume rendering using
a shear-warp factorization of the viewing transform. In Comp.
Graph. Proc., Ann. Conf. Series SIGGRAPH ‘94, pp. 451–458,
Orlando.

Levoy, M. (1988). Display of surface from volume data. IEEE
Computer Graphics and Applications, 8(3), 29–37.

Levoy, M. (1990). Efficient ray tracing of volume data. ACM Trans.
on Graphics, 9(3), 245–261.

Lorensen, W. E. and Cline, H. E. (1987). Marching cubes:A
high resolution 3d surface reconstruction algorithm. Computer
Graphics, 21(4), 163–169.

Machiraju, R. and Yagel, R. (1993). Efficient feed-forward volume
rendering techniques for vector and parallel processors. In Proc.
Supercomputing ’93, pp. 699–708.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 15

Massie, T. and Sailsbury, K. (1994). The phantom haptic interface:
A device for probing virtual objects. In Proc. ASME Symp.
on Haptic Interfaces for Virtual Environments and Teleoperator
Systems, Chicago.

Neider, J., Davis, T., and Woo, M. (1992). OpenGL Programming
Guide. Addison-Wesley Reading, MA.

Pfister, H., Hardenbergh, J., Knittel, J., Lauer, H., and Seiler, L.
(1999). The VolumePro real-time ray casting system. In Proc.
SIGGRAPH 1999.

Pfister, H. and Kaufman, A. (1996). Cube-4 - a scalable architecture
for real-time volume rendering. In Proc. ACM/IEEE Symposium
on Volume Visualization, pp. 47–54, San Francisco, CA.

Pflesser, B., Tiede, U., and Hoehne, K. H. (1991). Volume based
object manipulation for simulation of hip joint motion. In H.
U. Lemke et. al. (eds), Proc. CAR’91, pp. 329–335, Berlin.
Springer-Verlag Berlin.

Sobierajski, L. M. and Kaufman, A. E. (1994). Volumetric ray trac-
ing. In Proc. Symposium on Volume Visualization, Washington,
D.C, USA.

Umans, C., Halle, M., and Kikinis, R. (1997). Multilayer images for
interactive 3d visualization on the world wide web. Technical
Report 51, Surgical Planning Lab., Harvard Medical School,
Boston MA.

Warfield, J. Dengler S., Zaers, J., Guttmann, C. R. G., Wells, W. M.,
Ettinger, G. J., Hiller, J., and Kikinis, R. (1995). Automatic
identification of grey matter structures from MRI to improve the
segmentation of white matter lesions. In Proc. Medical Robotics
and Computer Assisted Surgery, pp. 140–147, Baltimore, USA.

Wells, W. M., Grimson, W. E. L., Kikinis, R., and Jolez, F. A.
(1996a). Adaptive segmentation of MRI data. IEEE Trans. Med.
Imag., 15(4), 429–443.

Wells, W. M., Viola, P., Atsumi, H., Nakajima, S., and Kikinis, R.
(1996b). Multi-modal volume registration by maximization of
mutual information. Medical Image Analysis, 1(1), 35–51.

Westermann, Rüdiger and Ertl, Thomas (1998). Efficiently using
graphics hardware in volume rendering applications. In Cohen,
Michael (ed.), SIGGRAPH 98 Conference Proceedings, Annual
Conference Series, pp. 169–178. ACM SIGGRAPH, Addison
Wesley. ISBN 0-89791-999-8.

Wilhelms, J. and van Gelder, A. (1991). A coherent projection
approach for direct volume rendering. ACM Trans. on Computer
Graphics, 25(4), 275–284.

