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Automated sample preparation and electron microscopy enables acquisition of very large image data
sets. These technical advances are of special importance to the field of neuroanatomy, as 3D reconstruc-
tions of neuronal processes at the nm scale can provide new insight into the fine grained structure of the
brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the analysis of
these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction perfor-
mance while scaling to data sets in the GB-TB range. First, we train a random forest classifier on interac-
tive sparse user annotations. The classifier output is combined with an anisotropic smoothing prior in a
Conditional Random Field framework to generate multiple segmentation hypotheses per image. These
segmentations are then combined into geometrically consistent 3D objects by segmentation fusion.
We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate
large-scale 3D reconstructions of neuronal processes from a 27;000 lm3 volume of brain tissue over a
cube of 30 lm in each dimension corresponding to 1000 consecutive image sections. We also introduce
Mojo, a proofreading tool including semi-automated correction of merge errors based on sparse user
scribbles.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Brain imaging modalities such as diffusion tensor MRI or func-
tional MRI provide important information about the brain and the
connectivity between brain regions (Seung, 2012). However, at a
resolution of a cubic millimeter per voxel they provide little data
about connectivity between individual neurons. Information about
the anatomy and connectivity of neurons can provide new insights
into the relation between the brain’s structure and its function
(Marc et al., 2013; Helmstaedter and Mitra, 2012; Denk et al.,
2012; Lee and Reid, 2011; Seung, 2009). Such information may
provide insights into the physical underpinnings of common ser-
ious disorders of brain function such as mental illnesses and learn-
ing disorders Kuwajima et al. (2013b), Penzes et al. (2011).
Furthermore, information about the individual strength of
synapses or the number of connections between two cells has
important implications for computational neuroscience and theo-
retical analysis of neuronal networks (Valiant, 2006). As the
resolution of light microscopy is generally limited by diffraction,
electron microscopy (EM) is a better imaging modality to resolve
the brain at the level of synapses and thus provides insight into
the anatomy and connectivity of neurons at nm resolution. To
reconstruct the neuronal circuit at the level of individual cells,
the field of neuroanatomy faces the challenge to acquire and ana-
lyze data volumes that cover a brain tissue volume large enough to
allow meaningful analysis of circuits and detailed enough to detect
synapses and thus the connectivity structure of the circuit.
Recently, significant progress has been made in the automation
of sample preparation (Hayworth et al., 2006) and automatic image
acquisition (Kuwajima et al., 2013a; Bock et al., 2011; Knott et al.,
2008; Denk and Horstmann, 2004) for electron microscopy. These
techniques allow neuroscientists to acquire large datasets in the
GB-TB range. Briggman and Bock (2012) provide an overview of
different sample preparation and electron microscopy techniques
used for Connectomics. With a resolution of 5 nm per pixel, and
a section thickness of 50 nm, one cubic millimeter of brain tissue
results in 20,000 sections with 40 Gigapixels per image, leading
to an image volume of 800 TB. For comparison, this volume corre-
sponds to the size of one voxel in an fMRI data set. With data sets
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this size, manual analysis is no longer feasible, leading to new chal-
lenges in automated analysis and visualization.

In this paper we present a pipeline for semi-automated 3D
reconstruction of neurons from serial section electron microscopy
images. The pipeline is designed to address large data sets, while
reducing user interaction to the initial training of a random forest
classifier on manually annotated data and computer aided proof-
reading of the automatic reconstruction output. Our experiments
demonstrate that the proposed pipeline yields state-of-the art
reconstruction results, based on sparse annotations of only ten
EM images ð1024� 1024 pixelsÞ. We provide quantitative evalua-
tion for each step of the pipeline and an example of a reconstructed
volume of 27; 000 lm3, which to our knowledge is the largest vol-
ume of conventionally stained mammalian brain tissue recon-
structed automatically (see Fig. 1).

Some of the work in this paper has been previously published
(Kaynig et al., 2010a; Vazquez-Reina et al., 2011; Roberts et al.,
2011). However, this is the first time we publish the complete
reconstruction pipeline and its application to large data.
Specifically the novel contributions in this paper are:

� We demonstrate that interactively training a random forest
classifier for membrane detection not only reduces the manual
annotation effort, but leads to significantly better cell region
segmentations measured in terms of variation of information
against manual annotated data.
� We combine the cell region segmentation of Kaynig et al.

(2010a) with the segmentation fusion of Vazquez-Reina et al.
(2011) into a consistent pipeline leading to long-range recon-
structions of neuronal processes over 30 lm of brain tissue
(up to 1000 image sections).
� We extend the segmentation fusion approach to allow for

branching structures.
� We enable parallel processing of sub volumes via a pairwise

matching scheme of segmented blocks into one consistent
reconstruction volume.
� We provide large-scale reconstruction results covering a vol-

ume of 27;000 lm3. To our knowledge we are the first to
achieve automatic reconstructions of individual spine necks in
anisotropic serial section electron microscopy data prior to
manual proofreading.
� Finally, we introduce Mojo, a semi-automated proofreading

tool, utilizing sparse user scribbles as described by Roberts
et al. (2011) to correct for merge errors in the 3D
reconstruction.
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Fig. 1. We propose a pipeline to automatically reconstruct neuronal processes from
large-scale electron microscopy image data. The target volume consists of 1000
images with a size of 5120� 5120 pixels, corresponding to 27;000 lm3 of
mammalian brain tissue. With 8 bits per pixel, the full data volume is 25 GB in size.
2. Related work

Automated reconstruction of neuronal processes has received
increased attention in recent years. With electron microscopy
techniques acquiring large volumes automatically, automated
analysis is becoming the major bottleneck in gaining new insights
into the functional structure of the brain at nm scale. The task to
reconstruct the full neuroanatomy including synaptic contacts is
referred to as connectomics in the literature (Lichtman and Sanes,
2008). A number of software packages have been developed to
aid the user in manual annotation of the images (Helmstaedter
et al., 2011; Cardona et al., 2010; Fiala, 2005). A complete overview
of the different tools and their strength and limitations is provided
by Helmstaedter and Mitra (2012). In addition, semi-automatic
methods have been developed to facilitate the manual seg-
mentation process (Roberts et al., 2011; Sommer et al., 2011;
Straehle et al., 2011; Chklovskii et al., 2010; Vazquez-Reina et al.,
2009).

