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Fig. 1. Our display-aware gigapixel image viewer for biomedical image stacks. Input image stacks are processed and stored individ-
ually (green rectangles to the left, 360 image stacks each comprising 2.7K × 2K × 16 samples, resulting in over 30 gigapixels), but
the globally consistent view for an arbitrary zoom level and image plane can be composed on-the-fly (right). The proposed system
provides an interactive digital pathology workflow that allows fast changes in pan, zoom, and focus.

Abstract—Histology is the study of the structure of biological tissue using microscopy techniques. As digital imaging technology
advances, high resolution microscopy of large tissue volumes is becoming feasible; however, new interactive tools are needed to
explore and analyze the enormous datasets. In this paper we present a visualization framework that specifically targets interactive
examination of arbitrarily large image stacks. Our framework is built upon two core techniques: display-aware processing and GPU-
accelerated texture compression. With display-aware processing, only the currently visible image tiles are fetched and aligned on-the-
fly, reducing memory bandwidth and minimizing the need for time-consuming global pre-processing. Our novel texture compression
scheme for GPUs is tailored for quick browsing of image stacks. We evaluate the usability of our viewer for two histology applications:
digital pathology and visualization of neural structure at nanoscale-resolution in serial electron micrographs.

Index Terms—Gigapixel viewer, biomedical image processing, GPU, texture compression.

1 INTRODUCTION

The use of digital imaging is widespread in basic biological research
but is less common in histopathology. The practice of anatomic (surgi-
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cal) pathology involves the use of a microscope to view tissue mounted
on a glass slide, an approach that has not changed significantly over
many decades. Pathologists have been slow to transition from glass
slides to digital imaging for reasons that relate to performance and
interpretation. High-resolution digital images are necessary for accu-
rate diagnosis, and because of the size of histological sections, images
have been too large to handle efficiently. A major obstacle to the use
of digital imaging in pathology has been the inability to display large
images at interactive rates.

Large microscopy images are generated in three steps: first, by ac-
quiring tiled scans or images, and, second, by preprocessing to correct,
align, and stitch the tiles into a seamless montage. The final step is to
create a multiresolution image pyramid allowing efficient display of
the image based on the current viewpoint and screen size. The prepro-
cessing works well for moderate-sized images but not for extremely
large images (e.g., terapixel images). Because the acquisition and pro-
cessing steps are performed sequentially, there can be a long delay be-
fore a slide image is available for viewing. Many times, one may only
be interested in viewing a small portion of the image dataset. In this
case the effort to create globally consistent data is unwarranted. Fi-
nally, a globally consistent data structure is not well suited to dynamic



(local) data modification. Dependencies within the data structure make
it necessary to recreate the entire image pyramid—a time-consuming
process.

Because the major bottleneck of handling large images is slow disk
access, reduction of the data size is essential to achieving interactive
response in the image viewer. Most of the existing large image view-
ers rely on progressive transmission of image tiles and speculative
prefetching to hide disk access latency. Those techniques can cover
small local movements, but can be easily outpaced by rapid changes
in pan, zoom, and focus. In a clinical setting, pathologists need to be
able to inspect large high-resolution slide images quickly. Therefore,
it is necessary to use a data compression scheme to minimize data
transfer overhead.

In this paper, we introduce a novel visualization framework for in-
teractive histology of extremely large microscopy image stacks. Our
framework employs a local, adaptive data structure with demand-
driven processing to handle extremely large images efficiently (see
Figure 1 for a confocal microscopy data set comprising over 30 gi-
gapixels). We call this display-aware processing. The core idea of the
display-aware framework is to use lazy, on-demand evaluation when
accessing the image data. Unlike existing methods [18, 10, 35], we do
not manage a fully-processed, global image pyramid per image slice.
Instead we keep track of high-level data dependency and local corre-
spondence between the input image tiles. The globally-aligned view
for an arbitrary viewpoint and zoom level is composed on-the-fly by
fetching only a small subset of the input dataset and applying neces-
sary computations whose cost is bound to the current display size. Our
display-aware framework allows fast random access to the image data
at any scale and does not require time-consuming preprocessing. For
interactive performance, we propose a novel GPU 3D texture compres-
sion that exploits the similarity between successive slices to increase
the compression ratio and allows realtime texture decompression on
the GPU. Our 3D texture compression is specifically tailored for fast
browsing across slices of pathology-slide image stacks. Compared
to previous GPU-based compression methods, our method offers an
unprecedented flexibility in the choice of available bitrates, thereby
allowing a very fine quality vs. bitrate trade-off.

2 OVERVIEW OF HISTOLOGY

Histology has two main application areas: anatomic pathology and ba-
sic research. Anatomic or surgical pathology involves the histopatho-
logic examination of tissues from biopsies or larger excision speci-
mens. Tissues are typically fixed with formalin, dehydrated, and then
infiltrated with paraffin wax prior to being sectioned at about four to
five microns (µm). Sections are permanently mounted on glass slides
and stained with hematoxylin and eosin (H&E). The pathologist views
the sections using a microscope, usually at several different magnifi-
cations (e.g., 2×, 4×, 10×, 20× and 40×). The morphologic changes
in the tissue are assessed and the morphologic and clinical information
are then integrated to render the diagnosis. Precisely how the pathol-
ogist acquires the morphologic information from the slide varies be-
tween individual operators. Diagnostic information is obtained from
both moving and static images, and how the slide is driven can im-
pact the ability of the pathologist to render a diagnosis. An experi-
enced pathologist can make a large number of diagnostic decisions
each working day and the currently used glass slide-based process is
fast and efficient (Figure 2).