16 A. Bhalerao et al.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

Figure 15. Left column: super-z volume renderings of synthetic volumes: sphere, cone and cylindrical bar. Right column: combined volume-
geometry using super-z, with sphere polygon rendered. In (j) the wireframe (1200 triangles) defining the sphere is shown. In (k), where objects
overlap the following color coding is used: red, green, blue, yellow, cyan, magenta, for overlaps of 1, 2, 3, 4, 5 and 6; and white for overlaps of
greater than 6.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 17

(a)

Femur
Patella

Tibia

Fibula

(b)

(c) (d)

(e) (f)

Figure 16. Super-z Volume Renderings of MR Knee data. Figs. (a)-(d) are all segmented volumetric models. In (d), where objects overlap the
following color coding is used: red, green, blue, yellow, cyan, magenta, for overlaps of 1, 2, 3, 4, 5 and 6; and white for overlaps of greater
than 6. Figs. (e) and (f), a surface rendered sphere is introduced showing correct interpenetration with bones. In (f) the sphere is show as a
wireframe revealing triangle facets.

18 A. Bhalerao et al.

(a) (b)

(c) (d)

(e) (f)

Figure 17. Super-z Volume/Surface Renderings of clinical surgical planning case. Figs. (a)-(d) with all volumetric models (skin as 4 voxel
shell). Figs. (e) and (f) with skin model as surface shaded polygons (43104 triangles) and combined with unclassified MR angiogram and
segmented tumor.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 19

(a) (b)

(c) (d)

Figure 18. Four frames from a simulated haptic probing of the surface of a volume rendered tibia from the knee joint data set. The probe is
represented by a polygonal cylinder and sphere (1160 polygons), separately rendered by polygon accelerated frame graphics. Super-z is used
to combine the renderings as the probe is moved and breaks the tibial surface. In (d) transparency of the bone was reduced to show the probe
inside the bone.

20 A. Bhalerao et al.

Abhir Bhalerao graduated in 1986 from the Uni-
versity of Warwick, UK, having read BSc Com-
puter Systems Engineering. He worked as a pro-
grammer with a software-systems company (SD-
Scicon) for two years being involved in real-time
simulations software e.g. graphical, networked
systems for air traffic control training. Between
1988-1991 he was a researcher at the Image and
Signal Processing group at the Department of
Computer Science, University of Warwick, where
he completed his Ph.D. in Image Segmentation. He

worked for an electronics company (Crosfield Electronics) for 2 years as an
analyst programmer and was involved in a number of projects developing
low-level software for communications systems used by the publishing
industry. In 1993 he joined the Image Processing Group at Guy’s and
St.Thomas’ Hospital, London, at part of the Advanced Medical Imaging
project, sponsored by the hospital’s Special Trustees. Since February 1996,
he has been a Research Fellow with the Surgical Planning Laboratory,
Brigham and Women’s Hospital, Harvard Medical School, Boston working
on segmentation methods for MR angiography data, volume rendering for
surgical planning, and artifact correction in MRA.

Hanspeter Pfister is a Research Scientist at
MERL - A Mitsubishi Electric Research Labora-
tory in Cambridge, MA. He is the chief archi-
tect of VolumePro, Mitsubishi Electric’s real-time
volume rendering system for PC-class computers.
His research interests include computer graphics,
scientific visualization, computer architecture, and
VLSI design. Hanspeter Pfister received his PhD in
Computer Science in 1996 from the State Univer-
sity of New York at Stony Brook. In his doctoral
research he developed Cube-4, a scalable architec-

ture for real-time volume rendering. He received his Dipl.-Ing. degree in
electrical engineering from the Department of Electrical Engineering at the
Swiss Federal Institute of Technology (ETH) Zurich in 1991. He is a member
of the ACM, IEEE, the IEEE Computer Society, and the Eurographics
Association.

Michael Halle is a Research Fellow at the Surgical
Planning Laboratory in the Department of Radi-
ology at the Brigham and Women’s Hospital in
Boston, Massachusetts. He received his Bachelor
of Science in computer science and engineering
fromMIT in 1988. He studied the role of computer
graphics in three-dimensional display technology
at the Spatial Imaging Group of MIT’s Media
Laboratory from 1985 to 1997. He received his
Master of Science degree from MIT in 1991 and
his doctorate in 1997. His current research inter-

ests include 3D displays, computer graphics, user interface design, and image
based rendering.

