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Abstract

Volumetric data sets require enormous storage capacity even at
moderate resolution levels. The excessive storage demands not only
stress the capacity of the underlying storage and communications
systems, but also seriously limit the speed of volume rendering due
to data movement and manipulation. A novel volumetric data visu-
alization scheme is proposed and implemented in this work that ren-
ders 2D images directly from compressed 3D data sets. The novelty
of this algorithm is that rendering is performed on the compressed
representation of the volumetric datawithout pre-decompression.
As a result, the overheads associated with both data movement and
rendering processing are significantly reduced. The proposed al-
gorithm generalizes previously proposed whole-volume frequency-
domain rendering schemes by first dividing the 3D data set into
subcubes, transforming each subcube to a frequency-domain repre-
sentation, and applying the Fourier Projection Theorem to produce
the projected 2D images according to given viewing angles. Com-
pared to the whole-volume approach, the subcube-based scheme
not only achieves higher compression efficiency by exploiting local
coherency, but also improves the quality of resultant rendering im-
ages because it approximates the occlusion effect on a subcube by
subcube basis.
CR Categories and Subject Descriptors:I.3.8 [Computer Graph-
ics]: Applications; I.4.5 [Image Processing]: Reconstruction.
Additional Keywords: Volume Compression, Fourier Projection
Theorem, Discrete Hartley Transform, Image Compositing.

1 INTRODUCTION

With the advent of 3D medical imaging devices such as Computer
Tomography (CT), Nuclear Magnetic Resonance (NMR), and 3D
ultrasound systems, more and more medical diagnostic data are
now represented in a volumetric format. Meanwhile, scientists
and researchers develop a large variety of computational models
to study and understand various physical phenomenon. Results

from these numerical simulations typically reflect certain aspects
of the underlying physical world and therefore inherently exhibit
a 3D structure. An important characteristic of volumetric data
sets is their very large storage requirements. As an example, a
1024x1024x1024 volume with each voxel represented by 24 bits
will require 3 Gbytes of storage space. Excessive storage demands
exact the underlying I/O and communications subsystems, as well
as lengthen the end-to-end rendering delay. Compression is one
possible solution toward this problem.

Although faster CPUs help mitigate the overhead associated with
compression/decompression, the compressed data set, when explic-
itly decompressed, still incurs significant data movement overhead
on the memory bus (not I/O bus), which is proportional to the size
of the uncompressed data set. Because the performance of mod-
ern RISC processors is critically dependent upon the reduction of
main memory traffic, it is essential to maintain the data in the com-
pressed form as long as possible. This paper proposes an algorithm
that performs volume rendering directly on compressed data sets,
thus avoiding the decompression step at run time and its associated
performance overhead.

This algorithm is a generalization of whole-volume frequency-
domain 3D rendering algorithm independently developed by
Dunne, Napel, and Rutt [DNR90], and Malzbender and Kitson
[MK93, Mal93], both of which in turn are based on theFourier
Projection Theorem. We take a cube-based approach by first sub-
dividing the data volume into subcubes, then applying a Fourier-
like transform to each of these subcubes, and finally quantizing the
resulting coefficientsaccording to the dynamic range of the coef-
ficient values in the subcubes. To implement spatial-domain ray
casting [Sab88], we apply theFourier Projection Theoremon the
quantized frequency-domain representation of each subcube, and
perform spatial-domain compositing by treatingeach subcube as
an indivisible macro-voxel with its aggregate opacity and intensity
values.

None of the previous works [NH92, NH93, YL95, FY94] in this
area allows direct rendering from compressed data without decom-
pression. Compared to these efforts, the proposed integrated vol-
ume compression and visualization algorithm exhibits the follow-
ing two advantages:

High compression efficiency:Transform coding compacts the en-
ergy of the spatial-domain signal to few transform-domain co-
efficients. Consequently, higher compression efficiency is ex-
pected compared to other compression approaches. In ad-
dition, the proposed subcube-based approach can exploit the
coherency in local regions more effectively than the whole-
volume approach [DNR90] [Mal93] and therefore attain bet-
ter compression ratio.
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Figure 1:The data flows of the proposed volume (a) compres-
sion and (b) decompression algorithms.

