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Abstract

An interactive image segmentation algorithm, which
accepts user-annotations about a target object and the
background, is proposed in this work. We convert user-
annotations into interaction maps by measuring distances
of each pixel to the annotated locations. Then, we per-
form the forward pass in a convolutional neural network,
which outputs an initial segmentation map. However, the
user-annotated locations can be mislabeled in the initial re-
sult. Therefore, we develop the backpropagating refinement
scheme (BRS), which corrects the mislabeled pixels. Ex-
perimental results demonstrate that the proposed algorithm
outperforms the conventional algorithms on four challeng-
ing datasets. Furthermore, we demonstrate the generality
and applicability of BRS in other computer vision tasks,
by transforming existing convolutional neural networks into
user-interactive ones.

1. Introduction
Interactive image segmentation is a task to separate a

target object (or foreground) from the background. A tar-
get object is annotated by a user in the type of bound-
ing box [51, 24, 42] or scribble [52, 11, 10, 25]. For the
bounding box annotation, a box is supposed to surround
a target. On the contrary, in the scribble-based interface,
foreground and background scribbles are drawn on fore-
ground and background regions, respectively. In general,
scribble-based algorithms yield more detailed object masks
than box-based ones do. In scribble-based algorithms, it is
important to extract an accurate mask of a target using fewer
scribbles.

Thanks to the release of large image datasets [23] and the
use of convolution layers, deep-learning-based algorithms
have been showing remarkable performances in segmen-
tation problems: semantic segmentation [13, 30, 35, 6],
saliency detection [29, 36], and object proposal [39, 38].
Most deep-learning-based segmentation algorithms exploit
convolutional neural networks (CNNs). In [35, 30, 29], the

encoder-decoder architecture [40] is used: deep features
are extracted from the encoders, and they are used to pre-
dict pixel-level segmentation or saliency labels in the de-
coders. The encoder-decoder architecture can provide reli-
able performances, since it can adopt well-trained encoders,
including AlexNet [23], VGGNet [44], GoogLeNet [48],
ResNet [15], and DenseNet [17]. In segmentation tasks, it
is important to achieve segments with accurate and detailed
boundaries. However, deep features from an encoder lose
most low-level details and have high-level (or semantic) in-
formation only [56]. To address this problem, [29, 39] adopt
skip connections that exploit intermediate output responses
of the encoders for improving segmentation qualities.

Backpropagation for activations1 is a process that con-
veys data through network layers backwardly. In [43, 46,
56, 58], backpropagation schemes have been developed to
visualize characteristics of neural networks. Also, texture
synthesis [8] and image style transfer [9] are performed via
backpropagation. They update activation responses back-
wardly, while freezing parameters, in the networks.

In this work, based on a backpropagation scheme, we
propose a novel interactive image segmentation algorithm,
which accepts user scribbles. To segment a target object, we
train a fully convolutional neural network. In the test phase,
we perform the forward pass in the proposed network us-
ing an input image and user-annotations. We also develop
the backpropagating refinement scheme (BRS), which con-
strains user-specified locations to have correct labels and
refines the segmentation result of the forward pass. To this
end, we define two energy functions: corrective energy and
inertial energy. We minimize a weighted sum of the two en-
ergies via backpropagation. Experimental results show that
the proposed BRS algorithm outperforms the conventional
algorithms [11, 10, 3, 52, 50, 2, 27, 26] on the GrabCut [42],
Berkeley [34], DAVIS [37], and SBD [12] datasets. Also,
we generalize BRS for various CNN-based vision tech-
niques to make them interactive with user-annotations. To
summarize, this work has three main contributions.

1This is different from the typical backpropagation for parameters,
which is used for training neural networks.
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Figure 1. Overview of the proposed algorithm: we perform this segmentation process again when a user provides a new annotation.

. Development of a CNN for interactive image segmen-
tation, which is fully convolutional.

. Introduction of the backpropagating refinement strat-
egy, which corrects mislabeled locations.

. Generalization of BRS, which can make existing
CNNs user-interactive without extra training.

