
GUIRO: User-Guided Matrix Reordering

Michael Behrisch, Tobias Schreck, and Hanspeter Pfister

Which matrix reordering
algorithm to choose?

What is hidden in
my data?

How to design better
reordering algorithms?

Projection-based Index Ordering View
for Algorithm Steering & Understanding

Quality Metrics & Index Comparison

71 Matrix Reordering Algorithms

Interactive and Animated
Reordering

�
Network Analyst

�
Algorithm Designer

�
General User

Fig. 1: With GUIRO we address three essential matrix analysis questions: (1) Which matrix reordering algorithm produces useful
results? (2) Can we steer these algorithms to support analytical tasks? (3) How to compare reorderings quantitatively & qualitatively?

Abstract— Matrix representations are one of the main established and empirically proven to be effective visualization techniques for relational
(or network) data. However, matrices—similar to node-link diagrams—are most effective if their layout reveals the underlying data topology.
Given the many developed algorithms, a practical problem arises: “Which matrix reordering algorithm should I choose for my dataset at
hand?” To make matters worse, different reordering algorithms applied to the same dataset may let significantly different visual matrix patterns
emerge. This leads to the question of trustworthiness and explainability of these fully automated, often heuristic, black-box processes. We
present GUIRO, a Visual Analytics system that helps novices, network analysts, and algorithm designers to open the black-box. Users can
investigate the usefulness and expressiveness of 70 accessible matrix reordering algorithms. For network analysts, we introduce a novel
model space representation and two interaction techniques for a user-guided reordering of rows or columns, and especially groups thereof
(submatrix reordering). These novel techniques contribute to the understanding of the global and local dataset topology. We support algorithm
designers by giving them access to 16 reordering quality metrics and visual exploration means for comparing reordering implementations on
a row/column permutation level. We evaluated GUIRO in a guided explorative user study with 12 subjects, a case study demonstrating its
usefulness in a real-world scenario, and through an expert study gathering feedback on our design decisions. We found that our proposed
methods help even inexperienced users to understand matrix patterns and allow a user-guided steering of reordering algorithms. GUIRO helps
to increase the transparency of matrix reordering algorithms, thus helping a broad range of users to get a better insight into the complex
reordering process, in turn supporting data and reordering algorithm insights.

Index Terms—Visual Analytics, matrix, black-box algorithms, seriation, ordering, sorting, steerable algorithm, interaction, 2D projection

1 Introduction

Relational datasets, commonly referred to as graph datasets, are getting
more and more important in the research and commercial sectors. So-
cial networks, modeling individuals and their interactions, are typically

• Hanspeter Pfister and Michael Behrisch are with the School of Engineering
and Applied Sciences, Harvard University, United States.
E-mail: {pfister, behrisch}@seas.harvard.edu.

• Tobias Schreck is with the Graz University of Technology, Austria.
E-mail: tobias.schreck@cgv.tugraz.at.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

used for researching sociological and socio-dynamic phenomena, but
also find their commercial application in the planning and evaluation
of effective advertisement campaigns [64, 85]. Biological networks
help us understand the intertwined relationships between the degree
of efficiency and environmental influences for drugs or depicts com-
plex phylogenetic trees [11, 41]. Telecommunication networks are
combining relational data and geographic considerations to drive the
development of our ubiquitous wired and wireless networks. A wide
range of application fields for network analysis, in general, are known
in the area. The NetworkRepository.com [66] alone groups its more
than 4,500 datasets into 27 categories, representing also less common-
ly associated fields, such as ChemInformatics, brain-, power network
analysis, or ecology and economy networks research.

Generally, two visualization techniques for large-scale graph data
have been proven effective: Node-link diagrams and matrix visualiza-

NetworkRepository.com

tions [25,57]. In this work, we will focus on matrix visualizations. Their
outstanding property is that they allow us to perceive Overview+Detail
in one plot. They follow a simple, yet powerful, construction mechanis-
m: Items, i.e., vertices, are assigned to rows and columns and links be-
tween them, i.e., edges, are encoded by filling the cell at the intersection
of the linking items’ row and column index. This effective row/column
layout circumvents overplotting and edge cluttering problems a n n
nd—more importantly—can directly target overview questions, such
as «Is the network big or small?» (few or many rows/columns) or «Is
the network globally sparse or dense?» (few or many filled cells) or
«Does the network represent a small-world phenomenon?» (globally
sparse, but locally dense) [25]. For more detailed analytical questions,
though, matrix visualization requires a good reordering of rows and
columns to extract meaningful information, such as the presence of
topological structures. Fig. 1 (middle) shows the same data (matrix),
using a different order for rows and columns. All reordered plots let
us perceive more or less distinct interpretable visual patterns. The
problem is, however, that for a matrix with n rows and m columns,
(n! × m!)/2 possible non-redundant row/column permutations exist.
Of this factorial number of permutations, we can assume that very few
plots actually deliver useful information.

When using matrix visualizations for graph data analysis typically
three central problems exist:

(1) It is not transparent, which matrix reordering algorithm to
choose. From previous work [7, 48, 80], we learn that not only
a wide range of algorithm choices exist, but also that their (non-
apparent) algorithmic design decisions can have a tremendous
impact on the visual result.

(2) It is not transparent, which local structures are hidden in a glob-
ally optimized layout. Most matrix reordering algorithms are
designed to grasp solely the underlying top-level topology. Even
worse, they are mostly designed “only” for graph partitioning tasks.
While clusterings are important only few approaches are able to
handle and demonstrate nested patterns.

(3) It is not transparent, how algorithms are working. Matrix re-
ordering algorithms are mainly black-box algorithms; the user has
no control over results beyond the choice and parametrization of
quality criteria. Due to the large search space, these algorithms
resort to heuristics and may return local optima. In addition, their
complexity is such that multiple runs with different parametrization
can be very time-consuming.

In this work, we present GUIRO, short for user-GUIded matrix Re-
Ordering, a Visual Analytics system that helps users with different
visualization literacy to work with matrix plots. Users can experiment
with their own data through our web-based interface. We have imple-
mented 70 matrix reordering algorithms; to our knowledge the biggest
collection of directly accessible algorithms for this purpose. GUIRO’s
primary purpose, however, is to help network analysts to retrieve and
analyze local structures in global matrix reorderings. For this purpose,
our technique centers on a similarity-preserving, 2D projection of the
matrix (Index Ordering Visualization) in which analysts can invoke
two novel interaction techniques for steering the row/column reorder-
ing process: (1) analysts can change the item-wise order through a
drag-and-drop gesture and (2) they can reorder (one or multiple) s-
elected item groups according to one or multiple distinct reordering
algorithms. Combining (1) and (2) allows generating composite matrix
reorderings, thus taking advantage of the benefits from its constituent
sub-algorithms. Lastly, GUIRO can be used by algorithm designers, who
want to compare qualitatively and—more importantly—quantitatively
their newly developed algorithm to the state-of-the-art. We allow com-
puting 16 quality metrics and visualize the pair-wise (dis)similarities
for row/column index lists.

With GUIRO, our fundamental goal is to increase the transparency
of so-called black box algorithms. We hope that showing comparative
visualizations, the ability to apply reordering algorithms locally, and
the freedom to intervene in the row/column reordering process, helps
a broad range of users to get a better insight into the complex matrix
reordering process, in turn leading to novel data and algorithm insights.

2 User, Goals & Usage Scenarios

Matrix visualizations are widely employed in research and industrial
settings by a diverse set of users with different needs. Interestingly,
neither the survey literature on the network/graph analysis [7, 56, 76],
nor the central work on user tasks in this domain [25, 46, 62] explicitly
categorizes or describes the users’ capabilities. To fill this gap, we
extrapolated three common user roles, their motivation, analysis focus,
and typical usage scenarios.

2.1 Novices & Scholars

Although the design of matrices is straightforward, the interpretation
of its visual features—and ultimately visual patterns—is not. Novices
are therefore mostly concerned with acquiring a level of visualization
literacy that enables them to explain the emerging visual patterns. In
comparison, novices are generally not interested in understanding the
algorithmic circumstances leading to the results, but rather try to reflect
on the general idea of “placing similar rows/columns next to each other.”
Let us investigate this user group from an education perspective:
T1 Compare result usefulness. Matrix reordering algorithms are de-

signed to promote certain visual patterns [7]. However, if the
dataset simply does not contain the expected topology, these
algorithms will likely produce cluttered results. In a typical explo-
ration scenario the user will invoke a set of algorithms to compare
the distinct outcomes visually.

T2 Demonstrate patterns variability. The high-level analysis tasks
for graph data strongly differ from non-relational data analysis
tasks. We will elaborate this point in Sect. 3.1. In an instruc-
tional setting, the scholar will raise the awareness that different
algorithms will produce distinct dissimilar visual patterns.

T3 Reveal the heuristic nature of (many) algorithms. Due to the fac-
torial increase of the search space many reordering algorithms are
heuristic, sometimes even greedy algorithms. A comprehensive
instructional session will illustrate this fact by applying sever-
al times the same algorithm on the same dataset, resulting in
different visual results.

Combining the challenges of T1, T2, and T3 leads to the quintessential
question “Which matrix reordering algorithm to choose?”. In GUIRO,
we help novices in answering these questions through an interactive
comparative “Algorithm Chooser”, described in Sect. 4.1.

2.2 Network Analyst

Network Analysts make up the most prevalent role of matrix visualiza-
tion users. According to Kandogan [40] and Kandel [39] their interest in
algorithmic details can be varying. However, we can safely assume that
their primary goal is to understand, assess, and present the dataset’s top-
level data topology. A more comprehensive network analysis though
will also examine the interaction between local patterns.
T4 Global pattern analysis. An appropriate matrix reordering algo-

rithm will reflect the general data topology allowing the analyst to
answer canonical questions, regarding connectivity and partition-
ing [46]. However, as described in [7] or [80], these algorithms
can also fail to produce interpretable results, even if the dataset
contains explainable structure. What is needed is a structure-
preserving meta visualization that enables network analysts to
estimate how much structure a dataset contains.