Better rendering quality: The image quality of whole-volume
frequency-domain volume rendering is usually poor because
it simulates the interaction between light and voxels by a sim-
ple line integral along the view direction across the volume.
The result is essentially a X-ray-like image without any oc-
clusion effects. Totsuka and Levoy [TL93] proposed a linear
approximation to the exponential attenuation [Sab88] and an
alternative shading model to fit the computation within the
frequency-domain rendering framework. Although their im-
ages show improved visual depth cues, the effect of the linear
attenuation model and the lack of occlusion is still noticeable.
We address these problems by first applying the Fourier Pro-
jection Theorem on a subcube-by-subcube basis to derive the
aggregate intensity and opacity values for each subcube; then
we use spatial compositing (e.g., [Lev88, Wes90]) to combine
these intensity and opacity values according to an exponential
attenuation model [Sab88]. The resulting images thus show
improved occlusion and attenuation effects.

The rest of this paper is organized as follows. In Section 2, the
basic algorithm for volume data compression is presented. In Sec-
tion 3, the concept of Fourier volume rendering is introduced and
the proposed compression-domain volume rendering algorithm is
described in detail. That section also presents different possibil-
ities of generating occlusion effects andnon-linear attenuation in
subcube-based frequency domain rendering. The results are pre-
sented in Section 4. Section 5 concludes this paper by summarizing
the main results and outlining plans for future work.

2 VOLUME DATA COMPRESSION

The proposed volume data compression algorithm is based on trans-
form coding and is actually a generalization of the JPEG still image
compression algorithm [Wal91] to the 3D case, with one important
exception: the transform is a discrete Fourier transform rather than
a discrete cosine transform (DCT).

Figure 1 shows the data flow of the proposed compres-
sion/decompression algorithm. AnN �N �N volume is decom-
posed intoM�M�M subcubes, each of which first goes through
a 3D discrete Fourier transform as follows:

F (u; v;w) =

1

M3

M�1X
x=0

M�1X
y=0

M�1X
z=0

f(x;y; z)e�2�i
xu+yv+zw

M (1)

For simplicity and without loss of generality we assume thatN is
an integral multiple ofM . Each of the 3D Fourier coefficients in
each subcube is then quantized using the equation

F
Q(u; v;w) = Round

�
F (u; v;w)

Q(u; v;w)

�
(2)

whereQ(u; v;w) is the quantization table entry corresponding to
F (u; v;w) and represents the quantization step. The resulting 3D
quantized frequency coefficients within a cube are organized as a
linear sequence through a 3D zig-zag order. A 3D zig-zag order
through a cube is the traversal order in which(u1; v1; w1) precedes
(u2; v2; w2) if u1+v1+w1 < u2+v2+w2, and the(u; v;w) tuples
on the planeu + v + w = K follow a 2D zig-zag order. The re-
sulting linear sequence of Fourier transform coefficients is fed into
an entropy encoder that in turn consists of run-length coding and
Huffman coding. Decompression is done by reversing the above
process.

Because the above compression algorithm is based on trans-
form coding, it is inherently lossy. Most of the compression gain
is realized by the quantization step, with subsequent steps corre-
sponding to a lossless compression scheme. In fact, manipulating
the contents of the quantization table is the most effective way of
making the tradeoff between compression ratios and reconstruc-
tion errors. As for the compression/decompression overhead, the
entropy encoding step involves only table look-up and bit com-
paction/expansion and therefore accounts for a small portion of the
overall delay. Because the entropy encoding step plays a rather mi-
nor role in the space and time performance of the proposed volume
compression scheme, we will use the termcompressed volume data
to refer to the sets of quantized 3D Fourier coefficients from the
subcubes of a volume data set.

In the case of JPEG, a recommended set of quantization tables
have been developed through extensive testing and measurements
of a large number of images. Because there isn’t much previous
research on volume data compression, a theoretical understanding
of a good choice ofQ(u; v;w)0s in Equation 2, i.e., the entries in
the quantization table, is still lacking. Ideally it is preferable to take
advantage of the varying perceptive significance of different fre-
quency coefficients by allocating to each of them a different number
of bits. For example, Table 1 shows the variance distribution of the
3D Fourier coefficients using 4x4x4 cubes as basic units. The fact
that few coefficients have a much larger magnitude than the oth-
ers demonstrate the energy concentration capability of transform
coding. Presumably one could base each coefficient’s number of
representation bits on the size of its corresponding variance. How-
ever, the fact that our experience in the interaction between volume
rendering and volume data compression is rather limited forces us
to adopt a simpler approach.