In the area of fully automatic neuron reconstruction, significant
improvement has been made for the segmentation of isotropic
image data using a special staining method to facilitate the seg-
mentation (Andres et al., 2012b; Andres et al., 2012a; Turaga
et al., 2010; Andres et al., 2008; Jain et al., 2007). While these
methods yield good performance for long range reconstructions,
they sacrifice the staining of biologically relevant internal cell
structures like vesicles or mitochondria to simplify the seg-
mentation problem. Without staining these cell organelles, identi-
fication of synapses relies entirely on geometrical features, like the
apposition of spines and boutons. daCosta and Martin (2011) have
shown that geometrical features are not sufficient to identify
synapses. In this paper we provide long range reconstructions with
conventional osmium stained images, preserving all structural
information for biological analysis of the data, such as synapse
identification or automatic mitochondria reconstruction (Lucchi
et al., 2012; Giuly et al., 2012).

While isotropic volume data enables the direct use of 3D seg-
mentation methods for reconstruction, the microscopy techniques
for these volumes are either limited in resolution to 30 nm voxels
(Denk and Horstmann, 2004) or in the field of view to 20 lm2

(Knott et al., 2008). Serial section imaging is the only technique
to record data volumes of millions of cubic micrometers (Bock
et al., 2011). The tissue sample is cut into ultra thin sections of
30 nm and each section is imaged with an electron microscope
typically at a resolution of 3–5 nm per pixel. The z resolution of
the resulting data volume is limited to 30 nm leading to an aniso-
tropic data volume. An interesting work by Hu et al. (2013) aims at
enhancing the z resolution by leveraging tomographic projections,
but acquiring the necessary tilt images so far has not been auto-
mated for large-scale image acquisition.

Automatic neuron reconstruction methods for anisotropic serial
section data typically focus on segmenting 2D neuronal regions in
the high resolution images (Knowles-Barley et al., 2011; Jurrus
et al., 2010; Kaynig et al., 2010a) or on grouping 2D regions across
multiple sections into 3D neuronal processes (Funke et al., 2012;
Vitaladevuni et al., 2010; Kaynig et al., 2010b; Jurrus et al.,
2008), though some work also addresses both steps, the region seg-
mentation and the grouping across sections together (Vazquez-
Reina et al., 2011; Chklovskii et al., 2010; Mishchenko, 2009). To
our knowledge Chklovskii et al. (2010) describe the only pipeline
so far that addresses large-scale reconstructions in the order of
thousands of lm3. They divide the original large EM data volume
into biologically relevant sub volumes of about 3000 lm3 which
are then segmented and reconstructed. In this paper we demon-
strate successful segmentation of a volume that is nine times larger
than the result shown by Chklovskii et al. (2010). Our experiments
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also demonstrate that the employed CRF framework yields better
neuronal region segmentations than their use of watersheds, lead-
ing to a reduction in proofreading effort.
3. Overview

We now provide an overview of our reconstruction workflow
(see Fig. 2), as well as evaluation metrics for neuron segmentation
and the data sets used for all experiments throughout this paper.

3.1. Workflow

For automatic segmentation methods, serial section imaging is
challenging, as the resulting image data is highly anisotropic.
While the xy image resolution for each section is only limited by
the resolution of the microscope, the z-resolution is limited by
the section thickness of about 30 nm. For our pipeline we assume
that the image data has been previously aligned. While registration
and alignment for large electron microscopy stacks is a topic of
ongoing research (Wang et al., 2014; Saalfeld et al., 2012), it is
not the focus of this paper.

Fig. 2 provides an illustration of the entire workflow. The first
part of the pipeline concentrates on the 2D segmentations of the
high resolution section images. We first train a random forest clas-
sifier on interactive manual annotations for membrane detection.
Then, we generate multiple segmentation hypothesis per section
based on the classification output. Our experiments demonstrate
that thresholding the membrane probability map at different inter-
vals combined with anisotropic smoothing in a conditional random
field (CRF) framework is superior to watershed segmentations of
the membrane probability map (Kaynig et al., 2010a). We modified
Fig. 2. Illustration of our complete workflow for large-scale neuron reconstruction. Fir
membranes in the images. Then we generate multiple region segmentation hypothe
geometrically consistent segmentations across multiple sections. Finally, a manual proo
the original anisotropic smoothing prior to emphasize the impor-
tance of the membrane probability map over the original gray
value images, leading to an improvement in segmentation
performance.

Subsequently, we leverage the previously obtained 2D seg-
mentations and group these into geometrical consistent 3D objects
using segmentation fusion (Vazquez-Reina et al., 2011). This step is
especially challenging for large data sets, as geometrically consis-
tency requires context information across multiple sections. We
reduced the number of features used to measure region similarity
to streamline the fusion computation. In addition, we extend the
original segmentation fusion model (Vazquez-Reina et al., 2011)
to allow for the reconstruction of branching structures. We evalu-
ate the fusion step of the pipeline and compare bipartite matchings
of globally optimal groupings of sub volumes with a greedy
optimization scheme.