Whole-slide digital imaging is receiving increased attention in sur-
gical pathology but it is still not widely used in a diagnostic set-
ting [16]. A challenge in digital pathology is to make image qual-
ity good enough to be comparable to the experience of using a mi-
croscope [11]. One aspect of improving image quality is to achieve
high resolution and color fidelity. Another is to acquire multiple focal
planes. Even if slides are digitized as high-resolution image stacks, an
important and as of yet underdeveloped feature of slide viewer soft-
ware is the ability to translate and change focus and magnification as
quickly and seamlessly as when viewing slides on a microscope [21].
While automated whole-slide imaging systems are becoming fast (e.g.,
digitizing a single 20mm×20mm section at 20× magnification in 1

Fig. 2. Conventional light microscope on which a pathologist views glass
slides moved by hand. An example H&E-stained histologic section im-
aged at 20× objective magnification with a resolution of 0.26 µm per
pixel. For a 16mm × 10mm section, the size of the composite two-
dimensional image is approximately 2.2 gigapixels. Scale bar is 100
µm.

minute per image plane), viewer software is currently designed more
to handle the difficult task of accessing huge amounts of slide image
data (one or more gigapixels for a single two-dimensional slide im-
age) efficiently than the perhaps equally challenging task of making
display of slide image data effective for the human visual system [20].
Existing implementations offer the ability to translate and zoom a large
two-dimensional image or to step through an image stack, but none so
far offer the ability to do all three (translate, zoom, and change image
plane) with minimal delays. The rapid flow of visual information cap-
tured by the eye when using a microscope provides information that
is used in diagnostic decision making. For this reason, image latency
is a major obstacle to the usefulness of digital methods in pathology.
To gain acceptance, the slide viewer software needs to mimic the per-
formance of a microscope and allow for individual preference with
respect to viewing dynamic and static images.

In basic research, the tissue on a slide is often labeled with one or
more fluorescent markers. The fluorescence can be imaged in thin op-
tical sections (fractions of a micron thick) using confocal microscopy.
With multiple channels, the size of a single image stack can easily ex-
ceed one gigabyte. At high resolution, the field of view may be less
than 100 µm on a side. Thus imaging a 20mm×20mm region would
require the acquisition of thousands of image stacks. Even for small
data sets comprising tens of image stacks, a major challenge is the
ability to align, stitch, and access montages of image stacks.

Our display-aware framework facilitates the viewing of arbitrarily
large three-dimensional image volumes. We avoid the need for global
alignment and stitching of image stacks as a preprocessing step. This
virtually eliminates the delay between acquisition and analysis, since
only the alignments necessary for the current view are computed. And
due to our GPU-friendly texture compression, image sizes and band-
width requirements are considerably reduced.

3 PREVIOUS WORK

There are several research papers and commercial software to display
large-scale images interactively. Kopf et al. [18] proposed the methods
for acquisition, processing, and display of panoramic images, which
was later released as Microsoft HDview [27]. Several web-based
high-resolution panoramic image viewers were also proposed [10, 35].
Commercial virtual microscope software extends panoramic image
viewers to display large microscopic images [17, 29]. Most existing
large-scale image viewers rely on a global hierarchical data structure
for fast and efficient data management, which is not scalable to a work-
flow that is required to handle an arbitrarily large collection of images.
In addition, none of those method addresses how to quickly pan, zoom,
and switch between multiple high resolution images.

It is clear from these examples that the foremost goal of compress-
ing such images is always a reduction in data size. This reduction
makes data more tractable in general, allowing pathologists to carry
with them, transmit, and visualize larger amounts of data without ad-



ditional hardware costs. Especially in histology, where lossy com-
pression is widely accepted as means to reasonably deal with the over-
whelming amounts of data, the potential for storage requirement re-
ductions are considerable. As there is an abundant body of work on
data compression, we refer to standard references [32, 12] and review
only work closely related to ours.

The goal of data compression has been recognized in the visualiza-
tion community and it has spawned a trend to move from CPU-based
compression [38, 13, 14, 30, 39] to GPU-based compression. The
major reason is that the GPU’s internal bandwidth (currently exceed-
ing 140GB/s) is vastly superior to the PCIe’s theoretical bandwidth of
4GB/s. However, the step from CPU-based to GPU-based decoding
implies the usage of compression algorithms that can be decoded in
parallel. Since this is easier to achieve for lossy compression, the lit-
erature on this topic is decidedly richer than on lossless compression
in the context of GPU-based coding.

Among the first authors to propose GPU-based decoding were Lum
and Ma [25]. They propose to compress time varying volume data
by grouping four timesteps of a scalar volume to form a volume of
four-dimensional vectors. Assuming high temporal coherence, the in-
formation stored in these vectors is then compacted using a four-tap
DCT and each component is quantized using Lloyd’s scalar quantizer
[24]. The decoding then relies on paletted textures, an early form of
dependent texture lookups. The method can decode volumes at high
speed, which can be mostly attributed to the fact that only fixed bitrates
are used.

Based on the concepts of Laplace pyramids [4, 9] and vector quan-
tization [30, 8], Schneider and Westermann [34] generalize a two-
dimensional framework by Beers et al. [1] and propose a hierarchical
encoding of scalar-valued volumetric data [34] as well as its on-the-fly
decoding in a fragment shader. The key idea is to predict details in
the volume by a coarser, subfiltered version of the volume. The dif-
ference between prediction and actual volume is then grouped into 23

vectors, properly normalized (mean removal and scaling components
to the range [0,1]), and quantized. Fout et al. [6] improve the method
to address the coding of time-varying and multivariate volume data.
Fout and Ma [5] also describe a method that uses transform coding
followed by classified vector quantization to achieve higher fidelity
at more flexible bitrates. Wang et al. [37] describe a compression
method for partitioned volume data residing in an octree. They also
address texture packing in order to achieve a wider range of possible
bitrates. The texture format provided by the graphics API that fits the
desired output bitrate closest is automatically chosen and each code
word is padded to this format. They report that using this strategy the
padding overhead is below 10%. In contrast, we utilize buffer textures,
a concept introduced recently to the OpenGL rendering API, to avoid
any padding except for reasons of convenience.