2. Related Work

2.1. Interactive Image Segmentation

In interactive image segmentation, a target object is an-
notated roughly by a user and then is extracted as a bi-
nary mask. Interactive segmentation algorithms can be
categorized into box-interfaced or scribble-interfaced ones.
A box-interfaced one obtains the mask of a target object
within a given bounding box. On the other hand, a scribble-
interfaced one accepts foreground and background anno-
tations from a user. While a box-interfaced algorithm at-
tempts to obtain a one-shot segmentation result in general, a
scribble-interfaced algorithm allows a user to provide scrib-
bles several times until a satisfactory result is obtained.

Box-interfaced algorithms: Rother et al. [42] construct
Gaussian mixture models for foreground and background,
respectively, and then use the models in graph-cut optimiza-
tion to obtain a foreground mask. These processes are per-
formed iteratively until the convergence. To avoid these
iterations, Tang et al. [49] define a cost function that can
be minimized in a single pass of graph-cut optimization.
Assuming that user-provided bounding boxes are not too
loose, Lempitsky et al. [24] use the notion of box tightness
to prevent excessive shrinking of a target segment. Wu et
al. [51] over-segment an image into superpixels and gen-
erate the foreground and background bags for multiple in-
stance learning. The foreground bag consists of the super-
pixels inside a bounding box, and the background bag con-
tains the other superpixels.

Scribble-interfaced algorithms: Li et al. [25] compute the
distances from each pixel to foreground and background
seeds in terms of RGB colors and employ a graph-cut al-
gorithm to separate a target object from the background.

Grady [10] lets a random walker start at each pixel and finds
the first foreground or background seeds that the walker
reaches. Kim et al. [21] perform the random walk with
restart simulation to compute affinities between pixels. Gul-
shan et al. [11] propose a shape constraint for interactive
image segmentation and use geodesic distances from user
scribbles to pixels for energy minimization. Kim et al. [22]
generate various segmentation maps for an image, by em-
ploying different parameters, and then encourage pixels
within a segment to have the same label in the final result.
To alleviate user efforts, [47, 1] develop error-tolerant in-
teractive image segmentation algorithms. Recently, Xu et
al. [52] propose a deep-learning-based interactive segmen-
tation algorithm. They generate foreground and background
maps from user-annotations and concatenate them with an
input image to feed it into a CNN. The probability that
each pixel belongs to foreground is predicted by the net-
work. Liew et al. [27] refine a global prediction by com-
bining local predictions on patches that include pairs of
foreground and background clicks. Li et al. [26] produce
multiple hypothesis segmentations and select one using the
selection network. Maninis et al. [31] introduce an inter-
active segmentation algorithm that requires human annota-
tions on tight object boundaries. Song et al. [45] locates
foreground and background seeds to multiply annotations
automatically.

2.2. Backpropagation for Activations

In this section, we discuss backpropagation schemes that
update activation responses only while fixing parameters in
neural networks. Zeiler and Fergus [56] visualize charac-
teristics of each convolutional filter using DeconvNet [57],
which performs inverse processes of convolution, rectified
linear function, and max pooling. They discovered that,
while low-level features are extracted in shallow layers,
high-level ones are produced in deep layers. Springen-
berg et al. [46] propose the guided backpropagation strat-
egy, which produces sharper reconstructed images than [56]
does. Simonyan et al. [43] generate the appearance model
of each object class in an image classification task. They
find a regularized image to maximize a classification score,
by updating activation responses in the image classification
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Figure 2. Architecture of the proposed network for interactive image segmentation.

network. Yosinski et al. [55] develop visualization tools for
both convolutional filter reconstruction and class appear-
ance model generation. Also, Zhang et al. [58] estimate
an attention map by performing the probabilistic winner-
take-all backpropagation strategy in CNNs for image clas-
sification. Given a class, they discover rough locations
and shapes of corresponding objects in an image. Gatys et
al. [8] synthesize textures via backpropagation, by encour-
aging a newly synthesized texture to have the same Gram
matrix as an original texture. In [9], they also use back-
propagation for image style transfer.

3. Proposed Algorithm

The proposed interactive image segmentation algorithm
outputs a binary mask of a user-annotated object. It is a
scribble-interfaced method, requiring foreground and back-
ground clicks as annotations, which indicate expected labels
at the corresponding pixels.