In the final step, the segmentation output has to be proofread
by a user, to ensure correct geometries. As fully manual proofread-
ing is labor-intensive and practically unfeasible for large volumes,
we introduce Mojo, a semi-automatic proofreading tool, that lever-
ages sparse user scribbles to correct merge errors in the automatic
segmentation (Roberts et al., 2011).
3.2. Evaluation measure

There are two types of errors: split errors and merge errors. In
2D segmentation, a split error refers to a single region being split
into two or more regions in the segmentation due to false positive
cell boundary detections. A merge error is caused by a gap in the
segmented cell boundaries, leading to separate regions being
merged into one region in the automatic segmentation. Both errors
st, a random forest classifier is trained by interactive sparse annotations to detect
ses per section. Subsequently, we find the three dimensional reconstructions as
freading step ensures accurate reconstructions of neuronal processes of interest.
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can also occur during region grouping in 3D. Missing a branch, for
example, can lead to a split error, whereas merging branches incor-
rectly can merge two different neural processes into one object.

The quality of segmented regions does not directly correlate
with boundary detection performance. A small number of false
negatives in the boundary detection can lead to merged regions
and thus large errors in the underlying segmentation, whereas
false positives can be neglectable as long as they do not introduce
a new region to the segmentation. To account for this difference,
region-oriented segmentation tasks can be evaluated using cluster-
ing evaluation measures. The idea is that pixels with the same label
form a cluster. The whole segmentation can then be compared to
the pixel clustering obtained from the manual annotation. Rand
Index (RI) and Variation of Information (VI) are two clustering
evaluation measures that have been employed to evaluate region
segmentation performance (Arbeláez et al., 2011). Both measures
are invariant to label permutations. The main difference between
VI and RI in the context of Connectomics is that VI is less sensitive
to region sizes and rescaling, and therefore correlates better to
proofreading effort than RI (Nunez-Iglesias et al., 2013). Thus, we
measure the quality of our segmentation by comparing it to a man-
ual annotation using variation of information.

In contrast to the Rand index, variation of information estab-
lishes a metric in segmentation space (Meila, 2007) with lower val-
ues capturing segmentations that are closer to each other. The
variation of information metric is based on information theory
and compares two segmentations S1 and S2 based on their entropy
H and mutual information I:

VIðS1; S2Þ ¼ HðS1Þ þ HðS2Þ � 2IðS1; S2Þ: ð1Þ

Entropy H measures the randomness of the segmentation, and
mutual information I measures the information that the two seg-
mentations share. Eq. (1) can be rewritten as
VIðS1; S2Þ ¼ HðS1jS2Þ þ HðS2jS1Þ, thus, variation of information mea-
sures how much new information is obtained from one seg-
mentation given that we have seen the other segmentation. All
variation of information scores reported in the paper are computed
using natural logarithms and hence are given in nats.

Variation of Information can be computed efficiently and is
defined for arbitrary dimensions. Thus, the same evaluation criter-
ion can be employed to evaluate the 2D region segmentations as
well as the 3D region grouping step of our pipeline.

As drawing of cell boundaries requires more precision than
clicking on objects, it is generally faster for a user to correct split
errors than merge errors. Therefore, previous work on neuron seg-
mentation has biased the output of the automatic reconstruction
towards obtaining an over-segmentation of the data (Chklovskii
et al., 2010). We follow a different approach in our work. Instead
of biasing the pipeline towards split errors, we provide a 3D
semi-automatic segmentation method in our proofreading tool to
assist the user with the correction of merge errors. This allows us
to focus on optimizing the overall error rate with an equal weight-
ing of split and merge errors.
3.3. Data sets

To demonstrate the scalability of our reconstruction workflow
we use a data set consisting of 1000 sections, with 5120� 5120
pixels per image. The tissue is dense mammalian neuropil from
layers 4 and 5 of the S1 primary somatosensory cortex of a 5 month
old healthy C45BL/6J mouse. The images were taken at a resolution
of 3 nm per pixel and downsampled by a factor of two, leading to a
resolution in the image plane of 6 nm per pixel. The section thick-
ness is 30 nm. The entire data set captures a tissue volume of
30� 30� 30 lm3. Our target is a volumetric reconstruction of
the 3D geometry of all neuronal processes in the data set. In con-
trast to center line tracings used in previous work by
Helmstaedter et al. (2011), Bock et al. (2011) we concentrate on
segmenting the whole volumetric geometry of the neurons.
Center line tracings can be annotated faster by a user than com-
plete volume reconstructions and are sufficient to evaluate the
tracing of neuronal processes over long ranges in a given volume.
In contrast, our complete volume segmentation enables us to also
evaluate the automatic segmentation with respect to important
fine structure details, such as spine necks (see Section 8), that
are necessary to identify neuron connectivity.

In addition, we used a smaller volume consisting of 150 section
images with 1024� 1024 pixels per image. This volume has been
densely annotated and thus captures the full range of different
object sizes and variability on a small scale. Instead of carefully
drawing cell boundaries, manual segmentation was performed by
focusing on the regions corresponding to neuronal processes.
Thus, small extracellular space between cells as well as thick or
fuzzy membranes can lead to unlabeled pixels in the manual
annotation. In order to preserve the duality between cell bound-
aries and annotated regions, we assign unlabeled pixels the label
of the closest annotated region using seeded region growing. For
our experiments we divided the data into three disjunct subsets
for training, parameter validation and testing. All training and
parameter validation is restricted to the first 75 images of the den-
sely labeled data set. We use 10 images as training set, and 65
images as validation set. The remaining 75 images from the second
half of the stack are used as test data, only after all parameters of
the workflow have been fixed.
4. Region segmentation

While the texture characteristics of cell regions in electron
microscopy images can vary significantly between different animal
types and staining protocols, the basic appearance of the cell
boundary membranes as thin, smooth, and elongated structures
remains the same. Thus, instead of segmenting interior cell regions,
we focus on segmenting the cell membranes to make our approach
easily adaptable to a wide range of data.
4.1. Membrane classification

To learn the characteristics of membranes in the electron
microscopy images, we train a random forest classifier based on
sparse manual membrane annotations. Random forests combine
the idea of bagging decision trees with random feature selection
(Breiman, 2001). Each decision tree is built from a bootstrapped
sample of the training data and at each node a random subset of
the available features is selected to estimate the best split
(Breiman, 2001). For prediction, the votes of all decision trees in
the forest are accumulated. As each tree can be grown and queried
independently, random forests are ideal for parallelization during
training and prediction, as well as in an interactive training frame-
work. In addition, random forests are robust against over-fitting,
leading to good generalization performance with few manual
annotations. The parameters to tune are the number of decision
trees and the size of the feature subset used to determine the best
split. We employ 300 trees and we set the number of features to
the square root of the total number of features, which is the default
suggested by Breiman (2001). To account for imbalanced training
data, we follow the approach of Chen et al. (2004), and reduce
the bootstrap sample for each tree to the size of the minority class.