Our approach to compression is very similar in style to the afore-
mentioned approaches. However, the data we are concerned with will
always show an extremely high coherence between slices (confocal
planes) of the image. Consequently, the key idea is to encode the
frontmost and backmost slices at a rather high bitrate using hierarchi-
cal vector quantization. Then, interior slices are predicted using infor-
mation from the front- and backmost slice, and only the differences
to this prediction are encoded. Such predictor/corrector methods have
been shown to be extremely successful in the context of time-varying
volumes [36, 26]. Unlike previous approaches, we offer a flexible bit-
rate control. The only limitation is that the bitrate of each quantizer
stage is constant per vector, but as detailed in Section 6 this can be any
rate.

4 DEFINITIONS AND SYSTEM OVERVIEW

We define an image slice as a collection of pixels imaged on the same
focal plane. An image stack is a collection of image slices that are
created by scanning the same spatial region on different focal planes.
Figure 3 left describes the image slice and image stack pictorially.
Because the field-of-view of a high magnification objective is much
smaller than the entire imaging region, we collect a set of image stacks
that overlap about 5–10% at their boundary. Each individual image

stack covers only a small subregion.
We define the scale in our context as the distance between the

viewer and the object—or equivalently the size of the field of view—
in the global coordinate system (reference space in Figure 3) while
resolution refers to the number of pixels that defines the actual size of
an image. Therefore, scale is the measure of how close the object is
to the viewer and how much detail can be seen by the viewer, which
corresponds to the magnification factor of the microscope objective.

The input to our system is a large collection of image stacks, e.g.,
hundreds to thousands of high-resolution images, up to terabytes of
raw data size in total, for a few square centimeters of the biological
sample. Each image stack usually consists of 9 to16 image slices for
a tissue sample of about five microns thick, and the distance between
adjacent slices is about one micron.

The first step in our system is building image stack pyramid. For
each image stack, we create coarser resolution image stacks (Sec-
tion 5.3, Data Structure). Then each image stack is aligned in a refer-
ence coordinate system (Figure 3 middle, Reference Space) and per-
stack geometric transformation is stored in Data Space. In the mean
time, each image stack pyramid is diced into pre-defined sized sub-
stacks, and those stacks are compressed using our compression scheme
(Section 6). A spatial data structure for sub-stacks, e.g., the bounding
box hierarchy, is also built to search visible stacks quickly. Finally,
our display-aware viewer fetches only currently visible image stacks
from disk or cache (Section 5) and decompress them on-the-fly us-
ing the GPU to display the current image on the screen (Section 6.5).
The details of the two main components of our system, display-aware
framework and texture compression, will be introduced in the follow-
ing sections.

5 DISPLAY-AWARE IMAGE VIEWER

Our display-aware image viewer framework provides an efficient
method to process only the visible portion of image stacks on the fly
without creating a global view of the data in advance. In addition, we
propose an efficient adaptive image hierarchy technique to reduce the
data size without sacrificing the image quality (Section 5.2). An im-
portant goal of our display-aware framework is that the original, mea-
sured data is never altered but only augmented with additional infor-
mation. This additional information includes the proposed compres-
sion scheme. This has two benefits. Firstly, measuring data is a time-
consuming and expensive process. Hence the original data should be
retained for future algorithmic advances. Secondly, while not notice-
able in typical scenarios, our compression scheme is lossy and might
introduce artifacts. Consequently, we use the compressed representa-
tion of the data to achieve interactive updates, while the original data
can be presented to the user if her or his browsing behavior permits to
do so.

5.1 Description of the Display-Aware Framework
The core idea behind our display-aware framework is to separate the
raw data space and the display space. Our framework consists of three
conceptual spaces: data, reference, and display space. We now for-
mally define the workflow and data structure we propose.

Data Space This is the space where the input raw image stacks
and per-stack scale and geometric transformations are stored (Figure 3
left). Each image stack is independently stored in a multiresolution
format. Only the image chunk with a proper resolution for a given
scale will be used to compose the final image in the display space. The
per-stack scale defines the scale of that stack in reference space. The
per-stack geometric transformation defines the mapping between the
local coordinate system in data space to the global coordinate system
in reference space. There is no single global pyramid that contains the
whole image as a single stack. Instead, each small image stack is con-
verted into a small local pyramid. By doing this, preprocessing time
is greatly reduced, and the depth of the pyramid hierarchy is much
more shallow, which allows faster memory access. Because each slice
is naturally decomposed into small pieces, random access to a local
region can be done simply by fetching the corresponding image stacks
without reconstructing the pyramid in a coarse-to-fine manner, similar
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Fig. 3. Pictorial description of the proposed display-aware framework. Left: each Image stack pyramid consists of image stacks in different scales
(level), and each image stack consists of image slices imaged on different focal planes. Middle: a single image slice (not an image stack) is mapped
to a 3D cube in reference space. The top face of a cube is mapped to the image slice in the highest scale (e.g.,level 0), while the bottom face
is mapped to the image in the lowest scale (e.g., level 2). Right: Final image on the screen is composited on-the-fly using the image slices that
intersect with the current viewing window.

to existing methods. This difference becomes more relevant in pathol-
ogy because moving across different slices is one of the most common
tasks in pathology. If a pathologist zooms in to the highest resolution
and moves to the next slices then existing methods must reconstruct
all dependent levels, which is very expensive. On the other hand, our
display-aware framework can fetch the data only for the current screen
size, and there is no overhead due to the data dependency.