Figure 1 is an overview of the proposed algorithm. Given
user-annotations, we first generate foreground and back-
ground interaction maps. Then, we feed the input image and
the interaction maps into a CNN, which yields a probability
map of a user-specified object. Even though the interaction
maps clearly represent the annotated labels in the clicked lo-
cations, the probability map may convey wrong information
at those clicked locations. Therefore, we force the clicked
locations to have the user-specified labels by employing the
proposed BRS. Finally, we obtain the segmentation mask of
the target object by performing the forward pass again.

We initiate this process when a user provides the first
click on a target object. Then, by taking into account the
segmentation result, the user may click a new location ei-
ther on the object or the background. Then, the proposed
algorithm is executed again to achieve more accurate seg-
mentation. Note that these two steps are conducted recur-
sively until the user stops clicking.

3.1. CNN for Interactive Image Segmentation

We perform interactive image segmentation using a
CNN, which accepts user-annotations. The user-annota-
tions are converted into interaction maps, as done in [52].
Specifically, the foreground and background interaction
maps are obtained, respectively, by computing the distance
of each pixel to the closest user-annotated foreground and
background pixels. We limit the maximum distances to 255.
Figure 1 includes examples of interaction maps.

Network architecture: The proposed CNN has the
encoder-decoder architecture [40] in Figure 2. As input, the
proposed network takes an image and two interaction maps
for foreground and background. We adopt DenseNet [17]
as the encoder to extract high-level features, as well as low-
level features. We use the extracted features by employ-
ing the skip connections, which have been used in many
image-to-image transition tasks [39, 41, 19]. Also, we add a
squeeze and excitation module [16] at the end of each dense
block.

We have a coarse decoder and a fine decoder. The two
decoders produce probability maps, whose elements have
high probabilities on target object regions. While we pre-
dict a rough segment of a target object in the coarse decoder,
the fine decoder improves its detail using low-level features.
The coarse decoder consists of four decoding blocks. Each
decoding block includes three convolution layers. After ob-
taining a coarse segment, we concatenate it with the input of
the network, and feed them into the fine decoder. In the fine
decoder, we use atrous convolutions [4] to expand receptive
fields at high resolution tensors. Each convolution layer is
followed by a parametric rectified linear unit [14] and batch
normalization [18], except for the prediction layers ‘Coarse
ConvP’ and ‘Fine ConvP.’ We employ the deconvolution
layers to restore the spatial resolutions of down-sampled
features to the original input image size. The output of the
proposed network is normalized to [0, 1] using the sigmoid
layer. We use 3× 3 and 1× 1 kernels in convolution layers.
Since the proposed network is fully convolutional, it does



(a) 3 FG / 0 BG (b) 2 FG / 2 BG (c) 5 FG / 3 BG

Figure 3. Examples of generated user-annotations for training. The
foreground and background annotations are depicted in red and
blue circles, respectively. Also, the ground-truth object masks are
highlighted in yellow.

not need to modify the spatial resolution or aspect ratio of
an input image for its segmentation.

Training phase: We use the SBD dataset [12] to train the
proposed CNN. It includes 8,498 training images. Around
each object instance, we randomly crop a 360 × 360 patch
to yield pairs of an image patch and its object mask. We
declare that the center pixel of a cropped patch belongs to
foreground in the object mask. We further augment the data
with horizontal flips.

Since user-annotations are not available in the SBD
dataset, we imitate them through a simple clustering strat-
egy. First, the numbers of foreground and background
clicks are determined randomly within [1, 10] and [0, 10],
respectively. Then, we set pixels in a ground-truth object
mask as foreground candidates. On the other hand, we set
background candidates to be at least 5 pixels and at most
40 pixels away from the boundaries of the ground-truth ob-
ject. By applying the k-medoids algorithm [20] on each set
of candidates, we find foreground and background medoids
and use them as foreground and background annotations, re-
spectively. Figure 3 exemplifies generated user-annotations.

We employ the cross-entropy losses between ground-
truth masks and inferred probability maps. Whereas the ini-
tial parameters of the encoder are from [17], we initialize
parameters in the decoders with random values. We train
the network via the stochastic gradient descent. While we
set the learning rate to 10−9 in the encoder, we set it to 10−7

for the decoders. A minibatch is composed of four train-
ing data. We first train the proposed network for 20 epochs
without the fine decoder. Then, we perform learning for
another 15 epochs with the fine decoder.