The feature set extracted from the images is designed to capture
the characteristics of membranes with little computational cost.
Extracted features include the gray value, gradient magnitude,
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Hessian eigenvalues, and difference of Gaussian for the image
smoothed with Gaussian filters of different kernel sizes. In addi-
tion, we convolve the image with a steerable filter at different ori-
entations. Each filter output serves as a feature, as well as the
minimal, maximal, and average output of the steerable filter for
different orientations at a pixel position.

Changes in the sample preparation process or different animal
types can lead to significantly different data sets, requiring a
retraining of the membrane classifier. Thus, our approach aims at
minimizing manual interaction. We use an interactive training
approach, similar to Sommer et al. (2011). The user provides sparse
training annotations of membranes and the background class and
interactively corrects the output of the classifier in a feedback loop.

There are two main benefits of this method. One benefit is that
the annotation effort is efficiently guided towards challenging clas-
sifications and saves the user from annotating membranes that are
already correctly classified. The second benefit is that users can
weigh pixel errors in the classifier predictions implicitly by decid-
ing to correct the segmentation or leave the prediction unchanged.
The random forest classifier can only optimize for pixel mis-
classification and not for variation of information directly. While
both evaluation measures are minimal for the correct seg-
mentation, pixel misclassifications do not directly correspond to
region segmentation performance. False positive membrane detec-
tions, for example on vesicles, can be neglectable as long as these
do not lead to split errors in the segmented regions, false negative
membrane detections can be neglectable as long as they do not
introduce a gap in the outline of a neuronal region. The interactive
training allows the user to provide a training set that is biased
towards correcting pixel misclassifications which impact region
segmentation performance.

Fig. 3 depicts an example of the interactive annotation. Our
experiments demonstrate that in the context of small training
samples, this interactive approach outperforms complete annota-
tion of all membranes in the images (see Fig. 4).
4.2. Interactive training evaluation

To evaluate the interactive annotation against conventional
training of fully annotated images, we chose a training set of five
images out of the first 75 images of the 150 section data set.
These images were manually selected to cover the variability in
the data, from changes in image focus, contrast, or section thick-
ness. The interactive training consists of multiple passes over the
training images. Each pass consists of an annotation and a feedback
phase. The user is presented with the current classification result
Fig. 3. An example of the interactive annotation workflow. Left: An original
electron microscopy image, with overlayed membrane annotations (green) and
background annotations (red). Right: The thresholded membrane probability map
overlayed in red. The ellipses mark a split and merge error respectively, which could
be corrected by additional annotations in the next iteration. Both images are 1.2 lm
wide. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
and then manually provides additional training samples to correct
misclassifications. We repeated the interactive annotation proce-
dure with a second data set of five training images. Fig. 4 demon-
strates the median performance of the interactive sparse training
in terms of variation of information. The performance is measured
over the validation image data, which consists of the 65 images out
of 75 that were not used for training annotations. To compare the
performance of sparse interactive annotations to conventional
batch training on fully annotated images, an expert labeled the
center line of all membranes in all 10 images of both training sets.
We chose the centerline to ensure that only true membrane pixels
are in the training set. As membranes can appear fuzzy or smeared
in the images, we neglect all pixels with a distance smaller or equal
to five pixels from this center line, excluding possibly ambiguous
examples from the training set. All remaining pixels are taken as
background examples.

After the third to fourth pass over the images, the interactively
trained classifier outperforms the classifier trained on fully anno-
tated images. As demonstrated by the green and orange curves in
Fig. 4, the performance of the second training set is similar to the
first training set. Interestingly, the second pass on the second train-
ing set shows a significant degradation of the segmentation. In this
step the annotator introduced background labels on mitochondria,
leading the classifier to misclassify fuzzy membranes as back-
ground and thus to introduce gaps in the cell boundaries. In the
next step these membrane misclassifications are corrected, leading
to an improvement in the segmentation performance. The blue line
corresponds to the performance of a classifier trained on the final
ten training images of both interactive sparsely annotated sets.
This is the classifier we use for the remaining steps of the pipeline.

4.3. 2D segmentation

The random forest classifier captures the main image character-
istics of membranes with little manual annotation data. Previous
work has shown that anisotropic smoothing of images is beneficial
for the segmentation of membranes (Mishchenko, 2009). We fol-
low the approach of Kaynig et al. (2010a), which combines the
membrane probability output of the random forest classifier with
an anisotropic smoothing prior for gap completion in a
Conditional Random Field (CRF). In a CRF, the binary segmentation
of all pixels as foreground or background is estimated by



Fig. 5. Example segmentation of a test EM image. Top left: original image. Top
right: manual annotation. Bottom left: random forest output. Bottom right: CRF
segmentation. The isotropic smoothing closes small regions caused by extracellular
space between cells, whereas the anisotropic term prevents shrinking bias for long
elongated structures and enhances gap completion. All images are 1.9 lm wide.
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maximizing the a posteriori probability of the labels y given the
observed data x:

pðyjxÞ / exp
X
i;p2P

kiFstatei
ðyp; x; pÞ þ

X
j;p2P;q2NðpÞ

kjFtransj
ðyp; yq; x;p; qÞ

 !
:

ð2Þ

Fstatei
is a state feature function of the label yp 2 f0;1g at pixel p 2 P,

and the image intensity values x, and Ftransj
is a transition feature

function of the labels yp and their neighbored labels yq in the 8-con-
nected neighborhood NðpÞ. Intuitively, in our framework the state
feature function estimates the probability of a single pixel as being
foreground or background, whereas the transition feature function
introduces dependencies between neighbored pixels, leading to
smooth segmentations. Instead of maximizing the a posteriori
probability of the labels y we minimize the negative logarithm,
leading to the following energy term:

EðyÞ ¼
X
p2P

Erf ðypÞ þ ks

X
p2P;q2NðpÞ

Esðyp; yqÞ þ kgc

X
p2P;q2NðpÞ

Egcðyp; yqÞ: ð3Þ

The state function Fstatei
ðyp; x;pÞ corresponds to the data term

Erf ðypÞ, which uses the output of the random forest classifier to
specify the costs for label yp being membrane or non-membrane.
In Eq. (3) we omit the arguments for the observed data x and the
pixel positions p; q to simplify the equation.

In addition, we include two smoothness terms which corre-
spond to transition feature functions in Eq. (2). One is an isotropic
smoothness term Esðyp; yqÞ, which penalizes for discontinuities in
the segmentation for neighboring pixels of similar intensities.
This smoothness term is widely used in graph cut approaches
(Boykov and Funka-Lea, 2006):

Esðyp; yqÞ ¼ exp �ðxp � xqÞ2

2r2
s

 !
�

dðyp; yqÞ
distðp; qÞ ; ð4Þ

where xp is the gray value of the image at pixel p and distðp; qÞ takes
the Euclidean distance between neighbored pixels into account. The
Kronecker delta function dðyp; yqÞ equals 0 if yp ¼ yq and 1 other-
wise. Thus, the Kronecker delta function penalizes label changes,
whereas the first factor of the energy term alleviates this penalty
for strong changes of contrast in the image.

The second smoothness term Egcðyp; yqÞ enhances the coliniarity
of segmented pixels:

Egcðyp; yqÞ ¼ j < vp;upq > j � exp �ð1� xmÞ2

2r2
gc

 !
�
d!ðyp; yqÞ
distðp; qÞ ; ð5Þ

where upq is a unit vector with the orientation of a straight line
between pixels p and q, and vp is a vector directed along the mem-
brane. The length of vp reflects the orientedness of the image at p.
To measure the orientation of the membrane we use a steerable fil-
ter consisting of a straight line with a thickness comparable to the
membrane thickness in the training images. The term < vp;upq >

is then estimated by the response to this filter at the orientation
corresponding to upq. The value of xm is the probability of pixel x
being a membrane, and r2

gc can be estimated as the variance of
these probabilities. Thus, the difference ð1� xmÞ weighs the energy
term according to the confidence of the classifier in xm being a
membrane. In contrast to Eq. (4), the factor d!ðyp; yqÞ is not sym-
metric. Instead d!ðyp; yqÞ ¼ 1 for yp ¼ 1; yq ¼ 0 and d!ðyp; yqÞ ¼ 0
for all other cases. This asymmetric definition ensures that Egc only
penalizes for cuts that violate the smoothness along the direction of
membrane pixels.

The smoothness terms Es and Egc are submodular, i.e.,
Eð0;0Þ þ Eð1;1Þ 6 Eð1;0Þ þ Eð0;1Þ, and thus the global minimum
of EðyÞ can be efficiently found by max-flow/min-cut computation
(Kolmogorov and Zabin, 2004; Boykov and Kolmogorov, 2004;
Boykov and Funka-Lea, 2006).

For this purpose, we define a graph G ¼ ðV;EÞ. The set of graph
nodes V consists of all pixels p 2 P and two additional terminal
modes s and t that represent foreground and background in the
segmentation. The set of directed edges E connects all pixels p to
their neighbors q 2 NðpÞ. Weights are assigned to these edges as
specified by the smoothness terms Es and Egc. In addition, the set
of edges E connects each pixel to two additional terminal nodes s
and t with weights specified by Erf . Minimizing EðyÞ corresponds
to finding the optimal cut C � E such that no path exists between
the terminal nodes s and t in the graph Gcut ¼ ðV;E� CÞ. The cut is
optimal in the sense that the sum of all edge weights of all edges
included in the cut is minimal.

The optimal labeling y corresponds to a binary segmentation of
the image into membrane and non-membrane pixels. As we are
ultimately interested in the region segmentation of neuronal pro-
cesses, we identify neuronal regions as connected background
components and then use seeded region growing to obtain a com-
plete tessellation of the image into segments corresponding to
neuronal processes.

4.4. Region segmentation evaluation

To evaluate the performance of our 2D segmentation step we
set the isotropic smoothing weight ks ¼ 0:6 and the anisotropic
smoothing weight kgc ¼ 0:1. The values for theses parameters were
optimized over the 65 images of our validation set. A visual exam-
ple of the output is provided in Fig. 5. Fig. 6 provides a quantitative
comparison of different 2D segmentation methods over 75 test
images that were not used for any parameter tuning. For these
evaluations, we normalized the gray value images to a range
between zero and one prior to thresholding the gray value. The
random forest results present thresholding of the respective mem-
brane probability map. Watersheds and CRF results both use the
probability map of the interactively trained random forest classi-
fier. For watersheds we suppressed all minima in the probability
map whose depth is less than the given threshold. For the CRF
we adjusted the data term to reflect the given threshold on the
probability map. A random forest classifier trained on fully
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Fig. 6. Evaluation of membrane segmentations on test data. The top line (violet)
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the performance of the CRF framework in our pipeline. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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contoured images (orange line in Fig. 6) gives a large improvement
in segmentation performance over direct segmentation of gray val-
ues, but the random forest trained with sparse interactive annota-
tions demonstrates a better generalization to the test data. We also
compare the output of the CRF framework with gap completion
against watershed segmentations, which have been widely used
in previous work to generate segmentations of neuronal structures
in EM images (Vazquez-Reina et al., 2011; Straehle et al., 2011;
Chklovskii et al., 2010; Andres et al., 2008). While the optimal
watershed segmentation performs 0.03 better in terms of variation
of information than the best thresholded random forest output, the
CRF framework yields an additional improvement of 0.09 over the
best watershed segmentation.
5. Segmentation fusion