In our implementation we use the same quantization step
Q(u; v;w) for all coefficients in a subcube. We calculate the dy-
namic rangeRi of coefficients in each subcubei as

Ri = jmax valuei �min valuei j (3)

wheremax valuei andmin valuei are the maximum and mini-
mum AC coefficient values of thei-th subcube, respectively. The
quantization step for thei-th subcube is then chosen to be

Q(u; v;w) =
Ri

2c
; u,v,w = 0, 1,..., M - 1 (4)

with c being a fixed constant. We found that the total Mean Square
Error, defined as

MSQE = E[F (u; v;w)� F
Q(u; v;w)]2 (5)



z = 0 z = 1
x ! x !

y
# 119.13 0.99 0.39 0.45

y
# 19.21 0.56 0.40 0.83

11.58 1.30 1.01 0.06 9.00 0.49 0.25 0.48
8.89 0.46 0.24 0.47 8.97 0.07 0.25 2.62

18.94 0.24 0.00 2.06 14.70 0.82 0.22 1.06

z = 2 z = 3
x ! x !

y
# 11.58 0.56 0.17 0.83

y
# 11.58 0.84 0.17 0.42

18.76 2.16 0.00 0.22 23.44 3.56 0.28 0.00
14.77 0.00 0.21 3.59 14.77 0.94 0.21 0.93
6.26 1.25 0.00 0.07 9.07 0.48 0.24 0.48

Table 1:Typical variance distribution of the 3D Fourier coefficients.

Subdivision Original Compressed Compression
Size Size Ratio

High-potential iron protein molecule
2 � 2� 2 287,496 44,967 6 : 1
4 � 4� 4 287,496 9,255 31 : 1
8 � 8� 8 287,496 3,328 86 : 1

Lobster (CT dataset)
4 � 4� 4 3,481,600 108,045 32 : 1
8 � 8� 8 3,481,600 36,047 96 : 1

Table 2: Achievable compression efficiency for different datasets
using different subcube size.

was acceptable forc � 10, whereE[] is the expectation operator.
Table 2 shows the compression ratios for different subcube sizes
using the above quantization strategy.

3 RENDERING FROM COMPRESSED
VOLUME

Given the compressed volume data, i.e., the Fourier coefficients of
the volume’s subcubes, one can apply the Fourier Projection The-
orem to compute the projection image of each subcube, and per-
forms a spatial-domain compositing by treatingeach subcube as a
macro-voxel with its own color and opacity values derived from the
projection image. Figure 2 shows the basic rendering process.

3.1 Generation of Subcube Projection Image

To derive a subcube’s projection image from its compressed rep-
resentation, we use a new class of volume rendering algorithms
[DNR90, MK93, Mal93, Lev92, TL93] that are based on the
Fourier Projection Theorem, which was originally developed for
Computer Tomography (CT) 3D reconstruction.

To facilitate the exposition of the theorem [MO74], we start with
the 2D case and then generalize the theorem to the 3D case. Given a
2D spatial distributionf(x;y), the 1D projection off(x;y) along

a line specified asx cos � + y sin � = R is a line integral and is
given by

g(�; R) =

Z Z
f(x; y)�(x cos � + y sin � �R)dxdy

=

2�Z
0

1Z
0

f(r; �)�[r cos(� � �)� R]rd�dr (6)

The termg(�; R) with a fixed� stands for the projection off(x; y)
along the direction that is at an angle� � �

2
with respect to the X

axis. To see how this is related to the 2D Fourier transformF (u; v)
of f(x; y), we start with the definition

F (u; v) =

Z Z
f(x;y)e�i2�uxe�2�vy

dxdy (7)

ExpressingF (u; v) in polar coordinates withu = � cos �;v =
� sin � gives

F (�;�) =

Z Z
f(x;y)e�i2��(x cos �+y sin �)

dxdy (8)