T5 Nested pattern analysis. The idealistic view—depicted in Fig. 2—
does not hold for real-world scenarios. To give a practical exam-
ple, biological networks often reflect complex and even nested
visual pattern relationships [41, 47]. Almost all reordering al-
gorithms, however, are designed for global pattern retrieval and
interactive visualizations for applying these algorithms in a local
context are mostly unexplored.

T6 Detect (local) pattern relationships. As mentioned before, visual
patterns are not necessarily disjunct but form complex interactions.
A network analyst has to distill this information, by retrieving,
e.g., who is the central actor connecting two subgroups in a social
network. Having found this influencing person the subsequent
question would be who is the primary contact point within the
groups to distribute the information further.

T7 Adapt visual results to emphasize analytic importance. Present-
ing the above complex relationships is quintessential for a suc-
cessful network analyst. However, based on our experience, these
analysts interestingly do not lean necessarily on one automatic
matrix reordering result but sacrifice the global reordering on
subparts to emphasize a point on other parts.

In GUIRO, we address the usage scenarios of structure “prescreening”
with a projection-based index view (Sect. 4.2) and two interactions for
a local pattern exploration, organization, and presentation (Sect. 5).

2.3 Algorithm Designer
Algorithm designers have a different set of tasks, compared to the
network analyst and novice users. Their daily work is centered around
quantitative evaluation schemes, justifiable algorithm design decisions,
and stress tests.
T8 Inspect Quality Metrics. Algorithm designers are concerned,

not only with the visual performance of their algorithms, but
also quantitative quality metrics. Comparing a newly designed
algorithm against the state-of-the-art is necessary for an objective
comparative evaluation.

T9 Comparing/Weighing up of Design Decisions. Matrix reorder-
ing algorithms can be tweaked on two fronts: (a) the process of
exploring the permutations space and (b) the notion of similarity
between rows/columns. Giving the designer (visual) means to
reflect on the impact of algorithm design decisions will lead to
better, more stable algorithms for matrix reordering.

T10 What-if Analysis. Black-box algorithms work most of the time.
Finding out, however, what went wrong in the error cases is non-
trivial. One classic way of doing this kind of “debugging” is to
exchange the input with structurally varying datasets and compare
the ordering results.

In GUIRO, we give the algorithm designer various means to address
their typical usage scenarios (see: Sect. 6). A performance metric view
(T8) and the index-to-index comparison component (T10) enables a
(visual) juxtaposition of matrix reordering results. Futhermore, we
can overlay multiple reordering results in our projection-based index
visualization, as we will describe in Sect. 4.2.

3 Matrices and Visual Patterns in Matrices
An adjacency matrix � = (n × n) is a two-dimensional vector with
n = ∣N∣ with N being the vertices in an undirected network. A matrix
cell ci j; 0 ≤ i, j < n denotes the existence of an edge between vertices
i and j. In simplest case, ci j = 1 if i and j are connected, otherwise
ci j = 0. In many real-world datasets, ci j models data attributes, such
as strength (e.g., amount of messages exchanged between friends in a
social network), or relation type (e.g., highway vs. interstate road in a
transportation network) resulting in a weighted adjacency matrix. Ma-
trix visualizations reflect this layout scheme by applying color, texture,
or glyphs to each to cell. Rows and columns can be freely rearranged,
also called a row/column permutation π, without changing the under-
lying data. A “good” reordering allows us to perceive Overview and
Detail in one plot. Statistically, however, (n! × n!)/2 non-redundant
permutations exists of which only few expose the topological structure.

3.1 Visual Patterns in Matrices
A visual matrix pattern is a perceivable structure in the matrix visu-
alization revealing information about the underlying graph topology.
Some work has been conducted [7, 53, 80] to collect the central visual
patterns in matrix plots, along with their graph-theoretic interpretations.
For the sake of simplicity, let us analyze the simple graph shown in
Fig. 2 while generalizing our findings to a taxonomy of interpretable
visual patterns for matrices.

The graph in Fig. 2 contains the complete/fully connected subgraph
(clique) (v1 ↶À v2

↶

À v3). In our matrix representation, the red coherent
rectangular block on the main diagonal represents this clique.
1
2
3

7
8
9

1 2 3 4 5 6 7 8 9 10

4
5
6

10

Generally, a Block-diagonal pattern consists of one or mul-
tiple blocks (at least 2 × 2 cells) on the main diagonal of
the matrix. Note, that the main diagonal is the center matrix
line, where i = j; 0 ≤ i, j < n, and is quintessential for a

correct interpretation of matrix patterns. The density of the blocks lets

1
2
3

7
8
9

1 2 3 4 5 6 7 8 9

4
5
6

11

1110

10

12

12

2

3

4 5

6

9 8

1

10

1112

7

Fig. 2: An adjacency matrix (left) and a Node-Link diagram (right)
allow interpreting a range of visual patterns. A network analysts’ tasks
is to (a) to find the row/column ordering that represents most topological
structures best and (b) to represent the results effectively to the audience.
Figure adapted from [54].

us distinguish cliques (fully colored), strongly connected components
or clusters (some uncolored matrix cells) and loosely connected compo-
nents (less color density). Connected components are often the central
visual pattern. It finds applications, e.g., in social network analysis
representing groups of mutual friends or in bioinformatics groups of
genes with their related expression characteristics.

The next visual pattern in our graph connects v5 ↶À v1, v5
↶

À v2,
v5 ↶À v3, v5

↶

À v4, and analogous v6 ↶À v1, v6
↶

À v2, v6
↶

À v3, v6
↶

À v4.
The visually dense off-diagonal gray-blue rectangles show this
connectivity pattern in matrices.
1
2
3

7
8
9

1 2 3 4 5 6 7 8 9 10

4
5
6

10

Albeit being similar in its visual appearance to block-
diagonal forms, Off-Diagonal Block patterns do not over-
lap with the main diagonal; sometimes they are even at the
corners of the matrix. Off-diagonal blocks refer to bi-cliques

consisting of two sets of vertices where each vertex from the one set
is connected to each vertex of the second set. Bi-cliques model for
example, website visits and their user groups, or persons having visited
a range of cities.

Next, our graph shows one four node path connecting v5 ↶À v6,
v6 ↶À v7, v7

↶

À v8,and v8 ↶À v9, with its matrix representation being the
two bands or lines parallel to the main diagonal .
1
2
3

7
8
9

1 2 3 4 5 6 7 8 9 10

4
5
6

10

In undirected networks, this Band pattern consists of lines
parallel to the matrix diagonal. These lines are mirrored
and do not touch or cross the main diagonal. Bands indi-
cate paths through the network, i.e., sequence of links from

one to another vertex. Paths can represent a possible way of informa-
tion flow through a computer network or a sequence of reactions in a
biological networks.

Lastly, we find a fan-like connection of the vertex v10 ↶À v8,
v10 ↶À v9, v10

↶

À v11,and v10 ↶À v11 in green. In the matrix, this motif
will be strongly visible by a so-called Star/Line Pattern .

1
2
3

7
8
9

1 2 3 4 5 6 7 8 9 10

4
5
6

10

Generally, star or also called line patterns in matrices consist
of one horizontal and one connected vertical line with or
without discontinuities. This pattern represents a star graph
motif, i.e., a highly connected vertex in the network, such

as a famous person in a friendship network, a transportation hub, or a
catalyst for reactions in a biological network.

Our walk-through should not be considered as exhaustive, but rather
as a general methodology for retrieving matrix patterns. The large
variety of visual patterns results from the combination of the afore-
mentioned base patterns and so-called anti-patterns: Two established
anti-patterns exist in the literature [7, 80]:
1
2
3

7
8
9

1 2 3 4 5 6 7 8 9 10

4
5
6

10

The most obvious Anti-pattern is Noise. We can describe it
as a distribution of black cells without inherent visual struc-
ture. The more noise a matrix contains, the less information
it shows. Interestingly, noise has two interpretations: (1)

There is no apparent structure in the underlying graph topology and (2)
the pattern extractor, i.e., the matrix reordering algorithm, was not able
to grasp this underlying topology [10, 53].

1
2
3

7
8
9

1 2 3 4 5 6 7 8 9 10

4
5
6

10

The second Anti-pattern is the Bandwidth Anti-pattern.
Bandwidth patterns are solely an artifact of algorithms,
which are examining the permutation search space in a
breadth-first search, such as the graph-based matrix reorder-

ing algorithm Cuthill-McKee and its predecessors [15,24]. This breadth-
first search finds its visual manifestation in a formed envelope, which
does not add interpretable information unless the ordering within the
formed envelope contains other patterns.

1
2
3

7
8
9

 1 2 3 4 5 6 7 8 9 10

4
5
6

10

In this work, we want to establish a third general Anti-
pattern: The Noise-Cluster Anti-pattern. Many matrix
reordering algorithms (see also: Sect. 3.2) are designed to
support partitioning tasks, i.e., their implementation tries

(desperately) to reflect groupings/cluster in the data. However, two
artifacts frequently clutter matrix visualizations: (1) the algorithm
groups rows/columns next to each that are contradicting our humans’
gestalt-law expectations and (2) the algorithm separates rows/columns
that our humans’ perception system would rather group together. Both
visual artifacts can be traced back to the algorithm’s implementation,
e.g., thresholding decisions. Unfortunately, these perceptual and related
cognitive biases aspect find little attention in the literature, yet they
contribute significantly to our interpretability problems for matrices.