5.1. Region grouping across sections

The previous steps of the pipeline focus on the segmentation of
neuronal processes in the 2D image plane to take advantage of the
high resolution provided by the electron microscope. To extract the
3D geometry of neuronal processes, these regions need to be
grouped across sections. We follow the segmentation fusion
approach of Vazquez-Reina et al. (2011) that allows for globally
optimal groupings of regions across sections. The term fusion
refers to the option to pick the best choice of geometrically consis-
tent region groupings out of a set of possible segmentations for
each section. The fusion problem is formulated as the maximum
a posteriori labeling over a set of binary indicator variables. Each
indicator variable si corresponds to a possible 2D region of a neu-
ronal process, and each indicator variable lj to a 3D link between
regions of adjacent sections. If an indicator variable is activated
(e.g., si ¼ 1), the correspondent region is assumed to be selected
for the final segmentation, and similarly for a 3D link lj. Thus, a
labeling of the indicator variables corresponds to a 3D seg-
mentation of the whole data volume.
Following the model of a CRF described in Eq. (2) the fusion
problem is modeled as:

pðs; ljrÞ / exp
Xn

i¼1

Fsegmentðsi; r; iÞ þ
Xm

j¼1

F linkðlj; r; jÞ
 !

wðs; lÞ: ð6Þ

The two functions Fsegmentðsi; r; iÞ and Flinkðlj; r; jÞ are state functions
for the indicator variables si and lj; r refers to the set of all regions
obtained from the 2D region segmentation, and n and m are the
total number of indicator variables si and lj. To ensure that any large
segment from the region segmentations can compete equally
against a set of smaller regions covering the same 2D area, both
state functions take the size of the corresponding regions into
account. In addition, links between regions are weighted according
to the similarity of the linked regions, leading to the following
definitions:

Fsegmentðsi; r; iÞ ¼ sizeðriÞ; ð7Þ

F linkðlj; r; jÞ ¼ hðrj;a; rj;bÞ � sizeðrj;aÞ þ sizeðrj;bÞ
� �

: ð8Þ

rj;a and rj;b are the two regions connected by the 3D link lj and
hðrj;a; rj;bÞmeasures the similarity between two regions. In the origi-
nal fusion formulation, Vazquez-Reina et al. (2011) defined h in
terms of the cross-correlation and displacement between the pair
of segments that re connected by the link in question. We instead
define the region similarity h in terms of the minimum relative
overlap size of the two regions. This definition does not take texture
similarity into account, but it is computationally faster than cross-
correlation while providing equally good region similarity measure-
ments for our EM data:

hðrj;a; rj;bÞ ¼min overlapðrj;a; rj;bÞ;overlapðrj;b; rj;aÞ
� �

; ð9Þ

overlapðrj;a; rj;bÞ ¼
jrj;a \ rj;bj
jrj;aj

: ð10Þ

By using the minimum of the relative overlap, h is based on the
relative overlap with respect to the larger region. This definition is
useful, because if a large region is overlapped by two smaller
regions by 40% and 60% respectively, we want the link to the region
covering 60% of the overlap to outweight the link to the region cov-
ering 40%.

The compatibility function wðs; lÞ in Eq. (6) is defined over the
indicator variables and assigns zero-mass to configurations of the
CRF that are unrealistic or undesirable given our domain knowl-
edge of the problem. Specifically, we want each pixel of the seg-
mentation to belong to no more than one neuron, thus we want
to prevent overlapping of activated segments si in the same section
image:

P
i2ok

si 6 1 for every set of overlapping segments ok.
Furthermore, the selection of activated segments and links should
yield good 3D continuity through the stack. We achieve this by
making the selection of segments and links dependent on each
other and rewarding the activation of segments that are connected
by strong links:

X
j2TOPi

lj

 !
6 jTOPij � si;

X
j2BOTi

lj

 !
6 jBOTij � si; ð11Þ

where TOPi and BOTi are the sets of activated links connecting to
segment si from the sections immediately above or below, respec-
tively. The main idea is to make the activation of segments and links
depend on each other. Whenever a link is activated, the correspond-
ing connected segments have to be activated as well. Compared to
the original fusion formulation, our constraint does allow for multi-
ple links connecting to the same segment. This relaxed version
allows for branching of segmented structures and thus can ade-
quately model the geometry of neuronal cells.
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In our experiments, we noticed that if we allow segments to
connect with any number of overlapping segments from adjacent
sections, we have to be careful to not over-merge the seg-
mentation. To prevent branching from connecting too many
objects, we require links to only connect segments with significant
overlap between sections. Links connecting sections that do not or
only minimally overlap are pruned from the solution space. To
obtain the maximum a posteriori (MAP) solution to the whole seg-
mentation fusion problem (Eq. (6)), we solve the following binary
linear programming problem:

argmaxs;l

Xn

i¼1

Fsegmentðsi; r; iÞ þ
Xm

j¼1

F linkðlj; r; jÞ

s:t: si; lj 2 f0;1g;
wðs; lÞ ¼ 1:

ð12Þ

We solve this problem using a general-purpose binary linear
programming solver (IBM, 2014).