By exploiting the property of a�(:) function, this can be trans-
formed to

F (�; �)

=

Z Z Z
f(x; y)�

�(x cos � + y sin � �R)e�i2��RdxdydR

=

Z
g(�;R)e�i2��RdR (9)

Therefore,
F (�; �) = F1D[g(�;R)] (10)

whereF1D represents a 1D Fourier transform operator. In other
words, the 1D Fourier transform of a 1D projection off(x;y) along
the direction specified by the angle�, is a 1D line across the cen-
ter of the 2D Fourier transform off(x;y) whose normal vector is
along the direction specified by the angle�. The generalization
of this theorem to the 3D case is straightforward: The 2D Fourier
transform of a 2D projection of a 3D distributionf(x; y; z) along
the direction specified by the angle�, is a 2D plane across the cen-
ter of the 3D Fourier transform off(x;y; z) whose normal vector
is along the direction specified by the angle�.

Discrete cosine transform (DCT) exhibits better energy com-
paction properties and is used in the JPEG still picture compression
standard [RY90, Wal91]. However, the fact that the DCT does not
possess the separability property, i.e.,

cos(x)� cos(y)� cos(z) 6= cos(x+ y + z) (11)

prevents a DCT-based projection theorem. In the above derivation
we make use of this property to go from Equation 7 to Equation 8,
but it no longer holds if the transform used is a DCT.

The Fourier Projection Theorem also applies to discrete Hartley
transform (DHT). The 3D DHT is defined as

H(u; v;w) =

S �
PN�1

x=0

PN�1

y=0

PN�1

z=0
f(x;y; z)�

[cos(2� ux+vy+wz

N
) + sin(2� ux+vy+wz

N
)] (12)
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generated through the Fourier Projection Theorem.

whereS is 1

N3 for the forward and1 for the inverse transform.
Because the DHT requires only real and no imaginary number ma-
nipulation and assumes the same format for forward and reverse
transformations, it is used in our algorithm implementation.

To apply the Fourier Projection Theorem in the context of the
proposed algorithm, we need to address the following two issues.
First, the original formulation is in the continuous domain whereas
our algorithm is supposed to work in the discrete domain. Second,
because our algorithm applies the Fourier Projection Theorem on a
subcube by subcube basis, it is critical to eliminate the aliasing ef-
fect around the boundary region of the subcube’s projection image.

Figure 3 shows how a subcube in the original data volume
evolves before its projection image is generated. Before being
transformed into the frequency-domain representation, ann�n�n
subcube is first expanded into(n + 2) � (n + 2) � (n + 2)
subcube by including voxels from its neighboring subcubes. In
the case of boundary subcubes, zero padding is assumed. This
expansion provides overlap between the projection images from
neighboring subcubes so that during spatial-domain compositing
those rays that traverse through the boundaries of subcubes al-
ways have the same number of projection values for interpolation
as the other rays. Then each subcube is zero-padded and grows
to (n + 2 + Z) � (n + 2 + Z) � (n + 2 + Z). This zero
padding provides a protection zone for the original data against

aliasing, which tends to degrade the boundary region. In the course
of applying the Fourier Projection Theorem, a slice of the di-
mension2(n + 2 + Z) � 2(n + 2 + Z) is extracted from the
(n+2+Z)� (n+2+Z)� (n+2+Z) frequency subcube, with
zero filled in those pixels that are not defined in the subcube. The
reason that the extracted slice is twice the size along each dimen-
sion is to accommodate the fact that the projection image along a
non-orthonormal direction is larger than those along the orthonor-
mal directions, which are of the same dimension as the subcube.
For example, the support of a 1D projection across aX � X 2D
block isX if the projection angle is orthonormal, i.e., multiples of
1
2
�. However, if the projection angle is non-orthonormal, say1

4
�,

then the support of the 1D projection is
p
2X. It can be shown

that doubling the dimension of the extracted slice is sufficient to
accommodate all possible projection angles.

Because zero padding in the frequency domain corresponds to
super-sampling in the spatial domain, the subcube’s projection im-
age is computed by taking a 2D inverse transform of the extracted
slide every other sampling point along each dimension, and the re-
sultant dimension is(n+2+Z)�(n+2+Z). Next a post-filtering
step is applied to this projection image to eliminate the aliasing ef-
fect and arrive at a(n + 2) � (n + 2) image, of which only the
n� n portion is contributed by the subcube itself.