Inference phase: The proposed network accepts an image
and foreground and background interaction maps as the in-
put. Given user clicks, we first update the foreground and
background interaction maps by computing the distance of
each pixel to the nearest clicks. Then, we feed them into the
proposed network to yield a probability map of the target
object. We determine the locations, whose probabilities are
higher than 0.5, as the foreground.

Figure 4. Notations for the proposed network. The concatenated
zk(r)−1 and yr−1 are fed into a convolution layer fr .

3.2. Backpropagating Refinement Scheme

The forward pass of the proposed algorithm yields a de-
cent segmentation quality. However, it has a shortcoming
of being incapable of guaranteeing that clicked pixels have
user-annotated labels. In other words, even clicked pixels
may have incorrect labels in the segmentation result. There-
fore, we enforce them to be labeled correctly to achieve
more accurate segmentation. The proposed BRS performs
backpropagation iteratively until all clicked pixels have cor-
rect labels.

Let us first define notations for the proposed network.
In Figure 4, tensors yr−1 and zr−1 are concatenated, and
parameters θr and φr are used to obtain yr, which denotes
the responses of the rth layer in the network. Hence, y0, yR,
and z0 become an input image, the output of the network,
interaction maps, respectively, where R is the index of the
last layer in the fine decoder. Thus, yr can be formulated as

yr = fr(yr−1, zr−1, θr, φr). (1)

Note that this formulation can represent all convolution lay-
ers in the proposed network including the first layer and the
layers with skip connections.

Initial interaction maps, which are converted from the
user-annotations, may be imperfect for making the network
yield correct labels in user-annotated locations. The cor-
rection can be done by modifying initial interaction maps
or fine-tuning the network. However, the re-trained net-
work may lose the knowledge learned in the training phase.
Therefore, we choose to modify interaction maps, instead of
fine-tuning network. The goal of BRS is to assign correct
labels to user-annotated locations by optimizing interaction
maps z0. By combining a corrective energy EC and an iner-
tial energy EI, the energy function E(z0) of the interaction
maps z0 is defined as

E(z0) = EC(z
0) + λEI(z

0) (2)

where λ matches scale differences between the two ener-
gies, which is fixed to 10−3. Then, we find an optimal z0

by minimizing E(z0),

ẑ0 = argmin
z0
E(z0). (3)

The minimization of the corrective energy compels the
proposed network to yield correct labels in user-annotated



(a) User clicks (b) Initial (c) Before BRS (d) Ground-truth

(e) 5 iterations (f) 10 iterations (g) Convergence (h) After BRS

Figure 5. Foreground and background user-annotations are pre-
sented in red and blue dots in (a), respectively. An initial FG in-
teraction map in (b) is updated in (e), (f), and (g). Segmentation
results before and after BRS are in (c) and (h). The BG interaction
map is not shown due to limited space.

locations. We define the corrective energy as

EC(z
0) =

∑
u∈U

(
l(u)− yR(u)

)2
(4)

where U is the set of annotated pixels. Also, l(u) denotes
a user-annotated label, which is 1 for foreground and 0 for
background, and yR(u) is the output of the proposed net-
work. The derivative of the corrective energy can be com-
puted through a backpropagation technique. By employing
these backward recursive equations, we obtain the partial
derivative, ∂EC

∂z0 , of the corrective energy with respect to the
interaction maps.

The inertial energy prevents excessive perturbations of
the interaction maps, which is defined as

EI(z
0) =

∑
x∈N

(
z0(x)− z0i (x)

)2
(5)

whereN is the set of coordinates in the interaction maps, z0i
denotes the initial interaction maps used in the forward pass.
The inertial energy yields a high cost when the interaction
maps are different from their initial values. We compute the
partial derivative of the inertial energy with respect to the
interaction maps by

∂EI

∂z0
= 2×

∑
x∈N

(
z0(x)− z0i (x)

)
, (6)

which is easily obtainable at the input layer of the network.
We blend the derivatives of the corrective energy and the

inertial energy using the parameter λ in (2) as

∂E
∂z0

=
∂EC

∂z0
+ λ

∂EI

∂z0
. (7)

Finally, we minimize the energy function, by employing L-
BFGS algorithm [28], and obtain the optimal interaction

Kernels

Input image

(a) Baseline architecture

Input image

Interaction maps

Kernels

(b) Interactive architecture

Figure 6. Reconfiguration of a network architecture in the first con-
volution layer. The baseline architecture in (a) is transformed to
the interactive one in (b) by the training-free conversion scheme.

maps. Note that the forward pass and the backpropaga-
tion are performed alternately. Figure 5 shows how BRS
updates a foreground interaction map to correct mislabeled
pixels. Note that BRS considers the background user click
when modifying the foreground interaction map.