5.2. Segmentation fusion evaluation

There are two important aspects for the evaluation of seg-
mentation fusion: the benefit of using multiple segmentations
per section on the 2D segmentation, and the performance with
respect to the 3D region grouping into geometrically consistent
objects. (see Fig. 7). To evaluate the 3D region grouping perfor-
mance we compare against greedy agglomerative clustering
(Kaynig et al., 2010b) and the Sopnet framework developed by
Funke et al. (2012). Segmentation fusion and the Sopnet frame-
work both significantly outperform agglomerative clustering by
finding the globally optimal grouping with respect to a large vol-
ume context. Segmentation fusion outperforms Sopnet with an
improvement of 0.06 in terms of variation of information. Both
approaches leverage multiple segmentation hypotheses per sec-
tion and obtain the optimal grouping by solving an integer linear
programming problem. The main difference is that within Sopnet
a classifier is trained to score the similarity between regions,
whereas segmentation fusion relies on region overlap and size
alone (see Section 5.1). It is possible that Sopnet could benefit from
a training set larger than 75 images, but generating such a large
training set would require a considerable effort of manual annota-
tion. In addition, the feature extraction and classification to obtain
the region similarity adds significant computational overhead to
the region grouping. Thus, segmentation fusion is the better
approach for our large-scale reconstruction effort.

To gain more insight into the segmentation performance we
evaluate 2D segmentations with respect to split and merge errors.
Fig. 8 compares the segmentation fusion output with the best sin-
gle 2D segmentation obtained by the gap completion CRF frame-
work as described in Section 4.4. Over the whole test set of 75
images, fusion gave a significant improvement in the overall seg-
mentation performance, increasing the percentage of correctly
0 1 2 3 4
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Fig. 7. Evaluation of 3D reconstructions obtained by segmentation fusion compared
to agglomerative clustering and Sopnet (Funke et al., 2012). As a baseline we
provide the variation of information score for ungrouped data. Lower scores
correspond to better region groupings.
segmented regions from 68%ð�4%Þ to 73%ð�3%Þ. We define a cor-
rectly segmented ground truth region as having a reciprocal major-
ity overlap of 60% or greater with a region from the automatic
segmentation. Fig. 8 demonstrates that this improvement is mainly
due to a correction of merge errors. While the split error rate is
slightly incrased by 1% the merge error rate is nearly halved, drop-
ping from 15:8% for the single segmentation to 8:6% for the fusion
result. Fig. 9 shows the segmentation performance with respect to
region sizes. In total, error rates are lower for the larger regions
than for the small regions. It is also noteworthy that the dominant
error type changes from mainly merge errors for smaller regions to
split errors for larger regions. For the most typical region size the
errors are nearly balanced. Because smaller regions belong to thin
flexible neuronal processes they change more prominently
between adjacent sections than large regions belonging to thick
neuronal processes. Thus, it is challenging to pick the right region
segments based on the overlap criterion as described in (Eq. (10)).
6. Semiautomatic proofreading with Mojo

Manual proofreading is necessary in order to guarantee the cor-
rect topology of the neuron reconstruction. Fig. 10 shows an
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Fig. 9. Histogram of error rates for different region sizes. While over 70% of the
regions are correctly segmented for most region sizes, smaller regions tend to be
merged, whereas larger regions tend to be split. Overall large regions exhibit
smaller error rates than small regions.



Fig. 10. Example region of an automatically segmented image (middle) compared
to manual annotation (left). The original EM image is shown on the right. All images
are 3 lm wide.
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example segmentation of a 2D section compared to a manual
annotation. While most regions are correctly segmented, some
are split into several parts and need manual merging, while other
regions span multiple objects and need to be manually split.

In order to minimize the user effort required to correct split and
merge errors, we developed an interactive system called Mojo (see
Fig. 11). The proofreading workflow in Mojo is as follows: The user
is presented with a 2D view of a 3D EM image stack that allows
zooming, panning, and scrolling through the out-of-plane dimen-
sion. Mojo presents the user with an interactive color overlay of
the automatic reconstruction. Mojo provides two distinct interac-
tion modes for correcting split errors and merge errors, respectively.

Correcting a split error requires the user to merge objects. To
correct a split error in Mojo, the user clicks on a source object,
and then clicks on one or more target objects. Mojo is responsible
for re-labeling the target objects with the label from the source
object.

Correcting a merge error requires the user to split an object into
multiple sub-objects. The user begins by clicking on the object to
be split. The user then roughly scribbles with a uniquely colored
brush on each distinct sub-object within the object to be split.
We use the interactive segmentation method of Roberts et al.
(2011) to segment each sub-object. We chose to implement this
segmentation method in Mojo because it produces highly accurate
segmentations with minimal user effort, and provides the user
with real-time feedback on the resulting segmentation while the
user is scribbling. During each split operation, we constrain the
Fig. 11. Screenshot of our proofreading tool Mojo. The main area shows the
segmentation as color-overlay on the original electron microscopy image. On the
right side segmented processes can be selected by their name or ID. In the top menu
the user can select split or merge error correction and if the correction should be
applied in 3D or restricted to the currently shown section. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
user scribbles and the resulting sub-objects to be entirely con-
tained within the original object to be split. This allows the user
to more easily segment each sub-object without disturbing neigh-
boring objects.
7. Parallel implementation

Our pipeline has been designed to efficiently scale to large data
sets in the GB-TB range. Scalability is an important aspect in the
context of Connectomics. While a resolution of 5 nm is essential
to allow for identification of biological structures like vesicles or
synapses, whole neuronal cells expand over several lm of brain
tissue. In the following sections we describe the run-time perfor-
mance and scalability of the current implementation. We use the
Harvard Research Computing cluster Odyssey for our com-
putations. A typical node contains 2� 4� core Intel Xeon E5410
2.3 Ghz and 32 GB RAM. All evaluations concerning run time are
given with respect to the current MATLAB implementation and
include computational and i/o overhead to facilitate restarting of
jobs on a computer cluster. The 2D segmentations are computed
on 1024� 1024 image tiles with a runtime of 9–13 h per job. For
segmentation fusion we use 512� 512� 64 sub-volumes and the
average runtime is 2–3 h per job. In the pairwise matching step,
sub-volumes are joined to form a consistently labeled volume.
Every pair of adjacent sub-volumes (in x, y and z directions) is con-
sidered independently and in parallel. Winning groups of segments
from the fusion step are merged or split based on the proportion of
overlapping voxels inside the overlap region. Merge operations link
segments to form a single object. Split operations assign all 2D seg-
ments in the overlap to just one group, creating two non-overlap-
ping objects. This ensures a consistent labeling of voxels between
adjacent sub-volumes. Runtime for each pair of sub-volumes is
about 5–6 min. Finally, a single global consistency step is required
to link objects over multiple sub-volume pairs and assign unique
IDs. This step is performed by a single job and takes 1–2 h due to
the amount of i/o operations required.
8. Large-scale reconstruction results