3.2 Summation of Subimages

The proposed compression scheme applies the Fourier Projection
Theorem not on the whole volume but on individual subcubes. In
this section we show that the summation of the resulting subimages
is equivalent to whole-volume frequency domain rendering, and the
next section describes how spatial compositing between subimages
can include the occlusion effect through opacity transfer functions.

To simplify the explanation, we again describe the algorithm in
the context of 2D images. From 2D to 3D, it is just a straightfor-
ward generalization. In Figure 4 (a), a rectangular 2D imageI is
projected along the direction represented by the arrows. Accord-
ing to the Fourier Projection Theorem, the projection ofI along the
projection angle� is a 1D signal, which is the inverse Fourier trans-
form of the line that crosses the center of the 2D Fourier transform
of I also at the angle�. Mathematically,

P�(I) = F�1(X�(F(I))) (13)

where theX� operator means extracting the line that crosses the
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Figure 4:Summation of projection sums from (a) each block in
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viewing ray.

center at angle�. Now let us decompose the image into 16 subim-
ages,SIij, wherei; j = 0; 1; 2; 3, and apply the Fourier Projection
Theorem to each of them. Consider a particular projection ray, say
L in the figure, and let us denote the line integral ofI between a
segment ofL asP (L[m;n]), wherem andn represent points on
L. By definition,

P (L[a; f ]) = P (L[a; b]) + P (L[b; c]) + P (L[c; d]) +

P (L[d; e]) + P (L[e; f ]) (14)

whereP (L[a; f ]) represents a point in the 1D signalP�(I). Sim-
ilarly, one can viewP (L[a; b]) as a point in the projection of the
subimageSI01, i.e., inP�(SI01), and the same interpretation ap-
plies to the other segments ofL. Because both Fourier transform
and the projection operation are linear operators,P�(I) can thus be
rewritten as

P�(I) =

NX
i=0

MX
j=0

P�(SIij)

=

NX
i=0

MX
j=0

F�1(X�(F(SIij))) (15)

whereN andM equal three in our example, but in general they
depend on how the image is decomposed into blocks. What Equa-
tion 15 says is that one can apply the Fourier Projection Theorem to
each of the subimages and sum the projections up, to compute the
projection of a 2D image.

In the 3D case we cast a 2D array of rays into the data volume
along the view angle to get the projected image. Figure 4 (b) shows
a viewing rayR(t) perpendicular to the view plane intersecting the
image planes of the subcubes at points P1 through P4. Each image
plane is generated using the Fourier Projection Theorem on the sub-
cube, and the sum of all projected intensities

P4

i=1
Pi is equivalent

to the projection of the whole data volume along the rayR(t).

3.3 Compositing of Subimages

Most contemporary volume rendering algorithms use more sophis-
ticated modulation schemes that take into account the physical af-
fects of light absorption, scattering, and shading [Sab88]. Let us
assume that each voxel of the data volume is characterized by a
density�(x; y; z) and a color value
(x; y; z) such that the voxel
can emit light with an energy of�
 per unit length and can absorb

light with an opacity of�� per unit length, where� is the attenua-
tion constant. Consider a viewing rayR(t) that shoots through the
data volume and is parameterized byt with R(a) andR(b) as the
start and end points. If one ignores the scattering effect, the total
energy arriving atR(b) due to emission and absorption along the
ray fromR(a) toR(b) is given by

IR(b) =

bZ
a

�(R(t))
(R(t))e
[�

R
t

a

��(R(u))du]
dt (16)

If one simplifies the illumination model further by ignoring the ab-
sorption effect, then the equation is reduced to

IR(b) =

bZ
a

�(R(t))
(R(t))dt (17)

This can be computed by directly applying the Fourier Projection
Theorem because each projection image pixel is the result of a line
integration along the viewing ray. However, the Fourier Projection
Theorem cannot be applied to Equation 16 because of the expo-
nential attenuation term in the integral. Levoy [Lev92] proposed to
approximate the exponential attenuation mechanism with the first-
order term of its Taylor expansion by changing Equation 16 to

IR(b) =

bZ
a

�(R(t))
(R(t))[1� ��(R(a))(t � a)]dt (18)

Based on Equation 18, the absorption effect is simulated using three
additional volumes each voxel of which is pre-multiplied with its X,
Y, and Z coordinates respectively before applying the 3D forward
Fourier transform [Lev92]. Unfortunately this approach requires
four times as much storage overhead compared to spatial-domain
rendering schemes, aggravating the already serious storage problem
of volume datasets.