Reference Space Reference space is a three-dimensional global
coordinate space to which all the images are mapped (Figure 3 mid-
dle). In data space, each image stack is treated independently and we
do not have a global view of them. Thus, the main purpose of using
reference space is to construct a spatial and scale relationship between
image stacks in a common coordinate system. In reference space, the
x- and y-axis represent the spatial location, and the z-axis represents
the image scale. Therefore, an image stack in reference space is a
set of three-dimensional, axis-aligned bounding boxes (one per each
slice in the stack) for which the x-y location is computed by a corre-
sponding geometric transformation. The current viewing window is
a two-dimensional rectangle in the x-y plane in this space. Efficient
spatial data structures can be used to quickly find the visible images
for any given location and scale in this space. This space is purely a
virtual, continuous space without any concept of actual pixel values.
Sampling will be done in display space.

Display Space Display space is a local coordinate space where
the pixel values are defined and actual image operations take place
(Figure 3 right). For any given region of interest and scale, the image
slices within the region in the reference space are resampled and any
per-slice operations, such as color adjustment or image alignment, are
performed. Once the resampling and computation are done, we only
store per-slice color and transformation parameters in data space (Fig-
ure 3 left) and never modify the actual pixel values of the raw input
image slices.

5.2 Adaptive Image Hierarchy
Adaptive refinement techniques have been widely used in many dif-
ferent fields, such as numerical simulation [3] and computer graph-
ics [7, 2], to reduce computational cost and memory footprint. The
main idea of these approaches is to refine a coarse grid to achieve
a nested grid that offers higher resolution where higher accuracy is
required. Most existing methods focus on building a global nested
hierarchy, such as adaptive refinement of an octree.

We can employ a similar idea to display the data samples using
spatially varying sampling resolutions in order to reduce the data size
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Fig. 4. Adaptive image hierarchy. Each nested image represents a
region of twice higher magnification than its outer image in display space
(left). Note that the images are neither resampled into a global data
structure nor aligned to a common coordinate system. Each image has
its local image pyramid in data space (middle). Each pyramid level (local
to the image) is mapped to a global scale value in reference space, and
images with different scales are shifted along the scale axis accordingly
(right).

while at the same time allowing deep zooming into the region of in-
terest. Instead of creating a full scan of the entire region at the highest
magnification, we can create multiple images at different spatial lo-
cations and scales, i.e., using more pixels for interesting regions, and
compose them into a single coordinate space. Unlike other methods
based on a global image pyramid, our method can naturally handle
multiple nested images without resampling or updating the data struc-
ture. This allows us to easily create a deep zoom hierarchy. Even
more, images with arbitrary orientation and scales can be combined
easily. We only need to store a per-image scale and geometric trans-
formation to align them in reference space. Figures 4 and 5 depict the
adaptive image hierarchy of three images with different scales.

Because each image is scanned at a different scale and location, they
have to be aligned using an image registration method. We can assume
that the microscope stage movement is translational, so we only need
to find x and y displacements from one image to the other. We use a
GPU implementation of rigid image registration to interactively align
images [15]. The image scale is proportional to the magnification of
the microscope objective.
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Fig. 5. Building an adaptive image hierarchy using on-the-fly GPU image
registration. Three images with varying magnification are aligned in the
common coordinate space. A coarse initial location of each image is
manually given by the user, then the GPU rigid registration aligns two
consecutive images quickly (see the supplementary video). 10× and
20× images are aligned to the background image, respectively (right).

5.3 Implementation Details
Data Structure For each input image stack, a multiresolution

pyramid is constructed. Each slice in the image stack is independently
reduced for coarse levels, and only x and y dimensions are halved.
Then each level in the pyramid is diced into fixed-size 512 × 512 ×
(number of slices) tiles. Because the image size is not always a mul-
tiple of 512, the regions outside the image will be padded with zeros.
Each tile keeps the size of the valid region so that the renderer can skip
displaying the padded region. Tiles can be directly accessed from the
pyramid using a level and tile index. For each render pass, the cor-
responding image level in the pyramid is chosen based on the current
viewing scale. Each image stack is a pyramid of image stack tiles, and
a slice is a collection of image stack pyramids. We construct a pyramid
with tile pointers where most of the pointers are null at the beginning.
As the user navigates the image, the actual tile data dynamically flows
in and out from the tile cache system.

For the adaptive image hierarchy, each image stack is given a scale
value to determine the relative image size and level in reference space.
We choose one base image stack for scale 0, and assign relative scale
values to other image stacks so that a scale value n represents 2n×
magnification from the base image. For example, an image of scale 1
corresponds to a 2× magnification of an image of scale 0. When the
images are composed in reference space, the internal pyramid level is
also shifted by the image scale. For example, a pyramid level 0 in the
image of scale 0 is same level as a pyramid level 1 in the image of
scale 1. Figure 4 depicts mapping of the pyramid levels and scale in
reference space.

Software Cache and Prefetching Schemes Each tile dynam-
ically allocates memory space for the CPU and GPU. CPU memory
is used to store the compressed stack data loaded from the disk. GPU
memory is used to store a GL buffer object for the compressed stack
data from CPU memory and a 512 × 512 2D OpenGL texture to store
and display the decoded slice. A two-level software cache system
manages buffering data between disk, the CPU, and the GPU. A LRU
(least-recently-used) scheme is used to free in-cache tiles when the
cache is full.

We observed that the major bottleneck in our system is the disk ac-
cess time. Loading a compressed 512 × 512 × 16 stack of about 600
KBytes in size from a SATA hard drive usually takes 20–50 millisec-
onds, and, occasionally, it reaches up to a hundred milliseconds. We
minimize the disk latency by prefetching neighboring tiles in the back-
ground or during idling while a concurrent display thread fetches tiles
which are currently visible in real time. A cylindrical region that spans
several scales and has a twice-as-large spatial extent on the current
scale as the current view port is prefetched for zooming and panning
motions. In the rare case that a prefetching process cannot be fully
completed since the user moved the viewpoint too quickly, the current
prefetching is immediately terminated and a new prefetching process

is started for the new viewport.