3.2 Matrix Reordering (or Seriation)
Matrix visualizations scale well with the size of the input data, but
their usefulness heavily depends on a suitable reordering of rows/
columns [7, 53, 81, 83]. We can formalize the process reordering of
an undirected network G, in accordance to our state-of-the-art survey
on matrix reordering approaches [7], as computing one permutation
π ∈ S that maximizes or minimizes a quality criteria q(π,G), such that:
arg minπ∈S q(π,G) For example, q can compute the sum of distances
d(x, y) between vertices according to the order π; The equation would
find π ∈ S that minimizes this sum. While a variety of automated
reordering methods have been developed, we want to focus our attention
in this work on the underlying mechanisms and different quality criteria
that guide the process as a whole.
Automated Matrix Reordering: Quality metrics for matrix reorder-
ing regularly include (a) the optimization of quality criteria, e.g., the
row/ column dissimilarity, and (b) the emergence of visible structures
from the matrix. Regarding (a), several quality criteria have been sug-
gested that are partially congruent with the graph drawing domain; c.f.,
Díaz et al. [17]. The prominent quality criteria for matrix reordering
are bandwidth and profile optimization, column/row gradient measures,
such presented by Hubert et al. [36], the Hamilton path length [13],
or Stress measures [55]. The linear arrangement (LA) [43] is the de
facto standard for comparing matrix reordering algorithms quantita-
tively. It relates all node-to-node distances (or edge weights) to their
index-to-index distances in a given reordering. Minimizing the LA
causes similar vertices to be placed close to each other. Finding a
global optimum for this problem is computationally hard, but efficient
approximations, such as the Multi-Scale approach [43] exist. Regard-
ing (b), other reordering strategies may aim at exposing interpretable
visual structures (c.f., Sect. 3.1). These effect ordering techniques [22]
make use of perception-driven quality criteria, such as Anti-Robinson
Events/Deviations [14, 65, 71], Anti-Robinson arrangements [61], the
barycenter heuristics [50], or McCormick et al.’s “Measure of Effec-
tiveness” [51, 52], which can be used to find locally dense areas off the
diagonal (c.f., Off-Diagonal Block pattern). Note that GUIRO allows
analysts to compare 16 quality scores from all mentioned categories.
Interactive Matrix Reordering: Automatic approaches are making
(non-)deterministic, sometimes greedy, and most importantly hard-
coded decisions at many points of their process, i.e., how to start
the reordering sequence or how to traverse and prune the permuta-
tion search space. To address the shortcomings of certain algorithms,
interactive reordering techniques have been suggested. Bertifier [60],
TableLens [63], InfoZoom [70], or Siirtola and Mäkinen’s “Reorderable
Matrix” [69] on the one end of the spectrum, let the user drag-and-drop
rows and columns manually, providing comparable functionality to
Bertin’s mechanical reordering device. On the other end of the spec-
trum, semi-assisted (steering) approaches, such as MatrixExplorer [32],

COMBat [73], or PermutMatrix [13] let the user apply distinct matrix
reorderings while helping between context switches. The first approach
to a semi-automatic matrix reordering was presented by Henry and
Fekete in [32], where a traveling salesman-based reordering algorithm
can be iteratively (re-)applied on a selected subset of rows/columns.
GUIRO unifies many of the mentioned interactive and semi-

interactive approaches in one user interface and lets the user experience,
steer, and evaluate matrix reordering systematically. Please note that
this section is supposed to give the reader a tutorial into the topic.
For didactical reasons, we discuss GUIRO in the context of its applied
techniques in the dedicated Related Work Section 8.

4 User-Guided Matrix Reordering
�

2D Projection Algor. SteeringRow/Col Index
Linearization

Local & Group
Reordering

�

�

Fig. 3: Processing pipeline for our user-steerable matrix reordering
approach: the rows, resp. columns, of a matrix are interpreted as
high-dimensional (HD) vectors (1st image) and projected into a 2D
space (2nd image) forming a set of vertices. Similar HD vectors are
projected to similar 2D positions. A matrix reordering result is depicted
by a path acyclically connecting all vertices. Selecting vertex groups
allows a local application of reordering algorithms on submatrices (3rd

image). The path can be manually modified, such that locally optimized
submatrices or single vertices can be placed next to another (4th image).

In this section, we provide an overview of GUIRO. We illustrate how
the steerable reordering process can increase user understanding of the
matrix plot, as well as the measurable quality of the reordering.

Fig. 4: A simple example demonstrating the basic design of GUIRO. The
screenshot shows the Petit Test Suite G95c dataset with three reordering
options (left). The projection space (right) depicts that distinct groups
of rows/columns can be formed.

Implementation: We built GUIRO on top of a microservice infrastruc-
ture that encapsulates processing algorithms (matrix reordering, projec-
tions, and statistics) independent of their implementation language and
makes them accessible through a REST API. The matrix reordering serv-
er, for example, bridges between Java (for the API) and its underlying
algorithm implementations in R, Java, and C++. For all ten projection
algorithms described in Sect. 4.2, we use the Smile (Statistical Ma-
chine Intelligence and Learning Engine) Java library [2]. Inter-service
communication is implemented, for now, in REST. A central database
stores all computed projections and matrix reordering results. GUIRO,
as the visible client, is implemented in TypeScript. The interactive vi-
sualizations are written in D3.js. The client accesses all microservices
through an API gateway, which enables horizontal scalability, service
discovery, load distribution, health checks, and manages the authentica-
tion centrally. Source code, a demo instance, and a descriptive webpage
will be available at http://bit.ly/matrixreordering.

http://bit.ly/matrixreordering

4.1 Comparing Matrix Reordering Results

A multitude of matrix reordering algorithms have been developed with
distinct design goals in mind. Consequently, the question arises which
algorithm to choose (T1)? We claim that the research developments
in the quality metrics for information visualization field [8] will soon
allow us to approach this question with Visual Analytics means. For
now, however, we have to rely on the user to make an informed decision.

Algorithm Chooser with 71 Choices (T1, T2)
In GUIRO, we let the us-
er choose from 70 ma-
trix reordering algorithm-
s (+1 identity sort). Al-
l implementations are ac-
cessible through a cen-
tral server, whose pur-
pose is to proxy our
own 15 Java implemen-
tations, 42 implementa-
tions from the outstanding
R package seriation
by Hahsler, Buchta, and
Hornik [28, 29], nine R
package biclustering
implementations [37], two
R package corrplot al-
gorithms [79], and three
algorithms from the C++
library Boost [1]. All
references for the acces-
sible implementations can
be found in the appendix.
Note that, nine reordering

algorithms are reoccurring with district implementation facets, making
them interesting study objects for algorithm designers (T9, T10).
We depict the results of all applied algorithms first in a preview manner,
next to their quantitative quality metric scores; see Figure above. The
list allows us (a) to experience the algorithms’ visual quality and use-
fulness, i.e., produced amount of clutter (T1), and (b) demonstrates the
algorithm’s pattern variability given the same dataset (T2). For instance,
in the screenshot above we can see that OLO shows a Star-Line form, but
ARSA tries to capture a Block pattern. After having found an algorithm
result, we can apply it to the main interactive matrix view to begin
our in-depth analysis process (Sect. 4.3). Interestingly, it is even for
experts challenging to distinguish deterministic from non-deterministic
algorithms (T3). To aid this use case, we allow to reapply the same
algorithm several times and see the results in a comparative display.

4.2 Representing Matrix Reorderings in the Projection Space

Our index ordering visualization relies on a projection of the matrix
� onto the 2D plane, where the user can interact with the matrix el-
ements by moving or grouping them (T5, T6, T7). We realize the
projection by regarding the matrix rows or columns as a set of n dis-
tinct n-dimensional vectors with n = ∣N∣ with N being the nodes in
our network. Similar concepts have already been shown for 2D/3D
graph layouts [30], dynamic network analysis [74], or topological graph
comparison [12, 44]. In order to examine the typological structure of
� (T4), we can allow all projection techniques that find a lower dimen-
sional representation y = (y1, . . . , yk)

T for each vector x = (x1, . . . , xl)
T

with k ≤ l, such that y preserves the HD row/column similarity. In other
words, that put visually similar rows/columns close to each other in
the projection space. Note, for symmetric matrices (undirected graph-
s) rows and columns can be used interchangeably. We could indeed
extend GUIRO for non-symmetric matrices, where rows and columns
would need to be considered distinctively. In the current version of the
system, we decided against this functionality, because it adds significant
complexity to the interpretation of the projection space patterns.

The many existing projection algorithms all have their own advan-
tages and disadvantages. Linear projection techniques are typically
fast, but only preserve linear structures. Non-linear projection tech-
niques are typically slow, but can also take non-linear structures into

account. In order to be projection-agnostic, GUIRO implements ten pro-
jection techniques: PCA, MDS, t-SNE, IsoMap, Isotonic MDS,
LLE, PPCA, KPCA, SammomMapping, LaplacianEigenMap.

To depict one or multiple matrix reordering results, we connect the
2D projection points in this display through directed edges representing
a given ordering of the rows or columns. The resulting path has n − 1
edges representing the matrix’s row/column linearization. Its start and
end point map to the first and last row or column in the matrix view. The
path represents a model visualization, whose appearance (see: Sect. 4.3)
allows us to scrutinize the effectiveness of a matrix reordering result.

4.3 Interpreting Reordering Results in the Projection Space
The 2D index visualization allows the user to perceive the reordering
in terms of the similarity of rows or columns and gives access to
interactive matrix reordering operations. We structure the interaction
around visual patterns emerging from this space. These patterns prove
to be a beneficial starting point for improving the matrix reordering.
They visually represent a mismatch between close projection points,
i.e., similar column-/row vectors of the matrix, and long connection
edges, i.e., the sequential placement of dissimilar column-/row vectors
by the reordering algorithm.