Ron Kikinis is the Director of the Surgical Plan-
ning Laboratory of the Department of Radiology,
Brigham and Women’s Hospital and Harvard Med-
ical School, Boston, MA, and an Assistant Profes-
sor of Radiology at Harvard Medical School, as
well as an Adjoint Professor of Biomedical Engi-
neering at Boston University. His interests include
the development of clinical applications for image
processing, computer vision and interactive ren-
dering methods. He is currently concentrating on
developing fully automated segmentation methods

and introducing computer graphics into the operating room. He is the author
of 44 peer-reviewed articles. Before joining Brigham and Women’s Hospital
in 1988, he worked as a researcher at the ETH in Zurich and as a resident at
the University Hospital in Zurich, Switzerland. He received his M.D. from
the University of Zurich, Switzerland, in 1982.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 21

6. Figures on single pages

Except Figures 15 – 18 which are already on single pages.

22 A. Bhalerao et al.

Material 1

Material 2

Depth Buffer 1

Depth Buffer 2

Composite

Render

Picture Plane

Figure 19. Overview of depth buffer volume rendering

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 23

Projection Ray

R

R

 1

 2

α(1) α(3)

α(2)

S (1) 11

2S (2)

S (3)

Figure 20. The same ray cast through two materials showing image
segments encountered

24 A. Bhalerao et al.

R 1

R 2 S (2)

1

a b cR

S (3)S (1)1

2

Figure 21. Merge sorting super-z lists on the front z value.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 25

R

R ’

α(1) α(2) α(3)

α (2)α (1)’ ’

Figure 22. Overlapping sub-segments are handled by separate
blending strategies.

26 A. Bhalerao et al.

Volume DataPolygon Models

Su
rfa

ce
 R

en
de

rin
g

Pi
pe

lin
e

Volume Object
Depth Buffers

Super−z Volume
Rendering

RBGAz

Combined Surface/Volume Graphics

Rasterization

RBGAz Depth Clipping

Composite
Volum

e Rendering Pipeline

(shear warp)

Figure 23. Mixing surface geometry and volume rendered graphics
using super-z depth buffering. Polygon rasterization is controlled by
the depth buffering. Polygon pixels and volume segment pixels are
composited in an interleaved fashion by arithmetic and logic in the
compositer.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 27

1. Create a set Z of minimum and maximum segment start values taken over all output pixels
for the current compositing.
Z consists of values Min s k and Max s k from the merged ray sets R r k , where 0 k Nmax,
plus the depth values 0 ∞ for the space up to and beyond the object:

Z 0 Min s 0 Max s 0 Min s Nmax 1 Max s Nmax 1 ∞ (14)

where Nmax is the total number of merged ray sets.

2. Sort Z into ascending order:
Sorted Z z 0 z 1 z Nz 1 (15)

where z 0 0 and z Nz 1 ∞.

3. For each pair of planes z p z p 1 Sorted Z , 0 p Nz 1, interleave the geometry-pixel and
the segment-pixel compositing as follows. All pixel operations are clipped against the
current depth planes z p and z p 1 .

(a) Send the depth hull: the s k values of the segment-pixels, across the entire picture
plane.

(b) FTB composite rasterized geometry that is in front of the depth hull, but behind the
current front plane z p 1 .

(c) FTB composite segment-pixels

(d) FTB composite rasterized geometry that is behind the depth hull, but in front of the
current back plane z p 1 .