6 TEXTURE COMPRESSION

Our display-aware framework provides an efficient data management
scheme, but to be able to transfer image stacks from the disk or SSD to
the GPU without lags we need to further reduce the size of each stack
by using a GPU-based texture compression scheme. More specifically,
we use a novel texture compression approach that is based on predic-
tive, hierarchical vector quantization. It is custom tailored to the type
of data we are dealing with, i.e., data exhibiting exceptionally high
coherence in between the slices of each image stack. Our approach
offers faster encoding than the industry standard S3TC, while at the
same time achieving higher fidelity and higher compression ratios. At
a glance, the method works as follows:

1. Group input data into stacks of N image slices, each of which
comprises 512×512 pixels.

2. For each stack, encode the first and last slice jointly.

3. Perform a linear interpolation to predict the N− 2 intermediate
slices and encode the difference between the actual and the pre-
dicted values.

6.1 Vector Quantization
Although a full discussion of vector quantization is beyond the scope
of this paper, we will briefly review the basic underlying concepts in
this section. For a more complete discussion, we refer the reader to
Neuhoff and Gray’s excellent survey [12].

Given a set {xi}N
i=1 ⊂Rd of d-dimensional vectors. A vector quan-

tizer replaces this set by an approximation consisting of an ordered
set of indices, {αi}N

i=1 ⊂ N, and a ordered set of codebook vectors,
{ci}n ⊂ Rd . The original set of vectors can then be reconstructed
by the decoder by performing a simple lookup into the codebook,
i.e., x̃i = cαi . Since the process is typically lossy, a error metric can
be defined to assess the quality of the encoding/decoding round-trip,
ξ (xi) = (xi− x̃i)

T (xi− x̃i). This basic setting leaves implementations
with two tasks. Firstly, an appropriate codebook has to be found, and
secondly, the best index set with respect to the error metric ξ has to
be found. Once an initial codebook is specified, the Linde-Buzo-Gray
(LBG) algorithm [22], also known as Generalized Lloyd algorithm
(GLA) [24] can be used to refine both the index set as well as the
codebook. Compression is achieved if the number of bits necessary
to represent the codebook and the index set is lower than the number
of bits needed to represent the original set of vectors. The input vec-
tors are typically assumed to be in some form of floating point format,
in our case at 32 bits per component. The codebook can be further
compressed by choosing a more compact representation. In our im-
plementation, we chose a fixed-point format at a lower bitrate, since
we seek to represent 8 bit color values.

Our implementation is very similar to [34] for which additional de-
tails are described in [33]. This particular implementation forms an
initial codebook by maintaining a prioritized list of quantization cells.
In this context, the quantization cells are a partition of the set of in-
put vectors, where all vectors in a cell share the same index. Starting
with only one bin containing all vectors, the quantization bin with the
largest error is split into two new bins using principal component anal-
ysis (PCA) to determine an optimal split plane. Once certain threshold
criteria are met, the generation of the initial codebook is stopped and
the codebook thus obtained is refined using the LBG algorithm.

To further increase the efficiency, we split each image in a series of
frequency bands, where low-frequency bands show less detail and can
therefore be encoded using less bits. To propagate contributions from
these low-frequency bands to higher frequencies, we use a smooth fil-
ter for upscaling. This gives a low-frequency prediction of the full
image that can be corrected by using vector quantization on the details
yet missing at this particular stage.

In the following subsections we will discuss our particular compres-
sion scheme along with design decisions.



6.2 Joint-Coding of Front and Back Slice
We start by reducing the frontmost and backmost slice of the stack
to 2× 2 pixels. This is accomplished by computing the average over
four blocks of 256× 256 pixels each and is equivalent to a recursive
application of a 2× 2 box filter followed by subsampling (see also
Figure 6). The resulting four colors per slice are then encoded in 2×
2×2×16 bits in R5G6B5 format.

For each of the two slices, we then expand these 2×2 pixel images
to 32× 32 pixels each. As depicted in Figure 7, expansion proceeds
by recursive bilinear upscaling using the C1-continuous synthesis fil-
ter described in [19]. This doubles the image resolution along each
axis in each step. The advantage of recursive upscaling vs. one-step
bilinear upscaling is that the resulting prediction is smoother and free
of bilinear interpolation artifacts.

¼¼

¼ ¼

Fig. 6. Recursive reduction step. The coarser level (light red) is gen-
erated by application of a 2× 2 box filter to the finer level (light blue)
followed by subsampling.
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Fig. 7. Recursive expansion step. The finer level (light blue) is interpo-
lated from the coarser level (light red) using the C1 filter from [19].

The prediction is then compared to the input slices reduced to
32×32 pixels each. The difference between reduced input slices and
the prediction are then grouped to form 2× 2×RGB f RGBb vectors,
where the subscripts f and b denote the respective pixel of front and
back slice. This difference is then encoded using the vector quan-
tizer described in [34]. The vector quantizer replaces the 32× 32× 2
RGB values with 16×16 n−bit indices into a codebook storing 2n 24-
dimensional vectors. Since the entries of the codebook are generally
produced at floating point precision, we first clamp them to [−63,+64]
before quantizing them uniformly to 5 bits per component.

The reconstructed differences are then added back to the prediction
and upscaled two more times, once to 128×128 and once to 512×512.
In the first case, 5 bits per codebook component are used, whereas the
last stage clamps differences to [−63,+64] and quantizes them to 8
bits per component.

The reason for the clamp / quantization process on the codebooks
is that we observed that most differences are already in the interval
[−63,+64] and that a significant number of bits can be saved in this
manner. Note that we avoid error propagation by reconstructing the
image from the encoding of the current stage before proceeding to the
next stage.

6.3 Predicted Encoding of Intermediate Slices
Since intermediate slices vary only slowly, they can be predicted very
well using a linear interpolation between the front and back slices. The
best way to encode these intermediate values would be to compute

the difference to the prediction, then use a (N−2)×RGB-dimensional
vector quantizer to store these differences. However, this results in an
encoding time that is about twice as high as our final solution. Our
current implementation is based on two observations.