Before After

Vertex Groups Vertex Groups: Incoherently connected vertex
groups are a natural starting point for improv-
ing matrix reorderings. In case of an initial
ineffective grouping, as illustrated left, a locally
dense region is highly connected with vertices
outside of the group. This corresponds to a ma-
trix reordering, in which dissimilar vectors are

arranged sequentially to improve the (global) optimization function.

Before After

Star Edges Star Edges: The star edge pattern is a special
case of the vertex group pattern, which can see
often in matrix reordering results. As our il-
lustration depicts, a dense group of vertices is
connected to multiple satellite vertices. In order
to optimize this pattern, a user or reordering
algorithm would need to connect all satellite

vertices linearly with one edge to the dense central vertex group.

Before After

Long Parallel Edges Multiple parallel edges are another indication
for optimization potential. Our illustration (left)
represents the case when similar vertices are not
connected appropriately to their neighborhood,
i.e., are not arranged correctly into “local” sub-
sequences. A fix would first consider the local
groupings and then connect the two groups.

Discussion: The index ordering visualization projects similar rows/-
columns in close proximity. Consequently, an intermediate result will
appear visually cluttered (e.g., Fig. 4), due to the many, long, and
unstructured index ordering edges. The users’ task is to retrieve the
above mentioned projection space patterns and invoke the local (group)
reordering solutions described in the following subsections. Users
will be confronted with a combination of patterns (see also the accom-
panying video), thus making this view to a typical Visual Analytics
component, in which user understanding, prioritization and planning
are of paramount importance for the success.

5 Interacting with Matrix Reorderings in the Projection Space
Once we retrieved the aforementioned structures in the 2D projection
space we can start optimizing the reordering with two key interactions:
(1) Invoke an automated local reordering on a selected group of vertices,
and (T4, T5) (2) Rearrange vertices or groups by replacing one or more
existing edges (T6, T7).

In the case of an automated local reordering, the user selects a group
of vertices with a lasso selection tool and invokes thereby the matrix
reordering algorithm of choice. The algorithm operates only on the
selected matrix elements, effectively reordering a subregion of the
selected matrix. This reordering approach can work recursively (T5),
as user-selected groups can be organized into subgroups and sorted
independently (see Sect. 5.1 for details). The second key interaction

mechanism is the direct modification of the edge set. We enable users to
reconnect edges in the projected matrix interactively. This is primarily
used to modify the global order of locally reordered groups of matrix
elements (T4, T6).

5.1 Local Group Reordering
We enable a submatrix reordering either with the help of an automated
algorithm or a user-steered manual reordering decision (T4, T5). Obvi-
ously, this operation can only be applied if all row-/column projection
vectors are in subsequent order thus forming a coherent submatrix.
To establish this valid selection, we propose a so-called PartSort
algorithm to prepare the matrix for a local reordering.

1 2 3

4 5 6

7 8 9

PartSort takes as an input a user selection,
the current index permutation, and a reordering
algorithm to be applied on the submatrix. It
then linearizes the selected projection vertices
sequentially without a notion of reordering qual-
ity. It ensures that the remaining 2D projection
vertices, i.e., before and after the user selection,
are logically connected by edges. After this

initial step, all available matrix reordering algorithms can be applied
on the selected submatrix as if the matrix stands on its own. For our
example case, depicted in our matrix reassembling illustration (left),
the user selection corresponds to the submatrix 5, which gets reordered
independently. This reordering, i.e., the new ordering of the selection
vertices, needs to be propagated into the full matrix. While the sub-
matrix 1 remains untouched by the local change, all other submatrices
have to be adapted. Depending on a submatrix’s position relative to
submatrix 5 either a horizontal (column-wise) or vertical (row-wise) or
horizontal and vertical adaptations have to be applied. Submatrices 2
and 3, for example, will only be affected in the horizontal direction. The
same applies to submatrices 4 and 7 in a vertical direction. Therefore,
a column-/row swapping helps to reassemble the matrices correctly.
Adaptations to submatrices 6, 8 and 9 must be applied in both the
horizontal and vertical directions.

5.2 Edge Replacement Reordering Strategies
The second user intervention is the so-called edge replacement, depict-
ed in Fig. 5. It rearranges a single row/column, respectively group of
rows/columns relative to each other. This can be useful for detecting
item-to-item, item-to-group, or group-to-group relationships (T6). An-
other use case is that an analyst may wish to emphasize a finding (T7),
e.g., by “pulling” two influencing entities right next to each other.

A formally correct matrix reordering is present in the projection
space if there exists precisely one acyclic path that connects all vertices.
Whenever a user draws a new edge, its insertion will introduce cycles
and ambiguities resulting from the temporarily two potential paths.
Accordingly, every user intervention inevitably requires reestablishing
our formal requirement. We need to deal with two edge manipulation
cases depending on whether the user wants to put a vertex (or group)
left/before or right/after another vertex (group):

1. Forward Edge Modifications: Forward edges are those edges
whose linear reordering’s start index (index of the inserted edge’s
outgoing vertex) is smaller than the end index (index of the in-
serted edge’s incoming vertex). To make an example: if the
user wants to place the 1st row-/column vector next to the 5th

row-/column vector.
2. Backward Edge Modifications: Backward edges are those

edges whose start index is larger than the end index. For ex-
ample, if the user wants to place the 5th row-/column vector next
to the 1st row-/column vector.

As a proof of concept and a point of further research, we implemented
two different reordering strategies. We found that both edge modifi-
cation types can ultimately have a significant impact on the matrix’s
overall reordering quality with respect to the linear arrangement.

Independent of the two cases we are reestablishing one acyclic path
connecting all vertices by inserting so-called “reconstruction edges”.
In our forward edge modification algorithm we split the vertex set into

Hand-Pointer

V0

V1
V2

V4

V5

V6

V7

V8
V9

V10

V3

ReorderingStrategiesHundt1_v2

V0

V2

V3

V4

V5

V6

V7

V8 V9

V10

V0

V1
V2

V4

V5

V6

V7

V8 V9

V10

V3

Forward Edge Modification

V1

ReorderingStrategiesHundt2_v2

V0

V1

V2

V4

V5

V6

V7

V8

V9

V10

V3

Backward Edge Modification

V0

V1
V2

V4

V5

V6

V7

V8
V9

V10

V3

Hand-PointerV0

V2

V3

V4

V5

V6

V7

V8 V9

V10

V0

V1
V2

V4

V5

V6

V7

V8

V9

V10

V3

Backward Edge Modification

V1

Fig. 5: Two matrix reordering strategies are possible: A forward edge
modification (top) and a backward edge modification (bottom). De-
pending on the type of reordering strategy, different approaches to
reestablish a formally correct linear arrangement have to be applied.

three disjunct subsets, as depicted in the upper part of Fig. 5. The
first subset contains all vertices with an index before the insertion
edge’s starting point (v2) in the Set1 = [v0, v1]. The second sub-
set contains all edges with an index larger than the starting point and
smaller than the endpoint (v8) in the Set2 = [v3, v4, v5, v6, v7].
Finally, the third subset contains all edges with an index after the
endpoint in the Set3 = [v9, v10]. The new vertex sequence is cal-
culated as follows: First, we start the permutation vector by retain-
ing Set1 = [v0, v1] and then add the insertion edge’s start point
and end point [v0, v1, v2, v8]. We append subsequently Set3 =
[v0, v1, v2, v8, v9, v10] to the list. Lastly, a new reconstruction
edge is added to connect all items in Set2, leading to the final linear
reordering of [v0, v1, v2, v8, v9, v10, v3, v4, v5, v6, v7].

The backward edge modification algorithm is slightly more com-
plicated and illustrated in the lower part of Fig. 5. We also split the
vertex set into three subsets. In this case, Set1 contains all vertices
after the insertion edge’s endpoint Set1 = [v3, v4, v5, v6, v7].
In the second set Set2, we collect the ordering from the ini-
tial linearization start until the insertion edge’s endpoint Set2 =
[v0, v1]. Lastly, we store all vertices after the insertion edge’s s-
tart point in Set3 = [v9, v10]. The new permutation vector be-
gins with the insertion edge sequence [v8, v2], followed by Set1
= [v8, v2, v3, v4, v5, v6, v7] and a reconstruction edge. Subse-
quently, we append Set2 = [v8, v2, v3, v4, v5, v6, v7, v0, v1]
and another reconstruction edge to connect the missing vertices in Set3.
The final result is [v8, v2, v3, v4, v5, v6, v7, v0, v1, v9, v10].

A wide range of other implementations for the edge modifications are
possible. While the algorithms presented above are just one heuristic,
they perform well in establishing a better linear arrangement in our
experiments. However, more sophisticated algorithms that minimize
the reconstruction edges’ length while retaining most of the input linear
ordering are imaginable. These algorithms need to judge whether the
user should be overruled for the sake of a better linear arrangement.

6 Comparing Performance Metrics for Reordering Algorithms

Another use case for GUIRO is the quantitative quality assessment. Al-
gorithm designers constantly need to compare their designs to the
state-of-the-art, similar approaches in the subfield, or algorithm modifi-
cations from the same algorithm family (T8).

We allow comparing 16 distinct quality metrics for matrix reordering
algorithms, such as (Anti-)Robinson measures, graph-theoretic, stress
or correlation quality metrics. Interestingly, we found that Wilkinson’s
idea to compute the similarity of matrix reordering results with the
help of a Spearman correlation-based metric [80, p. 532] can be intu-
itively depicted with a parallel-coordinate plot inspired visualization.
For example, in Fig. 6 we directly see that the hierarchical clustering
algorithms HC_Ward and HC_AVG produce in the identical row/column
list independent of their linkage method (T9, T10).