3.3. Generalization

We apply the proposed BRS to the well trained network
with the interaction maps. However, we can employ BRS
for general networks that are not trained with interaction
maps. Note that the recursive backpropagation computa-
tions in (4) are still applicable, even when the architecture
of a network (e.g. the number of convolution layers and skip
connections between the encoder and the decoder) is differ-
ent from that of the proposed network. Based on this gener-
ality, we show that BRS can transform existing CNNs into
user-interactive ones without extra training.

The development of interactive algorithms requires time
and expertise for training, in terms of composition of train-
ing data, network architectures, and hyperparameters. Also,
even though interactive algorithms are trained successfully,
they often yield inferior results compared to non-interactive
algorithms when user interactions are not given.

We develop a training-free conversion scheme to over-
come these issues. Given a baseline network, we reconfig-
ure its architecture at the first convolution layer, as shown
in Figure 6. In addition to an input image, we also use in-
teraction maps. As input, we concatenate the image and the
maps, which share the same weight parameters in the first
convolution layer. Then, we can perform BRS in the recon-
figured network to achieve interaction. Notice that the net-
work needs no additional training. Moreover, it yields the
same output as the original algorithm, when the interaction
maps are filled with zeros. Applications of the training-free
conversion will be shown in Section 4.

4. Experimental Results
We evaluate the performance of the proposed interac-

tive image segmentation algorithm on four datasets: Grab-
Cut [42], Berkeley [34], DAVIS [37], and SBD [12]. The
GrabCut dataset [42] has 50 images for assessing interactive
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Figure 7. Comparison of the average IoU scores according to the number of clicks on the GrabCut [42], Berkeley [34], DAVIS [37], and
SBD [12] datasets. The legend contains the AuC score for each algorithm. An ablation study of the proposed algorithm is also in (e).

image segmentation algorithms. It provides a single object
mask for each image. The Berkeley dataset [32] consists
of 200 training images and 100 test images. We use 100
object masks on 96 test images, provided by [34]. Thus,
some images have more than one object masks. The DAVIS
dataset [37] is for benchmarking video object segmentation
algorithms. Even though they are composed with video se-
quences, we can use their individual frames to evaluate in-
teractive image segmentation methods. The dataset have
50 videos with high quality segmentation masks. We ran-
domly sample 10% of the annotated frames as done in [26].
In total, 345 images are used in the evaluation. The SBD
dataset [7], for evaluating object segmentation techniques,
is divided into a training set of 8,498 images and a valida-
tion set of 2,820 images. Note that we use the training set to
train the network in Section 3.1. Therefore, we use the vali-
dation set, which includes 6,671 instance-level objet masks,
for the performance evaluation.

We use two performance measures, as in [29]. First, we
compute the mean intersection over union (IoU) score ac-
cording to the number of clicks and its area under curve
(AuC). When computing AuC, we normalize the area to be
within [0, 1]. Second, we adopt the NoC metric, which is
the mean number of clicks required to achieve a certain IoU.
We set the target IoU score as 90%.

To compare interactive segmentation algorithms fairly,

we use the same clicking strategy as done in [26, 52]. In
general, a user first decides the type of an annotation (i.e.
foreground or background) by finding the dominant type
of prediction errors. Thus, the clicking strategy counts the
numbers of false foregrounds and false backgrounds, re-
spectively. It chooses a background annotation if there are
more false foregrounds, and a foreground annotation oth-
erwise. Also, a user tends to click a location around the
center of false predictions. Hence, the clicking strategy de-
termines a pixel to click, which is far from the boundaries of
false predictions. The maximum number of clicks is limited
to 20 in all experiments.