1. Quantizing twice the amount of (N− 2)/2×RGB vectors is al-
most twice as fast in our optimized implementation.

2. The difference between prediction and actual data is largest in
the middle, i.e., farthest away of the front and back slices.

Consequently, we split each (N − 2) × 3-dimensional vector into
two (N − 2)/2× 3-dimensional vectors denoted by u and v. u thus
spans slices 1 through and including (N− 2)/2, while v spans slices
(N − 2)/2+ 1 through and including N − 1. In order to ensure that
these two different vector sets exhibit similar data distributions over
their components (i.e., large values at large indices), we reverse the
component order of vector v. Even though the two slabs of slices are
now encoded using the same codebook, this method results in a no-
table color difference between slices (N − 2)/2 and (N − 2)/2 + 1.
This artifact can be reduced significantly by extending the distance
function to a weighted distance function between vectors,

∆(x,y) := ∑
i
(xi− yi)

2
ω

2
i , (1)

where x,y ∈ [0, . . . ,255]2 and ωi is the respective weight. The ωi may
thus be used to ensure additional sensitivity at the ‘end’ of each vector.
In our tests, we set the weights for slices (N−2)/2 and (N−2)/2+1
to 1.4 and the weights for slices (N−2)/2−1 and (N−2)/2+2 to 1.1.
All other weights are set to 1. These values were found empirically
and completely remove the aforementioned artifact for all of our test
cases. Note that using a weighted distance function does not introduce
an overhead to the decoding step since the weights are removed from
the codebook at the end of the encoding phase. This stage truncates
the components of the codebook to [−63,+64] and stores them in 8
bits each.

A minor drawback of this method is that it slightly decreases the
compression ratio since now twice the amount of indices have to be
generated. Still, we show in the results section that sufficient com-
pression rates at reasonable fidelity can be achieved. Inherently this
description assumed N to be even. If this is not the case, we include
the backmost slice in v, thereby actually encoding N−1 interior slices
instead of N−2.

Since padding tiles that do not comprise 512×512 pixels with ze-
ros introduces sharp boundaries, we provide special treatment for this
case. This is especially important due to the fact that the predictor step
will otherwise leak the padding into the data area, thereby compromis-
ing the achieved compression ratio. We therefore store the rectangle
covering the valid data explicitly with the encoded stack and replace
the color in the padded area with the slice average. While there ex-
ist better ways to resolve this issue, e.g., padding with local averages
or pixels from adjacent stacks, this minor modification is fast and re-
solves most of this issue for our test cases.

6.4 Automatic Bitrate Control

The bitrate can be chosen separately for each quantization step. Since
our vector quantizer starts with a single quantization bin and recur-
sively splits one bin into two, we simply stop refinement when a cer-
tain error threshold is met. We measure this threshold in terms of the
root-mean-squares error, rmse. For images that have a large homoge-
neous area and a small area with highly varying detail, however, this
simple thresholding is unfit. The reason is that the large homogeneous
area will guarantee a very low rmse although there might be very large
errors in the small, detailed area. Thus, we introduce a second thresh-
old that is based on an estimate of the maximum error. Providing a
precise maximum error is computationally expensive, since it has to
be completely recomputed after each recursive split, while the rmse
can be updated incrementally. Therefore, we estimate the maximum



error after each bin split as

ξmax ≈max(ξmax(bin1),ξmax(bin2))
rmseold

rmsenew
. (2)

This heuristic tries to estimate the maximum error in the remaining,
yet unsplit bins. It ensures that the codebook for image parts with
large, homogeneous regions is refined although its average error is be-
low the user-specified threshold. If the quantization bin responsible
for the maximum error also has the highest average error, the split lo-
cation and at least one of the new centroids are heavily dominated by
the vectors responsible for the maximum error. In this case, our es-
timate tends to over-estimate the true maximum error and therefore
results in a lower compression ratio than otherwise achieved, but en-
sures high image fidelity. Note, however, that if the bin to be split
does not contain the maximum error, we might substantially under-
estimate the maximum error. Still, this estimate works well in practice
and leads to a substantial improvement in image quality for those parts
that are largely homogeneous and contain only a few, highly varying
sections. Our conjecture is that the average error does in fact not de-
crease significantly until the quantization bin containing the outliers is
actually reached. While a rigorous mathematical examination of this
conjecture is beyond the scope of this paper, it is worth investigating
in the future.

If both of the user-specified thresholds are met, i.e., the maximum
and average error thresholds, we try to fill up available codebook slots
until the number of bins reaches the next power of two. The rationale is
to maximize the benefit of the index bitrate. If this is not possible, i.e.,
because we already represent the original data exactly, we append 0s to
the codebook until we reach the next power of two. This keeps address
calculations during decoding simple and thus ensures a faster decoding
step. Additionally, we limit the amount of quantization bins for each of
the four vector quantizers (32×32, 128×128, 512×512, and one for
the intermediate slices). Further details and rate-distortion diagrams
are provided in Section 7. Note that due to the 16-fold increase of
resolution between levels the total amount of information per level
increases. Consequently, we also increase the number of bins per level.
Figure 8 shows a some examples of an image stack compressed at
various bitrates. Recently, hybrid methods gained some attention [28].
Typically they start with a form of GPU-friendly encoding and use
the LZO library [31] as a CPU-sided companion encoder to further
increase the compression ratio. In our case, LZO compression resulted
in less than 10% increase of compression ratio, yet it added additional
latencies, so we chose to not pursue this direction further.