Fig. 6: GUIRO allows algorithm designers to compare 16 quality metrics
(T8), as well as the row/column index (dis-)similarity. We see that the
hierarchical clustering algorithms HC_Ward and HC_AVG produce in the
identical index list independent of their linkage method (T9, T10)

7 Evaluation

We designed GUIRO to support users with a wide range of visualization
and algorithm literacy to explore matrix reordering as a topic. As
discussed in the Background Section 3.2 and the Related Work Sect. 8,
either automatic or interactive approaches were presented to tackle
subparts of this problem. We claim that no single technique or software
fulfills all our outlined requirements. Based on our experience though
we also believe that it is possible to solve most tasks by switching back
and forth between systems, such as presented in [13, 32, 60, 73].

Following the “Patterns for Visualization Evaluation” [20], we de-
signed our evaluation procedure to reflect the three persona (novices,
network analysts, algorithm designers) introduced in Sect. 2: (1) In a
qualitative user study, we examine the usability and understandability
of the system as a whole for novices and general users, incorporating
all tasks, but put our focus on (T1-3). (2) We present a case study eval-
uation inspired by a typical network analysis scenario, demonstrating
our proposed interaction techniques on a real-world dataset (T4-7). (3)
We conducted an expert study with one of the leading researchers in
the field of matrix reordering algorithm design and gathered valuable
comments and thoughts on the design decisions, computational- and
work flow aspects (all tasks, but particularly T4-7 and T8-10).

7.1 User Study

Experiment Design: After a careful consideration, we decided yet
against a formal comparative study between different systems, since
this would only allow us to compare that systems like PermutMatrix
(7), MatrixExplorer (2), or GUIRO (71) have a distinct ranges of appli-
cable matrix reordering algorithms. MatrixExplorer, however, allows
us to interact with the matrix (T4 - T6) and retrieve consensus among
algorithms (T9). While we value the latter in GUIRO only as a mi-
nor contribution, a comparative evaluation to our proposed interactive
reordering would have been interesting, but practically challenging.
Henry and Fekete use a coordinated matrix and a node-link diagram
view, where the user should “[. . .] explore and discover with matrices,
and present with node-link diagrams” [32, p. 682]. In a within-subject
design we would confront the user with two similar setups, but en-
tirely distinct purposes. In GUIRO, the user explores and discovers
in the index ordering view, and then (semi-) automatically applies
the gained knowledge to the matrix plot. A between-subject design
is also inexpressive because it would just prove that different users
have different understandings of what and when a pattern is visible.
Given the complexity, we doubt that a fair contrasting juxtaposition
is feasible in a between-subject or even within-subject study design.
Consequently, we decided that it is more prudent to examine GUIRO’s
usefulness in a qualitative user study focused on assessing the usability
and understandability for novice and less experienced users.
Participants: We recruited 12 paid participants (8 female) between 22
and 34 years old. All are researchers or students with a background in
computer science, design, or applied mathematics. 58.3% indicated that
they have no experience with heatmaps or matrix visualizations, two

participants used matrices sometimes and three used them occasionally.
Tasks and Procedure: Prior to the actual study, we screened our
participants for vision loss, gave them a short tutorial on how to interpret
matrix patterns (similar to Sect. 3.1), and advised the participants to
verbalize their thoughts and reasoning for their action (Think-Aloud
study). The introduction phase took about 10min per participant and
ended with our pre-study survey (see: Appendix).

During the study, which was subdivided into three consecutive anal-
ysis tasks (each approx. 10min), we captured the screen content, took
notes on the participants’ analysis approach, and answered conceptual
or interaction questions. We based the tasks on our usage scenarios
mentioned in Sect. 2. To reduce the mental complexity, we intro-
duced the visual interface gradually. For user task 1 (UT1), we only
showed the matrix and the reordering algorithm chooser. We asked
the participants to explore the (socialnet_karate) dataset and vi-
sually assess and compare ten matrix reordering results with respect
usefulness (T1), variability (T2), heuristic nature (T3). For UT2 and
UT3, we added the projection view but restrained the subjects to a
subset of the reordering and projection algorithm choices. In UT2, the
subjects interpreted (T4), analyzed (T5,6) and interacted (T7) with a
MDS-calculated projection space given a larger dataset with 62 entities
(socialnet_dolphines [49]). In UT3, we enabled all algorithm and
datasets choices, but told them to choose at least all five OLO algorithm
variants. Their open-ended task was to find similar results visually in
the matrix view (T4-6) and particularly in the quality metric view with
its index (dis-)similarity plot (T8-10).

After each task, we asked the participants to assess the system’s
usability aspects and their subjective analysis confidence. We used the
standardized Single Ease Question (SEQ) questionnaire [67]. After the
study, we used the NASA-TLX Workload Assessment Questionnaire [31]
to assess the subjective workload and collected feedback on the esti-
mated usefulness for our anticipated user groups.Lastly, we concluded
every session by asking open questions to collect detailed feedback and
suggestions for improvements.
Results and Discussion: For most questions we used a 5-point Likert-
scale rating ranging from strongly disagree (1) to strongly agree (5).
We analyzed the survey results using a graphic qualitative method
(Box-Plot) and report here the median (x̃) and interquartile range (IQR).
In order to compare the resulting ordinal distributions according to
their population mean ranks, we applied the non-parametric Wilcoxon
signed rank test. Our survey questions and answers can be found along
with the analysis journal in the Appendix.

Overall, the majority of participants stated that the technique is useful
(x̃=4, IQR=1), well-integrated into the workflow (x̃=4, IQR=1.25), and
generally easy to understand (x̃=4, IQR=0.5). When asked about the
applicability for our target users the participants agreed that the system
is useful for novices and scholars (x̃=4, IQR=0.5). But, when taking
the SEQ1 as an additional indicator and compare both distributions the
Wilcoxon test reports only a weak statistical significance (p < .0977).
The anticipated usefulness for expert users, however, can be statistically
validated (x̃=4, IQR=1). Comparing SEQ2 and this usefulness question
reveals a strong statistical significance (p < .0039). The same holds
for algorithm designers (x̃=5, IQR=1). Comparing SEQ3 and this
usefulness question reveals a strong statistical significance (p < .0176).

We asked the subjects to evaluate their confidence when interpreting
the patterns in the projection view (x̃=3, IQR=1) and whether they
found it helpful for their analysis (x̃=5, IQR=1). We claim that this is
a typical result. Although the novice user might be challenged by un-
derstanding high-dimensional spaces and lower-dimensional projection
techniques, they can still use them as a conceptual data analysis tool.

During our study we took notes on the participants’ approaches and
findings. When asked about the most useful result in UT1, many (75%)
participants were judging OLO and CHEN [14] to be interpretable, while
FPC and AOE (both spectral algorithms) were mostly (83%) described
as less useful. As outlined in [7], this mostly congruent understand-
ing of result usefulness can, right now, not be expressed with quality
metric and remains an open research challenge. In UT2, all partic-
ipants found the two satellite clusters and reordered them with our
PartSort algorithm. The local algorithm choices were distinct and

Unordered

Global: Optimal-Leaf-Ordering Local (1): PartSort Multiscale

KPCA

Local (2): PartSort TSP

Fig. 7: In cases where global matrix reordering algorithms do not lead to satisfying reordering results, as depicted left, GUIRO can help to reveal
hidden matrix substructures. We apply Optimal-Leaf-Ordering—a hierarchical clustering extension— to our dataset. The algorithm finds
many distinct clusters on the diagonal, but fails to reveal structures in the regions on the top right and bottom left. The Kernel PCA projection
depicts one large cluster and two subclusters. A lasso selection of the top left projection cluster reveals that many of the fragmented rows/columns
on the top left are related to an existing, already coherent, block in the matrix. Reordering this submatrix with MultiScale has a major influence
on the visual quality in the top right of the matrix, but reflects only mildly on the off-diagonal structures in this quadrant. Selecting and reordering
the other projection cluster (for completeness) has only minor impact on the overall matrix appearance.

are not comparable, i.e., the subjects did not apply the same lasso se-
lections. In UT3, which we estimated to be the most challenging task,
all participants found a 100% match between OLO and OLO_Complete,
but interestingly also agreed on the next two most similar rankings; a
non-obvious choice. It will be interesting to correlate these rankings
with quantitative ranking comparison metrics.

We asked the participants before (x̃=3, IQR=1) and after the study
(x̃=4, IQR=1.25) to evaluate their confidence in assessing matrix pat-
terns. Notably, their confidence increased on average by 1.27 points;
the Wilcoxon signed rank test confirms this difference with a strong
statistical significance (p < .002). Overall, the System Usability Scale
(SUS) score was, as expected, on average µ = 62.95 with a σ = 14.629;
a typical result for a sophisticated Visual Analytics system.

7.2 Case Study on Submatrix Reordering

Figure 7 demonstrates the applicability of our approach by interac-
tively improving the expressiveness of subparts of the matrix (T4,6).
The dataset depicts a 236 × 236 matrix capturing social interac-
tions in a primary school [23]. We begin our analysis with the
Optimal-Leaf-Ordering algorithm in the single linkage variant
(OLO_Single) [5]. Note, we depict all other reorderings in the Ap-
pendix. We interpret Fig. 7(1) globally (T4) and locally (T5,6) as
follows: OLO tends to favor Block-Diagonals while having problems to
grasp dense Off-Diagonal areas [7]. Nested patterns are not apparent.