A subsequent paper by Totsuka and Levoy [TL93] described
frequency-domain rendering methods with depth cueing and direc-
tional shading using a linear approximation to the Lambertian re-
flection model that require only one copy of the dataset. The quality
of the resultant images is not particularly good compared to volume
rendering of the spatial domain representation. The reason is that
the first-order approximation to the exponential absorption func-
tion, although greatly simplifying computation, significantly dis-
torts the attenuation effects of the original illumination model. In
addition, this technique cannot be applied to arbitrary opacity trans-
fer functions.

The proposed approach applies block-by-block compositing
based on the projection subimages that are derived through the
Fourier Projection Theorem from each subcube. That is, given the
line integrals along the viewing rays for each subcube, how should
the aggregate color and opacity values contributed by each subcube
be calculated so that each subcube can be treated as a macro-voxel
for spatial-domain compositing? The attenuation among consec-
utive voxels along a ray is modeled using a spatial compositing
approximation to Equation 16 [PD84]. The discrete front-to-back
compositing formula is defined as:

Cacc;out = (1�Oacc;in )CvOv +Cacc;in (19)

Oacc;out = (1�Oacc;in )Ov +Oacc;in (20)

whereOv andCv represent the absorption and emission parameters
for the voxelv, andCacc;in (Oacc;in ) andCacc;out (Oacc;out ) rep-
resent the accumulative color (opacity) values into and out of the



voxel, respectively.Ov andCv are usually derived from the voxel’s
raw data value through acolor and aopacity transfer function.

To treat each subcube as a macro-voxel, one needs to compute
the aggregate color and opacity values contributed by each subcube.
From Equations 19 and 20, the aggregate color contributed by a
subcube that intersects with a projection ray is

Csubcube =

nX
i=1

[Ci � Oi �
i�1Y
j=1

(1�Oj)] (21)

where we assume there aren voxels on the projection ray that fall
within the given subcube. Similarly the aggregate opacity con-
tributed by such a subcube is

Osubcube = 1�
nY
i=1

(1�Oi) (22)

However, the only information about each subcube after the ap-
plication of the Fourier Projection Theorem is the line integrals
through the subcube along the projection angle, that is,

Pn

i=1
Di,

whereDi is the raw data value associated with thei-th voxel. When
the opacity transfer function assumes a negative exponential form:

Oi = 1� e
�K�Di (23)

then it can be shown thatOsubcube can be computed exactly fromPn

i=1
Di as follows:

Osubcube = 1� e
�K�
P

n

i=1
Di (24)

For arbitrary opacity transfer functions, the only way to reconstruct
Osubcube exactly is to prepare a second volume from the origi-
nal data volume by applying the following transformation to each
voxel:

Dnew; i = log(1�O(Di)) (25)

whereO() is any chosen opacity transfer function. Unfortunately,
this approach is only applicable if the opacity transfer function is
fixed, i.e., no interactive classification.

To allow the flexibility of changing the opacity transfer function
interactively at run time, we choose the following method to ap-
proximateOsubcube given

Pn

i=1
Di. The basic idea is to assume

that the voxel values within a subcube are reasonably close to each
other so that one can use the average values for each of the voxels

along the ray. LetDavg =

P
n

i=1
Di

n
. By substitutingDavg for

every voxel in Equation 22, we get

Osubcube = 1� [1� O(Davg)]
n (26)

whereO() is the chosen opacity transfer function The smaller the
subcube is, the more accurate this approximation ofOsubcube is.