6.5 GPU-Based Decoding
Recent GPUs support bit arithmetic, hence the described compression
method can be decoded on a GPU almost in a straightforward way.
However, bitrates arising in our method are not a multiple of 8 and they
can vary from stack to stack and quantizer stage to quantizer stage.
The answer to this problem has traditionally been to pad entries to
bitsizes provided by texture formats [28]. By storing the compressed
data in buffers instead of textures, we are no longer bound by this re-
striction. The trade-off is that address computations have to be done
in the shader code, but the gain in compression ratio is typically worth
this minor drawback. We therefore store indices tightly packed fol-
lowed by the codebook, again tightly packed, for each level. Between
outputs of different quantizers, we pad to the next multiple-of-8-bit
address and store this entry point to the next quantizer output to speed
up address computations. These entry points are then directly fed to
the respective shader.

Reconstruction then reverses the encoding process. Recursive ex-
pansion is performed by storing the lower resolution image in the
appropriate level of a mipmapped texture. Computing the next finer
level utilizes bilinear interpolation hardware and writes to another
mipmapped render target. After the proper expansion has been per-
formed, we simply fetch indices and codebook entries from the buffer
and add the decoded details. Since we chose to organize the GPU
buffers with 16 Bit granularity (GL R16UI format), fetching a block
of up to k× 16 consecutive bits thus may require up to k + 1 16 bit

40.7 : 1
0.59 bpp
22.72 dB

Slice 1 Slice 9 Slice 16

27.3 : 1
0.88 bpp
24.89 dB

20.2 : 1
1.19 bpp
26.50 dB

16.1 : 1
1.59 bpp
27.75 dB

1.0 : 1
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uncompressed

Fig. 8. Visual fidelity at various bitrates. In each row, three slices at
a constant bitrate are depicted. In addition, a 10× nearest neighbor
zoom is shown for each image to demonstrate the high fidelity of our
compression even at compression ratios between 16:1 and 20:1.

memory accesses. With respect to decoding speed, this appears to be a
reasonable trade-off between lower granularity (less fetches, more data
per fetch) and higher granularity (more fetches, less data per fetch). If
the tile was padded, we clear the output texture with the desired back-
ground color and update only the valid data rectangle in the last update
step.

If only the first or last slice is to be decoded, the decoder does not
need to touch the data associated with the intermediate slices. If the
user desires to see an intermediate slice, both front and back slice have
to be decoded in addition to the differences encoded for the desired
slice. However, since all operations involved in the decoding step are
linear, we re-order these steps to speed up decoding.

First, linear interpolation along the stack’s depth is performed be-
fore recursive upscaling takes place, thereby eliminating the need to
expand two images. Secondly, since front and back slice are encoded
jointly, the codebooks contain information on the front and the back
slice at the same index. Consequently, it suffices to fetch the codevec-
tor and interpolate linearly between the respective components. There
is no need to ever reconstruct more than just the slice the user wishes
to see. Still, as detailed in Section 7, reconstructing intermediate slices
is somewhat more costly than reconstructing the front or back slice.

The storage layout is schematically depicted in Figure 9. The fig-
ure also displays an exemplary data set at intermediate stages of the
decoder.

7 RESULTS

7.1 Decoder Performance
Our decoder is implemented in OpenGL and uses hardware acceler-
ated bilinear fetches for the expansion filter. Decoding of a single front
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Fig. 9. Storage Layout of our decoder and exemplary data set at intermediate decoder stages(here, each slice was expanded to 512×512). After
some header information, pointers to three of the four vector quantizer outputs are stored. The output of each quantizer is split into indices (light)
and codebook (dark) and it is colored in a consistent hue. The first four stages decode the front- and backmost slice. The fifth stage adds details
to the intermediate slices.

or back slice takes about 0.55ms on an NVIDIA GeForce 285GTX
with 1 gigabyte dedicated video RAM. Decoding an interior slice takes
about 0.73ms. This corresponds to a decoding speed of 454M pixel/s
for front and back slices and 342M pixel/s for interior slices. The de-
coding speed is sufficient to power two full HD resolution displays or
one 4M pixel display at more than 80 frames per second. The time
provided here does not take into account the ability of our framework
to cache decompressed images in order to avoid frequent decoding.
The advantage of the proposed encoding method is its high compres-
sion ratio of more than 20:1 while at the same time maintaining a SNR
of more than 26.5dB. The high compression ratio is mainly achieved
by the fifth encoding stage that exploits the high coherence between
slices and the C1-continuous expansion between coding stages. How-
ever, it should be noted that this expansion consumes about 0.17ms
per slice or up to about 30% of the total decoding time. This is mainly
due to the fact that the implementation has to resort to ping-pong ren-
dering since reading one mipmap level while at the same time writing
at another one is not supported in OpenGL.

Encoding the first and last slices jointly is mainly motivated by the
fact that we can predict intermediate slices by interpolation, as op-
posed to extrapolation if other slices were used. Also, for our data, all
slices are reasonably focused and the inter-slice distance is very small.
For data that does not have this property, our compression approach
can still be used, but the bitrate to correct intermediate slices might be
slightly increased.

We have compared our compression scheme to the JPEG standard
and we generally observe that our compressor yields an SNR that is be-
tween 2dB to 3dB better than JPEG. However, we measured the SNR
in both cases directly and in RGB space, which does not do the per-
ceptual metric used for JPEG encoding justice. While images encoded
with our compressor and JPEG looked very similar, some mild ring-
ing artifacts in the JPEG version were detected while our compressor
tends to show blocking artifacts at low bitrates. The major advantage
of our compression scheme, however, is that it can be decoded on the
GPU, which is involved at least for JPEG, due to the entropy coder
used as a back-end in JPEG.

Figure 10 shows rate-distortion diagrams for one of our test data
sets comprising 16 slices. Color values are assumed to be in the in-
terval [0,255]. At 1.15bpp, we achieve an overall root-mean-squares
error (rmse) of 7.34 (averaged over all 16 slices). The slice with the
lowest distortion has an rmse of 5.73 and the one with the highest
distortion has an rmse 9.17. This corresponds to SNRs of 24.63dB,
26.57dB, and 28.88dB respectively. Encoding time for one stack
(512× 512× 16× RGB = 12MB of data) on a single core of a Xeon
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Fig. 10. Rate-distortion diagrams for a typical confocal microscopy data
set. Top left: root-mean-squares error over bitrate. Top right: represen-
tative part of the data set. Bottom left: SNR over bitrate. Bottom right:
Time to encode a single 512×512×16 stack over bitrate.