Overall, we see a satisfactory reordering result (T1) with many dis-
tinct blocks on the diagonal (T4), i.e., the school’s classes and class
levels, although our algorithm seems to have problems in the upper
left quadrant, respectively its associated rows and columns (T6). We
want to focus our analysis, hence, on the hidden local patterns in this
quadrant that the global algorithm was not able to express. For this,
our first task is to find a suitable 2D projection representing the top-left
submatrix’s rows/columns distinctively. We choose Kernel PCA since
it shows many long edges in the projection view connecting one central
cluster (bottom left) with two satellite clusters (top right and bottom
right) (T6). After applying a lasso selection to the (visually) larger
cluster (top left), we see that our row/column vectors in the HD space
are similar, but fragmented in the matrix plot. We inspect the reordering
suggestions (depicted in the appendix) for the top left quadrant with two
criteria: (1) visual quality; i.e., which additional visual patterns become
apparent and (2) we take the quality metric Linear Arrangement into
consideration (T9,10). Here, we choose PartSort_MultiScale. Re-
ordering the rows/columns into one submatrix confirms our assumption,
that the selected fragments indeed form a coherent bigger cluster with
distinct off-diagonal patterns. Hence, our reordering steering has sig-
nificantly improved the visual appearance of the upper left submatrix,

revealing one of the largest and densest clusters in the network (T7).
For the sake of completeness, we are reapplying the lasso selection on
the lower right projection points, but can find that our reordering has
little impact on the resulting quality.

7.3 Expert Review

Experiment Design: We employed an expert review as a method to
evaluate our system’s usefulness. Its goal is to complement, underpin,
and contrast the aforementioned usability- and case study evaluation.
Participant: We were able to gather the feedback of an expert with over
thirteen years of experience in the design and comparative evaluation
of matrix reordering algorithms. Our expert is one of the leading
researchers in the field with numerous publications on the topic.
Tasks and Procedure: We conducted two one-on-one interviews with
the expert. The first session took around 17 minutes and introduced
the topic and the general approach. After that, the expert had time to
explore the online system on his own and collect questions or notes. The
second, more comprehensive, session took 94 minutes and entailed a
tutorial style walk-through in which all critical features were explained.
Results and Discussion: The responses were positive in general, es-
pecially about the aesthetics, the comprehensiveness of the algorithm
collection, and the meaningful usage of animations.

However, many in-depth issues were discovered. For example, while
the expert confirmed our expectations that GUIRO can be helpful for
novices (T1, 2) and network analysts (T4-6), he mentioned that the
system does not reflect the typical workflow of an algorithm designer.
This user group, he stated, is constantly developing against a suite of
unit tests assessing the correctness and quality of their approaches, i.e.,
(T8) is a purely automated process. On the other hand, though, algo-
rithm designers might be interested in understanding result differences
(a) in the projection space (T9) and (b) in the index (dis-)similarity plot
(T10) to guide further improvement efforts. Furthermore, he suggested
reordering the index plot with the help of established ranking-based
correlation measures (Spearman and Kendall) or novel precedence in-
variant measures, such as the positional proximity coefficient [26] and
to add a similarity visualization, such as presented in [27].

The second critical remark regards the choice of the projection
technique. While he considered the overall idea meaningful that similar
row/column vectors will be close in the projection space, he raised the
concern that inexperienced users might choose “semantically” incorrect
combinations. For example, the user might try to reason on a non-linear
manifold in the dataset through a linear projection technique, such
as PCA, and will wonder why a non-linear spectral matrix reordering
actually produces visually pleasing results.

The third improvement idea relates to the guidance of users in the

exploration of (local) patterns. The expert stated the vision, that users
should be able to see descriptive, local highlights for automatically
retrieved patterns. We support this vision; however, localized matrix
pattern descriptors remain currently a research topic. One way to
educate users in GUIRO, though, will be to provide a thorough selection
of tutorial datasets each depicting one prominent visual pattern.

8 RelatedWork

For didactic purposes, we discussed the gap in the research literature
throughout the paper (e.g., in Sect. 7) and embedded GUIRO into matrix
research field in Sect. 3.2. This Section should give the reader a broad-
er context, focusing on advancements in algorithmic and interactive
relational data analysis.

8.1 Automatic Relational Data Analysis

Relational data analysis and visualization is unarguably challenging.
Not only the dataset sizes range between a few hundred to many million
or even billion items, but rather the linking and complex relationships
among items is in the focus of the analysis [76]. These relationships
can even be multivariate in nature or can change over time [6]. The
research community devotes a significant portion of its efforts into
finding solutions for typical analysis tasks, such as graph partitioning,
connectivity or similarity analysis, finding relationships in multi-variate
or high-dimensional spaces [42, 58, 77]. These approaches require not
only sophisticated algorithmic techniques but also elaborate solutions
for understanding the results. While the algorithmic field shows promis-
ing advances with, e.g., deep convolutional neural networks [16,38,45],
the graph visualization domain is primarily concerned with external-
izing graph topology characteristics [4, 34, 68] or designing effective
overviews for large graph datasets, i.e., solving the hairball rendering
problem [32, 35, 78].

Our proposed methods rely on projection to depict and interact with
matrix reorderings. Many techniques exist to project high-dimensional
data to 2D space [21, 59] and support the exploration process in data
analysis tasks [84]. Most notably, our approach is similar to Harel and
Koren’s work on Graph Drawing by High-Dimensional Embedding
(HDE) [30]. In HDE, the positions of vertices are first computed in
an HD space and then projected to 2/3D for drawing. The projection
technique is supposed to retain HD structures and reflect them in the
low-dimensional space. However, HDE is well-known to be fast and
frequently leads to unsatisfactory results. We still believe that the ap-
proach is valid and thus allow our users to examine different projection
techniques. We share this claim with Turkay et al., who present a Rep-
resentative Factor Generation, i.e., a pattern-finder for HD spaces [72].
Here, the global projection shows the overall HD space topology, while
local artifacts can be resolved visually by user intervention.

It is also known that the humans’ performance on a visually present-
ed Traveling Salesman Problem (TSP) decreases non-linearly with the
number of displayed points [75]. While our projection-space interac-
tions must also lead to a Hamiltonian path, we follow a VA approach.
We act on the user’s intervention complete the path to obey our re-
quirements. Consequently, our offered algorithmic support reduces the
cognitive load to solve a TSP problem.

8.2 Interactive Matrix Visualizations

For many users, matrix representations are less intuitive than node-
link diagrams, and should be augmented with interaction and other
visualizations to increase user understanding [53]. In MatLink [33],
matrices are enhanced by overlays to improve the performance of path
finding tasks in large networks. In GeneaQuilts [11] and Compressed
Adj. Matrices [18], the matrix’s symmetric structure is compressed and
rearranged to guide the user to interesting aspects in layered networks.
Semantic zoom interaction can help to navigate matrices which do
not fit into the available screen space. In several papers, zooming and
dynamic aggregation techniques support the user navigation process in
large matrices [3, 9, 19]. Also recently, Wong et. al noted in [82] that
the ease of understanding for node-link diagrams and the information
density of matrix representations show a mutual benefit.

9 Discussion and FutureWork
When compared to the related work on interactive matrix reordering our
approach goes beyond the state-of-the-art by incorporating three main
aspects that potentially lead to a reordering improvement in one visual
analysis system. Firstly, our system guides the user to submatrices,
which could potentially be improved by showing row/column similarity
in a novel projection view. Secondly, the user may choose to apply an
arbitrary automatic matrix reordering algorithm on selected submatrices.
We help the user by showcasing thumbnails of the local reorderings
to help to anticipate the operation’s outcome. Thirdly, the user is free
to rearrange the rows and columns—or groups thereof—manually. In
addition, our approach allows the hierarchical construction of new
matrix reordering algorithms, by applying local optimizations on a
global matrix reordering result.

Currently, our approach is restricted to symmetric matrices as they
are common in adjacency matrices for undirected graphs or similar-
ity matrices. In the future, we plan to generalize our approach to
non-symmetric and even to non-square matrices. Furthermore, we are
researching other algorithms, such as clustering, to improve the reorder-
ing interactions and guide the steering process. Heuristic graph-based
algorithms can be applied to find (near-)optimal linear arrangement
paths in either a group of selected vertices or after a manually reorder-
ing decision. The question which projection technique is able to reflect
the HD structures is addressed in GUIRO pragmatically: We allow the
user to choose between 10 implemented projection methods. We found,
though, that linear projection techniques are easier to interpret, while
non-linear techniques reveal our algorithm shortcomings patterns more
easily. It would be interesting to screen the projection view appearances
automatically for the patterns described in Sect. 4.2.

In terms of scalability, our system is primarily limited by two design
choices: First, in order to allow a wide audience to use GUIRO, we
decided for a web-based client/server architecture. This has signifi-
cant performance implications since our bottleneck is the necessary
serialization and marshaling for transmitting our data. Right now, we
implemented consistently REST interfaces to access our servers. In
the future, though, we will be able to process matrices larger than a
few hundred rows and columns by changing the inter-service commu-
nication to binary and compressed transmission formats, such as gRCP,
Protobuf, or Apache Thrift. Second, our matrix visualization imple-
mentation is SVG-based and consequently lets the HTML Document
Object Model (DOM) grow exponentially in size with the number of
rows/columns in the input data. An obvious solution will be to replace
the renderer with an HTML canvas-based or WebGL-based alternative.

10 Conclusion
Matrix data are gathered in many application scenarios. However,
only a suitable row and column reordering allows the perception of
underlying matrix patterns. While previous work centered on fully-
automated reordering algorithms, we propose with GUIRO a Visual
Analytics approach. During the process, users can apply global matrix
reorderings, while steering them in the local context. By applying
several, potentially varying algorithms to distinct local submatrices, the
users can construct their own new matrix reordering composition.