Figure 7(a)∼(d) compares the proposed algorithm with
eight conventional algorithms: graph-cut (GC) [3], geodesic
matting (GM) [2], random walk (RW) [10], Euclidean star
convexity (ESC) [11], geodesic star convexity (GSC) [11],
Growcut (GRC) [50], deep object selection (DOS) [52], re-
gional image segmentation (RIS) [27], and segmentation
with latent diversity (LD) [26]. Note that the scores are from
[26, 27]. We report two versions of the proposed algorithm
using different backbone networks: BRS-VGG and BRS-
DenseNet. The proposed BRS outperforms all conventional
algorithms on all four datasets, with a single exception of
LD [26] on the GrabCut dataset.

Table 1 reports the NoC 85% and 90% indices, the mean
numbers of clicks required to achieve the 85% and 90%



Table 1. Comparison of NoC 85% and 90% indices on the GrabCut [42], Berkeley [34], DAVIS [37], and SBD [12] datasets. The best and
the second best results are boldfaced and underlined, respectively.

GrabCut Berkeley DAVIS SBD
Algorithm 85% 90% 90% 85% 90% 85% 90%

GC [3] 7.98 10.00 14.33 15.13 17.41 13.60 15.96
GM [2] 13.32 14.57 15.96 18.59 19.50 15.36 17.60
RW [10] 11.36 13.77 14.02 16.71 18.31 12.22 15.04
ESC [11] 7.24 9.20 12.11 15.41 17.70 12.21 14.86
GSC [11] 7.10 9.12 12.57 15.35 17.52 12.69 15.31
GRC [50] - 16.74 18.25 - - - -
DOS [52] 5.08 6.08 8.65 9.03 12.58 9.22 12.80
RIS [27] - 5.00 6.03 - - - -
LD [26] 3.20 4.79 - 5.95 9.57 7.41 10.78

BRS-VGG 2.90 3.84 5.74 - - - -
BRS-DenseNet 2.60 3.60 5.08 5.58 8.24 6.59 9.78

Figure 8. Segmentation results of the proposed algorithm. The
segmented object masks are highlighted in yellow masks. Fore-
ground and background user-annotations are depicted in red and
blue dots, respectively.

IoU scores, respectively. The proposed algorithm requires
much fewer clicks than the conventional algorithms, which
indicates that the proposed algorithm yields accurate object
masks with less user efforts. While the proposed algorithm
is comparable to LD [26] in terms of AuC, BRS outper-
forms LD in both NoC 85% and NoC 90% measures sig-
nificantly. This means that even though LD outputs precise
segmentations, it has more failure cases than BRS does.

Figure 8 shows segmentation results of the proposed al-
gorithm. It is observable that the proposed algorithm delin-
eates target objects precisely and robustly. It segments out
even small objects well. Also, it yields object masks with
accurate boundaries, even when the colors of a target object
and its background are similar. We provide more segmenta-
tion results in the supplementary materials.

Ablation study: We analyze the efficacy of each compo-
nent in the proposed algorithm, by performing three abla-
tion studies on the GrabCut and Berkeley datasets. First, we
measure the performance of the proposed algorithm when
only the forward pass is executed. Second, we do not em-
ploy the fine decoder. Third, we apply BRS without the
fine decoder. Let us refer to the first, second, and third set-
tings as ‘FD,’ ‘w/o FD,’ and ‘w/o FD + BRS.’ Table 2 lists

Table 2. NoC 85% and 90% indices of the proposed algorithm in
various settings.

GrabCut Berkeley
Setting NoC 85% NoC 90% NoC 85% NoC 90%

FD 4.12 6.12 5.33 7.65
w/o FD 14.34 17.4 17.80 19.63

w/o FD + BRS 6.60 10.28 10.09 15.30
FD+BRS 2.60 3.60 3.16 5.08

the NoC 85% and 90% indices. In all results, the perfor-
mances are degraded severely, which indicate that the pro-
posed BRS and the fine decoder are essential for accurate
interactive image segmentation. Figure 7(e) also shows that
the performance of the proposed BRS is much better than
the other ablated settings.