X5550 clocked at 2.66GHz took 3.75 seconds. This exemplary point
of the rate-distortion curve shows subjectively high image fidelity, as
attested by our users, and is reasonably fast to compress. Since we pro-
cess the data in disjoint stacks, the algorithm was trivially parallelized
using OpenMP. We achieved a speedup of 7.2× on a workstation with
two quad-core Xeon X5550. Clearly, the time required for encoding
the data can be hidden in the time it takes to measure the data set.

7.2 User Study
We have conducted an informal user study to assess the efficacy and
usability of the GPU-accelerated display-aware image viewer for dig-
ital pathology. Two experienced pathologists participated in the study.
We set up three tasks: (1) a qualitative comparison of the general 2D
browsing capability of our system and that of a widely used commer-
cial slide-image viewer system [29], (2) a qualitative comparison of
interactive focusing capabilities of the two viewer systems, and (3)
a quantitative measurement of the speed with which a diagnosis can
be made using the two viewer systems and using the traditional glass
slide-based approach.

For task 1 and 2, both users agreed that our system outperforms the
commercial viewer system. Specifically, interactivity and responsive-
ness are important factors affecting the pathologist’s workflow. Our



system can zoom, pan, and change focus on large images almost in-
stantaneously without noticeable lags that can affect the user’s perfor-
mance. A major complaint from both users was that the commercial
system constantly showed significant delays to load images for view
point changes. Importantly, the viewer software has an advantage over
a light microscope because the slide image appears perfectly in focus
at all times. When using a microscope, the pathologist must constantly
change focus while moving a slide or changing the microscope objec-
tive because of issues such as objectives not being par-focal or the slide
being slightly tilted. In this respect, the pathologists preferred using
our system because it closely mimicked the performance of a micro-
scope while also having the advantage of delivering a constantly sharp
image.

For task 3, the pathologists were able to reach a diagnosis about
30–50% faster using our system than using the commercial system.
However, they were able to render a diagnosis much faster using a
light microscope than using computerized tools. We attribute this to
the lack of training in the use of the viewer software and we expect
that the speed of diagnosis will improve with experience. In fact, the
users found it interesting to speculate how a highly efficient computer
tool may impact their workflow once it is adopted and used regularly
in clinical work.

The users provided positive feedback about the overall usability of
our system: “much less time waiting for image to reload”, “much more
intuitive to use”, “flexibility to zoom to exact magnification”, “very
close to driving slide by hand” were some of the comments we got.
In their opinion, a mouse and keyboard interface is inappropriate for
rapid inspection of slide images. With a more intuitive interface (e.g.,
a touch screen or a device that allows them to move their fingers as if
they are moving a glass slide) they are convinced our system could be
used for routine diagnostic work in their clinical setting.

To further demonstrate the flexibility and scalability of our display-
aware framework, Figure 11 shows a screenshot of our display-aware
framework rendering a 160 gigapixel electron micrographs.

7.3 Limitations
If the distance between object and viewer becomes too large, a given
view might eventually comprise all stacks of the coarsest-available
scale. Due to the vast amount of stacks and the large zoom range
handled by our framework, these stacks will also become smaller than
a single pixel on screen. Although one could argue that the users might
not be interested in these zooms anyway, we think of addressing this
issue in the future by merging coarse tiles on-the-fly. Assuming rea-
sonable zoom speeds, our prefetching and caching system will then
automatically alleviate the latencies arising during such an operation.

In this paper we did not address perceptual color spaces, since there
is no perceptual space readily available for the grayscale electron mi-
croscope data. However, the results of Ljung et al. [23] clearly show
the benefits of such metrics. Since these metrics do not impose any ad-
ditional demands on the decoder because color re-conversion to RGB
can be performed already in the encoding stage, we would like to ex-
plore such metrics in the future.

Users mildly criticized minor color differences that may arise be-
tween image stacks. These color differences are due to the fact that
image stacks are non-overlapping during encoding. Therefore, neigh-
boring stacks use disjoint codebooks that may fail in terms of perfect
color reproduction. In the future, we will try to resolve this issue by
providing the encoder with side-information on neighboring tiles (i.e.,
effectively provide an overlap between tiles that is removed after en-
coding).

8 CONCLUSIONS AND FUTURE WORK

We have presented a framework for digital biomedical histology. In
comparison to previous approaches, we remove the gap between ac-
quisition and analysis using a display-aware approach that seeks to
defer processing of image stacks until they are viewed by the user. To
avoid frequent re-computation of this deferred processing, the results
are cached and re-used during the next session. An important aspect
in the context of data archival is that we never touch the original data.

Fig. 11. A 160 gigapixel electron microscopy display stack rendered at
interactive framerates using our display-aware framework. This biologi-
cal image stack comprises 10 slices with 16 gigapixels each.

Instead, the originally measured data is only augmented with side in-
formation. This side information includes our compressed represen-
tation. Hence, we can always provide the user with an uncompressed
view of her or his data.

We provide pathologists with a viewer for biomedical image stacks
that for the first time combines the ability to interactively and rapidly
zoom, pan, and change focus in the same manner as the traditional
setup using a microscope. This is achieved by a novel variation on
predictive hierarchical vector quantization that can be fully decoded
on the GPU. Special attention was paid during the encoder design to
keep the compressor fast enough for this specific setting.

Given the raw floating point performance of today’s GPUs, it is
an interesting future direction to run (semi-)automatic segmentation,
classification, and filtering methods in a display-aware fashion—that
is, directly on the GPU and only for the currently visible part of the
data. This is particularly appealing as such operations can utilize the
functionality of the presented framework without changes.
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