In our web- and microservice-based system, we introduce a novel
technical solution for gathering user feedback in the process. The
projection-based reordering representation allows us to understand
and perceive the decisions made by the black-box matrix reordering
algorithms and gives rise to foreseeable interactive intervention.

We evaluated our approach in a user study with 12 participants to
test the usefulness of GUIRO, a case study-driven evaluation on a social
network dataset to demonstrate local reorderings in a global context,
and conducted an expert study to validate our approach from an external
point of view. Our results reveal, that the presented interaction mecha-
nisms prove to be effective and enhance user understanding, while the
matrix reordering composition is powerful, but hard to understand.

In conclusion, the presented visual analytics system serves as a basis
for a user-steerable matrix reordering process and allows to understand
and steer the black-box matrix reordering algorithms.

References

[1] BOOST C++ Libraries. http://www.boost.org.
[2] Smile (Statistical Machine Intelligence and Learning Engine).
http://haifengl.github.io/smile/.

[3] J. Abello and F. van Ham. Matrix zoom: A visual interface to semi-
external graphs. In Information Visualization, 2004. INFOVIS 2004. IEEE
Symposium on, vol. 1, pp. 183–190. IEEE, 2004.

[4] B. Alper, B. Bach, N. H. Riche, T. Isenberg, and J. Fekete. Weighted
graph comparison techniques for brain connectivity analysis. In 2013
ACM SIGCHI Conference on Human Factors in Computing Systems, CHI
’13, Paris, France, April 27 - May 2, 2013, pp. 483–492, 2013. doi: 10.
1145/2470654.2470724

[5] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola. Fast optimal leaf ordering
for hierarchical clustering. Bioinformatics, 17(suppl 1):S22–S29, 2001.

[6] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The state of the art in
visualizing dynamic graphs. In Eurographics Conference on Visualization,
EuroVis 2014 - State of the Art Reports, STARs, Swansea, UK, June 9-13,
2014, 2014. doi: 10.2312/eurovisstar.20141174

[7] M. Behrisch, B. Bach, N. H. Riche, T. Schreck, and J.-D. Fekete. Matrix
Reordering Methods for Table and Network Visualization. Computer
Graphics Forum, 35(3):693–716, jun 2016. doi: 10.1111/cgf.12935

[8] M. Behrisch, M. Blumenschein, N. W. Kim, L. Shao, M. El-Assady,
J. Fuchs, D. Seebacher, A. Diehl, U. Brandes, H. Pfister, T. Schreck,
D. Weiskopf, and D. A. Keim. Quality Metrics for Information Visualiza-
tion. Computer Graphics Forum, 2018. doi: 10.1111/cgf.13446

[9] M. Behrisch, J. Davey, T. Schreck, J. Kohlhammer, and D. A. Keim.
Matrix-Based Visual Correlation Analysis on Large Timeseries Data. Proc.
IEEE Symposium on Visual Analytics Science and Technology (Poster
Paper), 2012.

[10] M. Behrisch, L. Shao, J. Buchmüller, and T. Schreck. Quality Metrics
Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix.
In Eurographics Conference on Visualization (EuroVis) - Poster Paper,
2015.

[11] A. Bezerianos, P. Dragicevic, J.-d. Fekete, J. Bae, and B. Watson. Ge-
neaQuilts : A System for Exploring Large Genealogies. IEEE Transactions
on Visualization and Computer Graphics, 16(6):1073–1081, 2010. doi: 10.
1109/TVCG.2010.159

[12] T. Caelli and S. Kosinov. An eigenspace projection clustering method for
inexact graph matching. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(4):515–519, 2004. doi: 10.1109/TPAMI.2004.1265866

[13] G. Caraux and S. Pinloche. Permutmatrix: a graphical environment to
arrange gene expression profiles in optimal linear order. Bioinformatics,
21(7):1280–1281, 2005.

[14] C. H. Chen. Generalized association plots: information visualization via
iteratively generated correlation matrices. Statistica Sinica, 12:7–29, 2002.

[15] E. Cuthill and J. McKee. Reducing the bandwidth of sparse symmetric
matrices. In Proceedings of the 1969 24th National Conference, ACM
’69, pp. 157–172. ACM, New York, NY, USA, 1969. doi: 10.1145/800195.
805928

[16] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural
networks on graphs with fast localized spectral filtering. In Advances in
Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain, pp. 3837–3845, 2016.

[17] J. Diaz, J. Petit, and M. Serna. A survey of graph layout problems.
ACM Computing Surveys, 34(3):313–356, Sept. 2002. doi: 10.1145/568522
.568523

[18] K. Dinkla, M. Westenberg, and J. van Wijk. Compressed adjacency matri-
ces: Untangling gene regulatory networks. Visualization and Computer
Graphics, IEEE Transactions on, 18(12):2457–2466, 2012. doi: 10.1109/
TVCG.2012.208

[19] N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J.-D. Fekete. ZAME:
Interactive Large-Scale Graph Visualization. 2008 IEEE Pacific Visualiza-
tion Symposium, pp. 215–222, Mar. 2008.

[20] N. Elmqvist and J. S. Yi. Patterns for visualization evaluation. Information
Visualization, 14(3):250–269, 2015. doi: 10.1177/1473871613513228

[21] B. S. Everitt, G. Dunn, et al. Applied multivariate data analysis, vol. 2.
Arnold London, 2001.

[22] M. Friendly and E. Kwan. Effect ordering for data displays. Comput.
Statist. Data Anal., this, 2003.

[23] V. Gemmetto, A. Barrat, and C. Cattuto. Mitigation of infectious disease at
school: targeted class closure vs school closure. BMC Infectious Diseases,

14(1):695, Dec 2014. doi: 10.1186/s12879-014-0695-9
[24] J. A. George. Computer implementation of the finite element method. PhD

thesis, Stanford University, 1971.
[25] M. Ghoniem, J.-D. Fekete, and P. Castagliola. On the readability of graphs

using node-link and matrix-based representations: a controlled experiment
and statistical analysis. Information Visualization, 4(2):114–135, July
2005. doi: 10.1057/palgrave.ivs.9500092

[26] J. Y. Goulermas, A. Kostopoulos, and T. Mu. A new measure for analyzing
and fusing sequences of objects. IEEE Trans. Pattern Anal. Mach. Intell.,
38(5):833–848, 2016. doi: 10.1109/TPAMI.2015.2470671

[27] M. Hahsler. An experimental comparison of seriation methods for
one-mode two-way data. European Journal of Operational Research,
257(1):133–143, 2017.

[28] M. Hahsler, C. Buchta, and K. Hornik. Infrastructure for seriation, r
package version 1.0-14. ed., 2014.

[29] M. Hahsler, K. Hornik, and C. Buchta. Getting things in order: An
introduction to the r package seriation. Journal of Statistical Software,
25(3):1–34, March 2008.

[30] D. Harel and Y. Koren. Graph drawing by high-dimensional embedding.
In International symposium on graph drawing, pp. 207–219. Springer,
2002.

[31] S. G. Hart. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings
of the human factors and ergonomics society annual meeting, vol. 50, pp.
904–908. Sage publications Sage CA: Los Angeles, CA, 2006.

[32] N. Henry and J.-D. Fekete. MatrixExplorer: a Dual-Representation System
to Explore Social Networks. IEEE Transactions on Visualization and
Computer Graphics, 12:677–684, 2006.

[33] N. Henry and J.-D. Fekete. MatLink: Enhanced Matrix Visualization
for Analyzing Social Networks. In Proceedings of the 11th IFIP TC
13 International Conference on Human-computer Interaction - Volume
Part II, INTERACT’07, pp. 288–302. Springer-Verlag, Berlin, Heidelberg,
2007.

[34] N. Henry, J.-D. Fekete, and M. J. McGuffin. NodeTrix: a hybrid visualiza-
tion of social networks. IEEE transactions on visualization and computer
graphics, 13(6):1302–9, 2007.

[35] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Trans. Vis. Comput. Graph., 12(5):741–748,
2006. doi: 10.1109/TVCG.2006.147

[36] L. Hubert. Some applications of graph theory and related non-metric
techniques to problems of approximate seriation the case of symmetric
proximity measures. British Journal of Mathematical and Statistical
Psychology, 27(2):133–153, 1974. doi: 10.1111/j.2044-8317.1974.tb00534.x

[37] S. Kaiser and F. Leisch. A toolbox for bicluster analysis in r. 2008.
[38] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural

network for modelling sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics, ACL 2014, June
22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, pp. 655–665,
2014.

[39] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Enterprise data
analysis and visualization: An interview study. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2917–2926, 2012.

[40] E. Kandogan, A. Balakrishnan, E. M. Haber, and J. S. Pierce. From data
to insight: Work practices of analysts in the enterprise. IEEE Computer
Graphics and Applications, 34(5):42–50, 2014. doi: doi.ieeecomputersociety.
org/10.1109/MCG.2014.62

[41] P. Kerpedjiev, N. Abdennur, F. Lekschas, C. McCallum, K. Dinkla, H. Stro-
belt, J. M. Luber, S. B. Ouellette, A. Azhir, N. Kumar, J. Hwang, S. Lee,
B. H. Alver, H. Pfister, L. A. Mirny, P. J. Park, and N. Gehlenborg. Higlass:
Web-based visual exploration and analysis of genome interaction maps.
bioRxiv, 2018. doi: 10.1101/121889

[42] D. Knoke and J. H. Kuklinski. Network analysis. 1982.
[43] Y. Koren and D. Harel. A multi-scale algorithm for the linear arrangement

problem. In Revised Papers from the 28th International Workshop on
Graph-Theoretic Concepts in Computer Science, WG ’02, pp. 296–309.
Springer-Verlag, London, UK, UK, 2002.