Moreover, we report the accuracy for each ablation set-
ting by calculating the average ratio of correctly labeled pix-
els over user-annotated locations on the images in the Grab-
Cut and Berkeley datasets. Figure 9 plots the accuracy in
terms of the number of clicks. Note that BRS makes the net-
work yield correct labels at user-annotated locations. Also,
there is a significant improvement in the ‘w/o FD + BRS’
setting compared to the accuracy of ‘w/o FD.’ It means that
the proposed BRS can correct labels at user-annotated loca-
tions regardless of the performance of networks.
Running time analysis: We measure the average compu-
tational time of the proposed algorithm in seconds per click
(SPC). We test it on the DAVIS dataset [37] using a PC with
an Intel i7-5820K 3.30 GHz CPU and a Titan X GPU. The
proposed algorithm runs in 0.81 SPC, which is fast enough
for practical usage. A realtime demo of the proposed algo-
rithm is available in the supplementary video. Figure 10
plots how the computation time varies as the number of
clicks increases. The complexity is acceptable even when
a large number of clicks are given.

Applications of the training-free conversion: To demon-
strate the generality and the versatile applicability of BRS,
we apply the training-free conversion scheme in Section 3.3
to three vision tasks: semantic segmentation, saliency de-
tection, and medical image segmentation.



2 4 6 8 10 12 14 16 18 20

Number of clicks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
c
c
u

ra
c
y

FD

w/o FD

w/o FD + BRS

FD+BRS

Figure 9. Comparison of accuracy curves. An accuracy is defined
as the average ratio of correctly labeled pixels over user-annotated
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Figure 10. Computation time according to the click number.

Table 3. The average accuracy of the interactive FCN according to
the number of clicks.

# of clicks Baseline 1 2 3 4 5
Avg. acc. (%) 65.4 70.9 72.5 73.5 74.0 74.4

First, we use FCN [30] as a baseline semantic segmen-
tation algorithm. A user annotates a label on a single pixel,
which indicates its class, such as aeroplane, bicycle, and
bird. We evaluate this interactive FCN on the validation set
in the PASCAL VOC 2012 dataset [7]. Table 3 lists average
accuracies according to the number of clicks. The perfor-
mance is significantly improved even with a small number
of user-annotations.

Second, for saliency detection, DHSNet [29] is used
as a baseline network. As an annotation, a binary label
of being salient or non-salient is used to correct a mis-
labeled location. We use three datasets: ECSSD [53],
DUT-OMRON [54], and MSRA10K [5]. Figure 11 shows
the precision-recall curves of the interactive DHSNet in
terms of the number of clicked locations on the ECSSD
dataset. It is observable that, with BRS, DHSNet pro-
vides better saliency detection performance by accepting
user-annotations. Due to the page limitation, we report the
performance of the interactive DHSNet on the other two
datasets in the supplementary document.

Third, U-Net [41] is a well-known medical image seg-
mentation algorithm. It segments out cells from the back-
ground. We assess the performance of the interactive U-Net
on the test sequences in the PhC-U373 dataset [33]. Since
ground-truth segmentation maps are unavailable, we extract
them manually. Table 4 reports the average IoU scores ac-
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Figure 11. Comparison of the precision-recall curves of the inter-
active DHSNet, according to the numbers of annotations, on the
ECSSD [53] dataset. A legend includes the maximum F-score for
each algorithm.

Table 4. Average IoU scores and gains according to the number of
clicks. An IoU gain is measured on annotated cells only.

# of clicks Baseline 1 2 3 4 5
Avg. IoU (%) 88.2 88.9 89.1 89.4 89.5 89.6
Avg. gain (%) - 3.6 1.8 0.8 1.3 0.3

cording to the numbers of annotations. For a focused analy-
sis, we also measure the average IoU gains on only the cells
including annotated locations. The interactive U-Net yields
better segmentation qualities when more clicks are given.
To summarize, the training-free conversion, based on the
proposed BRS, can convert various CNN-based vision al-
gorithms into interactive ones effectively and easily.

5. Conclusions
We proposed a novel interactive image segmentation al-

gorithm. First, a user-annotation is transformed into interac-
tion maps. Then, the proposed network yields an initial seg-
mentation result. We perform BRS to enforce user-specified
locations to have correct labels. Experiments demonstrated
that the proposed algorithm outperforms the conventional
algorithms [11, 10, 3, 52, 50, 2, 27, 26] on the GrabCut
[42], Berkeley [34], DAVIS [37], and SBD [12] datasets.
Moreover, we generalized BRS to make CNN-based tech-
niques interactive with user-annotations. We showed that
the training-free conversion scheme can be successfully
applied to semantic segmentation, saliency detection, and
medical image segmentation.
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