Figure 24. Algorithm for combining volume and surface graphics using super-z

28 A. Bhalerao et al.

z1 z2 z3 z4

Figure 25. Minimum and maximum segment start depth values for a
simple torus shaped volume are at: z 1 2 for the first segment of all
rays, and z 3 4 for the second segment. Therefore, z 1 2 3 4 define
depth planes used to control the order of polygon rasterization. The
pseudo planes z 0 and z ∞ are added to this list.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 29

z1 z2 z3 z4 z1 z2 z3 z4

(a) (b)

Figure 26. Min-max segment values and depth hulls for torus shaped volumes seen side on. In (b) the inner hull overlaps the outer hull and z2
and z3 planes are reversed in comparison to (a).

30 A. Bhalerao et al.

z1 z2 z3 z4

1

2

3
4

5

6

Front Back

1
23

4 5

6

(a) (b)

Figure 27. (a) Possible triangle positions rendered within an example volumetric scene. Types 1 and 2 lie in front and behind all voxel data.
Triangle types 3 and 4 intersect surfaces of volume data. Type 5 intersects a “backface” and will be treated the same as type 2. Type 6 intersects
the surface of a volume and straddles two clipping planes. (b) Triangle types clipped against a pair of depth planes. Types 1 and 2 are not sent.
Types 3, 4, 5 and 6 are rasterized.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 31

(a) (b)

(c) (d)

Figure 28. Synthetic volume and geometry data used for opacity error quantification. (a) Cross-section through the concentric spheres volume
data. (b) Full ray-cast of (a) at global opacity 0 5. (c) Geometry data consisting of a cylindrical bar and cone. (d) Intermixed volume and
geometry (volume opacity 0 5).

32 A. Bhalerao et al.

SuperZ Delta-Opacity Approximation Errors

"results2"
 0.184
 0.147
 0.111
 0.0737
 0.0368

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0 0.0

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0

0.05

0.1

0.15

0.2

0.25

Alpha (Global Opacity)
Delta-Opacity

Mean Opacity Error

Figure 29. The variation in mean opacity error against global opacity t at different approximations (δ). The comparison was made against a
full ray cast image. The error increases both with the degree of compositing approximation used (δ 0) and lower object opacity.

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 33

Volume-Geometry Merge Approximation Errors

"results3"
 0.145
 0.116
 0.0872
 0.0582
 0.0292

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1.0 0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

0.05

0.1

0.15

0.2

0.25

Volume Opacity
Geometry Opacity

Mean Opacity Error

Figure 30. The variation in mean opacity error for different volume-geometry opacities for δ 1 0 (zeroth order super-z). The comparison
was made against a full ray cast image. The error minimizes with increasing volume and geometry opacity i.e. the more solid are the objects.
The error peaks at a geometry opacity of around 0.3. The effect of the volume opacity on the overall error is fairly linear.

34 A. Bhalerao et al.

(a)
0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
e
r
a
g
e

S
u
p
e
r
-
Z

L
i
s
t

S
i
z
e

Delta-Opacity

(b)
0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o
m
p
o
s
i
t
e

T
i
m
e

(
m
s
)

Delta-Opacity

Figure 31. Plots showing effect of various opacity approximation thresholds (δ-Opacity) against: (a) Average Super-z list length, (b) Composite
time (ms). Comparing (a) and (b) there is clearly a 1:1 relationship between compositing time and the length of the super-z list at each pixel.
In (a), the list size reduces dramatically from an average of 20 to about 3 after an approximation δ 0 3 or greater. The steps at δ 0 3 and
δ 0 7 are probably data dependent (see main text for explanation).

Fast Re-Rendering Of Volume and Surface Graphics By Depth, Color, and Opacity Buffering 35

0

5

10

15

20

25

30

35

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
e
n
d
e
r

T
i
m
e
/
C
o
m
p
o
s
i
t
e

T
i
m
e

R
a
t
i
o

Delta-Opacity

Figure 32. Plot showing effect of various opacity approximation thresholds (δ-Opacity) against ratio of Render/Composite time. The best
Render/Composite ratios are at low approximation thresholds. The relationship is roughly linear ranging from 7 times to 35 times faster
compositing.