[44] S. Kosinov and T. Caelli. Inexact multisubgraph matching using graph
eigenspace and clustering models. In In Proceedings of SSPR/SPR, pp.
133–142. Springer, 2002.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. Commun. ACM, 60(6):84–90,
2017. doi: 10.1145/3065386

[46] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxonomy
for graph visualization. In Workshop on BEyond time and errors: novel

evaluation methods for information visualization, pp. 1–5. ACM, 2006.
[47] F. Lekschas, B. Bach, P. Kerpedjiev, N. Gehlenborg, and H. Pfister. Hipiler:

Visual exploration of large genome interaction matrices with interactive
small multiples. IEEE Transactions on Visualization and Computer Graph-
ics, 24(1):522–531, 2018. doi: 10.1109/TVCG.2017.2745978

[48] I. Liiv. Seriation and matrix reordering methods: An historical overview.
Statistical Analysis and Data Mining, 3(2):70–91, 2010. doi: 10.1002/sam.
10071

[49] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M.
Dawson. The bottlenose dolphin community of doubtful sound features
a large proportion of long-lasting associations. Behavioral Ecology and
Sociobiology, 54(4):396–405, 2003.

[50] E. Mäkinen and H. Siirtola. The barycenter heuristic and the reorderable
matrix. Informatica (Slovenia), 29(3):357–364, 2005.

[51] W. T. McCormick, S. B. Deutsch, J. J. Martin, and P. J. Schweitzer. I-
dentification of data structures and relationships by matrix reordering
techniques. Technical report, DTIC, 1969.

[52] W. T. McCormick, P. J. Schweitzer, and T. W. White. Problem decom-
position and data reorganization by a clustering technique. Operations
Research, 20(5):993–1009, 1972. doi: 10.1287/opre.20.5.993

[53] C. Mueller, B. Martin, and a. Lumsdaine. Interpreting large visual similar-
ity matrices. 2007 6th International Asia-Pacific Symposium on Visualiza-
tion, pp. 149–152, Feb. 2007. doi: 10.1109/APVIS.2007.329290

[54] J. New, W. Kendall, J. Huang, and E. Chesler. Dynamic visualization of
coexpression in systems genetics data. IEEE Transactions on Visualization
and Computer Graphics, 14(5):1081–1095, Sep. 2008. doi: 10.1109/TVCG.
2008.61

[55] S. Niermann. Optimizing the ordering of tables with evolutionary compu-
tation. The American Statistician, 59(1), 2005.

[56] C. Nobre, M. Streit, M. Meyer, and A. Lex. The state of the art in
visualizing multivariate networks. Computer Graphics Forum (EuroVis
’19), to appear, 2019.

[57] M. Okoe, R. Jianu, and S. G. Kobourov. Node-link or adjacency matrices:
Old question, new insights. IEEE Transactions on Visualization and
Computer Graphics, pp. 1–1, 2018. doi: 10.1109/TVCG.2018.2865940

[58] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[59] F. V. Paulovich, M. C. F. Oliveira, and R. Minghim. The projection explor-
er: A flexible tool for projection-based multidimensional visualization. In
Proceedings of the XX Brazilian Symposium on Computer Graphics and
Image Processing - SIBGRAPI, pp. 27–36. IEEE CS Press, Belo Horizonte,
Brazil, 2007.

[60] C. Perin, P. Dragicevic, and J.-D. Fekete. Revisiting Bertin matrices: New
Interactions for Crafting Tabular Visualizations. IEEE Transactions on
Visualization and Computer Graphics, Nov. 2014. doi: 10.1109/TVCG.2014.
2346279

[61] J. Petit. Experiments on the minimum linear arrangement problem. J. Exp.
Algorithmics, 8, Dec. 2003.

[62] J. Pretorius, H. C. Purchase, and J. T. Stasko. Tasks for multivariate
network analysis. In A. Kerren, H. C. Purchase, and M. O. Ward, eds.,
Multivariate Network Visualization - Dagstuhl Seminar #13201, Dagstuhl
Castle, Germany, May 12-17, 2013, Revised Discussions, vol. 8380 of
Lecture Notes in Computer Science, pp. 77–95. Springer, 2013.

[63] R. Rao and S. K. Card. The table lens: merging graphical and symbolic
representations in an interactive focus+ context visualization for tabular
information. In Proceedings of the SIGCHI conference on Human factors
in computing systems, pp. 318–322. ACM, 1994.

[64] J. Raudeliūnienė, V. Davidavičienė, M. Tvaronavičienė, and L. Jonuška.
Evaluation of advertising campaigns on social media networks. Sustain-
ability, 10(4):973, 2018.

[65] W. S. Robinson. A method for chronologically ordering archaeological
deposits. American antiquity, 16(4):293–301, 1951.

[66] R. A. Rossi and N. K. Ahmed. The network data repository with interactive
graph analytics and visualization. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

[67] J. Sauro and J. S. Dumas. Comparison of three one-question, post-task
usability questionnaires. In Proceedings of the 27th International Confer-
ence on Human Factors in Computing Systems, CHI 2009, Boston, MA,
USA, April 4-9, 2009, pp. 1599–1608, 2009. doi: 10.1145/1518701.1518946

[68] B. Shneiderman and A. Aris. Network visualization by semantic substrates.
IEEE Trans. Vis. Comput. Graph., 12(5):733–740, 2006. doi: 10.1109/TVCG
.2006.166

[69] H. Siirtola and E. Mäkinen. Constructing and reconstructing the reorder-
able matrix. Information Visualization, 4(1):32–48, Mar. 2005. doi: 10.
1057/palgrave.ivs.9500086

[70] M. Spenke, C. Beilken, and T. Berlage. Focus: the interactive table for
product comparison and selection. In ACM Symposium on User Interface
Software and Technology, pp. 41–50. ACM, 1996.

[71] Y. Tien, Y. Lee, H. Wu, and C. Chen. Methods for simultaneously identify-
ing coherent local clusters with smooth global patterns in gene expression
profiles. BMC Bioinformatics, 9, 2008. doi: 10.1186/1471-2105-9-155

[72] C. Turkay, A. Lundervold, A. J. Lundervold, and H. Hauser. Representative
factor generation for the interactive visual analysis of high-dimensional
data. IEEE Trans. Vis. Comput. Graph., 18(12):2621–2630, 2012. doi: 10.
1109/TVCG.2012.256

[73] R. B. J. van Brakel, M. W. E. J. Fiers, C. Francke, M. A. Westenberg, and
H. van de Wetering. Combat: Visualizing co-occurrence of annotation
terms. In IEEE Symposium on Biological Data Visualization, pp. 17–24,
2013. doi: 10.1109/BioVis.2013.6664342

[74] S. van den Elzen, D. Holten, J. Blaas, and J. J. van Wijk. Reducing
snapshots to points: A visual analytics approach to dynamic network
exploration. IEEE Transactions on Visualization and Computer Graphics,
22(1):1–10, jan 2016. doi: 10.1109/tvcg.2015.2468078

[75] D. Vickers, M. Butavicius, M. Lee, and A. Medvedev. Human perfor-
mance on visually presented traveling salesman problems. Psychological
Research, 65(1):34–45, 2001.

[76] T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van Wijk,
J.-D. Fekete, and D. Fellner. Visual analysis of large graphs: State-of-the-
art and future research challenges. Wiley-Blackwell Computer Graphics
Forum, 2011.

[77] S. Wasserman. Social network analysis: Methods and applications, vol. 8.
Cambridge university press, 1994.

[78] M. Wattenberg. Visual exploration of multivariate graphs. In Proceedings
of the 2006 Conference on Human Factors in Computing Systems, CHI
2006, Montréal, Québec, Canada, April 22-27, 2006, pp. 811–819, 2006.
doi: 10.1145/1124772.1124891

[79] T. Wei. Corrplot: Visualization of a correlation matrix, r package version
0.73. ed., Oct 2013.

[80] L. Wilkinson. The Grammar of Graphics (Statistics and Computing).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[81] L. Wilkinson and M. Friendly. The history of the cluster heat map. The
American Statistician, 2009.

[82] P. C. Wong, P. Mackey, H. Foote, and R. May. Visual matrix clustering of
social networks. Computer Graphics and Applications, IEEE, 33(4):88–96,
July 2013. doi: 10.1109/MCG.2013.66

[83] H.-M. Wu, S. Tzeng, and C.-H. Chen. Handbook of Data Visualization,
chap. Matrix Visualization, pp. 681–708. Springer, 2008.

[84] D. Yang, Z. Xie, E. A. Rundensteiner, and M. O. Ward. Managing discov-
eries in the visual analytics process. SIGKDD Explor. Newsl., 9(2):22–29,
Dec. 2007.

[85] F. Zeng, R. Tao, Y. Yang, and T. Xie. How social communications influence
advertising perception and response in online communities? Frontiers in
psychology, 8:1349, 2017.

	Introduction
	User, Goals & Usage Scenarios
	Novices & Scholars
	Network Analyst
	Algorithm Designer

	Matrices and Visual Patterns in Matrices
	Visual Patterns in Matrices
	Matrix Reordering (or Seriation)

	User-Guided Matrix Reordering
	Comparing Matrix Reordering Results
	Representing Matrix Reorderings in the Projection Space
	Interpreting Reordering Results in the Projection Space

	Interacting with Matrix Reorderings in the Projection Space
	Local Group Reordering
	Edge Replacement Reordering Strategies

	Comparing Performance Metrics for Reordering Algorithms
	Evaluation
	User Study
	Case Study on Submatrix Reordering
	Expert Review

	Related Work
	Automatic Relational Data Analysis
	Interactive Matrix Visualizations

	Discussion and Future Work
	Conclusion

