Interactive Large-scale Image Editing using Operator Reduction

Manhee Lee
Inha University

Figure 1: Overview of the editing system. Red rectangles are edit-
ing operators. Blue rectangles are visible regions in different zoom
levels and view points.

With advent of advances in digital imaging technology, large-scale
high-resolution images become commonplace these days. Auto-
mated digital cameras or scientific instruments can produce tens of
millions pixel images at interactive rates, and modern photo edit-
ing software can stitch such high-resolution images to create much
larger-scale panoramic images with minimal user efforts. Those
large-scale images convey rich information of objects and scenes by
providing both large field-of-view when zoomed out and extremely
fine details when zoomed in, which is not available in normal-sized
images. In addition, such high-resolution imaging is becoming an
important research tool for scientific discoveries [Jeong et al. 2009].

In this poster, we introduce our on-going work on developing ac-
celeration techniques for interactive editing of large images. Our
method is inspired by the previous work [Jeong et al. 2011]. The
major limitations of [Jeong et al. 2011] is that the computational
complexity depends on the number of overlapping editing opera-
tors, and some editing operators, e.g., push-pull blending or stitch-
ing, still depend on the local multi-resolution data hierarchy for fast
computation. To address these problems, we propose a novel oper-
ator reduction technique that can reduce multiple editing operators
to a single operator, using the domain subdivision method with a
GPU-friendly image editing pipeline.

Editing System Overview In our system, the input image, edit-
ing operators, and the current visible region are defined as axis-
aligned rectangles, i.e., 2D bounding boxes (Fig 1). The size, loca-
tion, and scale (i.e., level) of the editing operator is defined when it
is created. If the user changes the view point, e.g., zooming or pan-
ning, then the location and the size of the viewing bounding box
is changed accordingly (Fig 1 blue rectangles). The final image
on the display is generated on-the-fly by applying the operators to
the visible portion of the base image. Note that the visible portion
of the image can be quickly retrieved from the image repository
(tile-based, multi-resolution image data hierarchy), but the editing
is done on-the-fly on a currently displayed screen-sized image.

Subdivision of the Image Domain A naive approach to apply
editing operators to the current viewing region is finding all the in-
tersected operator bounding boxes with the viewing bounding box
and apply them in a temporal order (i.e., the order of the creation
of operators). One drawback of this approach is that the computa-

Copyright is held by the author / owner(s).
SIGGRAPH Asia 2011, Hong Kong, China, December 12 — 15, 2011.
ISBN 978-1-4503-0807-6/11/0012

Won-Ki Jeong
UNIST

Hanspeter Pfister
Harvard University

tion time increases linearly as the number of overlapped operators
increases. However, our proposed system can optimize the process
by grouping multiple operators to a single operator, we call it oper-
ator reduction. The requirement for the operator reduction is that
the location and size of the operators should be identical, which is
not feasible in practice. To fulfill the requirement for the operator
reduction, we propose a method that subdivides the image domain.
The main idea of this approach is that instead of storing a bounding
box for an editing operator explicitly, we assign the operator to a
subset of the subdivision of the image domain. In this setup, the
input domain is composed of a set of non-overlapping 2D bound-
ing boxes where each box manages an operator list to keep track of
editing operations applied to the corresponding region.

Reduction of Editing Operators As discussed in the previous
section, multiple operators can be assigned to a single bounding
box. For a certain class of operators, a set of successive operations
can be combined and expressed as a single operation. A simple ex-
ample is the paint brush. A paint brush operator blends the paint
color with the background color using some weight factors. When
two paint brush strokes are overlapped, we can convert two paint
brush operators into a single paint brush by creating a new paint
brush with the blended color. For complicated operators, we con-
vert the operator to an approximated linear operator for speeding
up. For example, the Poisson blending, we first compute the solu-
tion of Poisson equation solver, and then convert the blended image
to the base (original) image and the detail image. That means, if
the user changes zoom levels or view points, the Poisson blending
operator does not need to re-calculate the solution but add the detail
map to the currently visible image.

GPU Acceleration of Editing Operators In addition to the op-
eration reduction, each editing operator can be further accelerated
using the GPU. Most editing operators we implemented are GPU-
friendly because pixel values can be calculated in parallel without
accessing their neighbor pixels. Therefore, we implement each op-
erator as a shader subroutine, and each bounding box is a GPU ker-
nel that calls the corresponding shader code. To speed up the Pois-
son blending operator, we implement a GPU multi-grid Conjugate-
Gradient Poisson equation solver. We used a compressed sparse
row data structure to store sparse matrix, and sparse matrix-vector
multiplication is done by using CUSPARSE and CUBLAS library.

Preliminary Results We tested our prototype editing system on
an Windows PC equipped with an NVIDIA GeForce GTX 480
GPU. We are able to apply up to 50 editing operators at a rate of 30
frames per second on a 1920 x 1200 sized screen independent from
the input image size.

References

JEONG, W.-K., BEYER, J., HADWIGER, M., VAZQUEZ-REINA, A., PFIS-
TER, H., AND WHITAKER, R. T. 2009. Scalable and interactive seg-
mentation and visualization of neural processes in EM datasets. IEEE
Trans. Vis. Comp. Graph. 15, 6.

JEONG, W.-K., JOHNSON, M. K., YU, I., KAUTZ, J., PFISTER, H., AND
PARIS, S. 2011. Display-aware image editing. In International Confer-
ence on Computational Photography, 1-8.