The aggregate color contributed by a subcube,Csubcube, can be
derived through two possible approaches. If the color transfer func-
tion is linear with respect to the raw voxel value, i.e.,Ci = K �Di,
which is the case most of the time, the aggregate color can be ap-
proximated by ignoring the attenuation due to voxels within the
subcube:

Csubcube = K �
nX
i=1

Di (27)

When opacity is discounted, e.g., X-ray-like projections, this ap-
proximation method is preferable. Alternatively, one can apply the

same idea of using the average value for every voxel on the ray and
plugging it into Equation 21:

Csubcube = C(Davg) � O(Davg) �
1� [1�O(Davg)]

n

O(Davg)
(28)

In this case, the color transfer functionC() doesn’t have to be linear
with respect to the raw data. Again the smaller the subcube is, the
more accurate this approximation ofCsubcube is.

Given the aggregate color and opacity approximations for each
subcube from its projection sums, we then apply subcube-by-
subcube spatial domain compositing using the following equations:

Cacc;out = (1�Oacc;in )Csubcube +Cacc;in (29)

Oacc;out = (1�Oacc;in )Osubcube + Oacc;in (30)

whereCacc;in , Cacc;out , Oacc;in andOacc;out are with respect to a
subcube, not a voxel. Note that Equation 29 is different from Equa-
tion 19 because the occlusion effect due to each voxel has been cap-
tured in the aggregate color calculation, and should not be repeated
in subcube-level compositing.

4 RESULT

Compared to conventional voxel-by-voxel ray casting algorithms,
the proposed compression domain rendering algorithm may intro-
duce two sources of errors. First, the projection sums computed
from the Fourier Projection Theorem may not be exact due to alias-
ing. This error may be significant since the aliasing effect tends to
be more serious at the subcube boundaries, which in turn could be
in the middle of the data volume. Secondly, the calculations of the
subcube’s aggregate color and opacity values from the projection
sums are just approximations, which may lead to further deviation
from the result of the ray casting algorithm.

All the reported measurements below are 2D mean square errors
(MSE) from theheaddata set. Table 3 shows the average mean
square errors between the projection sums derived from the Fourier
Projection Theorem and those from spatial domain summing, for
subcubes of different sizes from different viewing angles. The pro-
jection angles are specified in the second row in terms of multi-
ples of�. Mean square errors for orthonormal viewing angles are
usually smaller than those for non-orthonormal ones, because non-
orthonormal projections require interpolation for sample values on
the rays, and thus tend to suffer more from aliasing. For a given
non-orthonormal viewing angle, the mean square error increases as
the subcube size decreases. This is because the MSE calculation
tends to amplify the aliasing error, which in itself is independent of
the subcube size, when the subcubes are smaller. For orthonormal
viewing angles, such trends are less obvious, because most of the
MSE in this case is mainly due to floating-point rounding.

Table 4 shows the mean square errors between the rendered im-
ages computed from voxel-by-voxel ray casting and those from
subcube-by-subcube compositing using the aggregate color and
opacity values approximated from spatial-domain projection sums,
for different opacity transfer functions and different viewing an-
gles. The reason we choose spatial-domain rather than the projec-
tion sums calculated from the Fourier Projection Theorem is to iso-
late the errors due only to the aggregate color and opacity approxi-
mation scheme. The linear opacity transfer function,Oi = K �Di,
choosesK to be the inverse of the difference between the largest
and smallest density values in the volume, whereas the exponential
opacity transfer function, as defined in Equation 23, uses the same



Orthonormal Non-orthonormal
Subcube Size < 0 0 0 > < 0:5 0 1 > < 0:25 0:25 0:25 > < 0:48 0:1 0:95 >

4 x 4 x 4 0 0.153 25.543 35.980
8 x 8 x 8 0.529 1.536 15.990 23.536

16 x 16 x 16 0.433 1.026 9.980 18.336
32 x 32 x 32 0.301 1.006 4.670 10.312
64 x 64 x 64 0.149 0.217 3.252 3.513

Table 3:The average mean square errors between the projections derived from the Fourier Projection Theorem and those from spatial domain
summing, for various viewing angles. The color values are normalized to the range between 0 and 255.

Exponential Linear
Subcube Size < 0:5 0 1 > < 0:48 0:1 0:95 > < 0:5 0 1 > < 0:48 0:1 0:95 >

2 x 2 x 2 3.115 5.339 4.935 8.377
4 x 4 x 4 7.0699 8.001 9.129 10.560
8 x 8 x 8 10.870 12.698 12.699 14.958

16 x 16 x 16 16.775 17.314 18.397 19.402
32 x 32 x 32 25.781 26.089 27.778 28.321
64 x 64 x 64 32.750 37.336 34.579 39.601

Table 4:The mean square errors between the rendered images using voxel-by-voxel ray casting and those from subcube-by-subcube com-
positing based on aggregate color and opacity approximation values, for different opacity transfer functions and viewing angles. The color
values are normalized to the range between 0 and 255.
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Figure 5:The sequence of voxel values encountered by a sam-
ple projection ray, as shown as the solid line, and the average
approximation voxel value used for each subcube, as shown as
the dashed line.

value forK. As expected, the smaller the subcube, the smaller the
MSE. MSEs for orthonormal projections are smaller than those for
non-orthonormal, because the aliasing effect is less serious. Be-
cause the aggregate opacity approximation is exact when the opac-
ity transfer function is exponential, the MSEs for the exponential
opacity case are smaller than the MSEs for the linear opacity case.

To compare the rendered images from voxel-by-voxel ray casting
and from the compression domain rendering algorithm, we render
theheaddata set using the two algorithms under different opacity
transfer functions. Figure 6 and 9 show the rendered images using
ray casting and compression domain rendering, assuming that there
is no opacity, i.e., only X-ray effect. In this case, both the color and

opacity approximation equations are exact, and therefore they look
almost identical. Figure 7 and 10 show the rendered images using
ray casting and compression domain rendering, assuming an expo-
nential opacity transfer function. In this case, the aggregate opacity
approximation equation is exact, but the color opacity approxima-
tion equation is not. At the subcube size of43, the image from
the proposed method is quite comparable to that from ray casting.
Figure 8 and 11 show the rendered images using ray casting and
compression domain rendering, assuming a linear opacity transfer
function, i.e., the opacity is linearly proportional to the data density.
In this case, neither the color nor the opacity approximation equa-
tion is exact. At the subcube size of43, the two rendered images
still look comparable, although the difference is more significant
compared to the exponential opacity case.

To understand how the difference arises between the rendered
images from the proposed scheme and ray casting, we trace the set
of voxels encountered by the rays that are responsible for the por-
tion of the image that shows the most serious discrepancy. Figure
5 shows a partial sequence of voxel values encountered by such a
ray, and the average approximation for each subcube used by our
approach. Because the voxel value sequence fluctuates noticeabaly
within each subcube, the average approximations fail to capture the
true ray casting computation. As a result, there is a significant dif-
ference in the final results produced by two methods for these rays.

5 CONCLUSION

By applying the Fourier Projection Theorem on a subcube by sub-
cube basis, and performing spatial-domain compositing by treat-
ing each subcube as an indivisible macro voxel, we have integrated
volume data compression and volume rendering in a unified frame-
work. The preliminary experiment results show both high compres-



sion ratios and improved image quality over previous frequency do-
main rendering approaches.

There are several directions from this research that we are cur-
rently exploring. First, we are developing a strategy to choose the
quantization table for a given data volume that produces the best
compression ratio while maintaining the same reconstructed data
quality. Secondly, we are examining the interaction between vol-
ume rendering and compression. In particular, we are interested
in identifying the compression algorithm parameters to which the
rendering algorithm is most sensitive. Thirdly, we are investigat-
ing the feasibility of using variable subcube size in the compres-
sion domain rendering algorithm, so as to exploit data-dependent
optimization and achieve higher compression efficiency and better
rendering quality.
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Figure 6:A ray-cast image of the head
data set, using the X-ray-like opacity
model.

Figure 7:A ray-cast image of the head
data set, using an exponential opacity
transfer function.

Figure 8:A ray-cast image of the head
data set, using a linear opacity transfer
function.

Figure 9: A compression-domain ren-
dered image of the head data set, using
the X-ray-like opacity model. The sub-
cube size is 4x4x4.

Figure 10:A compression-domain ren-
dered image of the head data set, using
an exponential opacity transfer func-
tion. The subcube size is 4x4x4.

Figure 11:A compression-domain ren-
dered image of the head data set, using
a linear opacity transfer function. The
subcube size is 4x4x4.