We successfully used our pipeline to reconstruct neuronal pro-
cesses in a 27;000 lm3 volume of brain tissue. This volume is more
than 150 times larger than the manually annotated volume we
used for quantitative evaluations, and it would take about
13,500 h to segment this volume manually, rendering a full
quantitative evaluation of the large volume infeasible. To address
this challenge and still provide a quantitative measure for the qual-
ity of our automatic reconstruction we measure the number of pro-
cesses that enter and exit the volume correctly. Neuronal processes
are typically longer than 30 lm and it is unlikely that a process
ends inside the volume, thus it is desirable to have many processes
that are correctly traced from one face to the other. This evaluation
measure is challenging for large volumes, as the chance of intro-
ducing an error to the reconstruction of an object grows exponen-
tially with the object length.

The following reconstruction results were obtained automati-
cally, without any manual proofreading.

Fig. 12 shows a subset of the reconstructed processes. The
visualization in Fig. 12 only includes processes that are traced from
one face of the volume to another and that do not show obvious
errors in the reconstructed 3D geometry. In total 93 objects satis-
fied these criteria. Note that although our data set is anisotropic,
the reconstruction contains processes that run orthogonal as well
as horizontal across the volume. The annotations mark an example
of a correctly reconstructed branching structure (A) as well as sev-
eral reconstructed spine necks (B).
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Fig. 12. Automatic large-scale reconstruction of 93 objects from the whole data
volume without any manual proofreading. The reconstructions contain long-range
tracings across the whole volume running orthogonal across all 1000 sections as
well as longitudinal to the cutting plane. A correctly reconstructed branching
structure is marked with (A). (B) marks automatically reconstructed spine necks of
approximately 30 nm in diameter. The reconstructed volume size is
30.72 lm � 30.72 lm � 30 lm. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Fragmentation of a automatically reconstructed dendrite with respect to a
manual reconstruction. The different colors correspond to different objects in the
automatic segmentations. While manual proofreading is necessary to obtain the
correct reconstruction, the automatic result includes spine necks traced over
several sections. (A) and (B) only require merging of the identified spine neck with
the spine head, whereas (C) and (D) exhibit further split errors, but still contain
large continuous segments. (E) is an example of a fragmented spine neck, running
longitudinal to the cutting plane. The bounding box of the shown dendrite is about
3 lm � 6 lm � 6 lm. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Spines are important parts of neuronal processes in mammalian
tissue. A spine typically consists of a thin spine neck and a thicker
spine head at the end. Spine heads normally end in a synapse form-
ing a connection to another neuronal process. Spine necks form the
thinnest parts of a neuronal processes and can have a diameter of
only 25 nm. Thus they can be hard to distinguish from extracellular
space between cells and sometimes are also missed by human
expert annotators. Fig. 13 shows an example image with annota-
tions for a spine neck region and several regions corresponding
to extracellular space. The small diameter of spine necks renders
their automatic 3D reconstruction challenging. Differentiation of
spine neck regions and extracellular space is often only possible
by taking the broader 3D context into account. To gain more
insight into the quality of our spine reconstructions we used a
manually annotated part of a dendrite and cut out the correspond-
ing area from the automatic reconstruction. Fig. 14 depicts the
result. While none of the spines are correctly reconstructed
Fig. 13. Example image with an annotated spine neck (green) and multiple
annotated extracellular space regions (purple). The small diameter of spine necks
makes the automatic 3D reconstruction challenging. The width of the image is
1:2 lm. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 15. Examples of large-scale merge errors. The large red cell body is merged
with neuronal processes marked (A), (B), and (C). The green object contains two
branching structures, which are erroneously merged at location (D). The height of
red cell is about 30 lm. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
automatically, proof reading the fragmentation of spines (A) and
(B) is reduced to correcting one split error, merging the spine neck
with the spine head. The spines (C) and (D) are more fragmented
than (A) and (B), but contain tracings over several sections. (E) is



Fig. 16. Example segmentation of a region of interest from the reconstructed EM volume. The image shows an overlay of the segmentation in color on the gray value EM
image. This result is prior to manual proofreading. The image width corresponds to 15.18 lm. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

V. Kaynig et al. / Medical Image Analysis 22 (2015) 77–88 87
heavily fragmented as it runs longitudinal across the sections and
thus is harder to trace than orthogonal spine necks.

Region grouping with branching is essential not only to account
for branching neuronal processes, but also to reconstruct spine
necks along a dendrite. However, it can also lead to merge errors
in the resulting segmentation. Fig. 15 shows examples of long-
range merge errors. The reconstruction shown contains a correctly
segmented cell body (red) including correct branches. The neu-
ronal processes marked (A), (B), and (C) should be separate objects.
The green structure is a merge of two neuronal processes. While
both processes contain a correctly identified branching point, they
are erroneously merged at location (D). These long-range merge
errors are easy to detect for a human proof reader by looking at
the 3D geometry of the reconstructed objects. Automatic identifi-
cation and correction of the long-range 3D geometry is part of
our future research.

Fig. 16 depicts an example segmentation of 2D image from our
reconstructed volume.
9. Conclusions

In this paper we address the automatic reconstruction of neu-
ronal processes at nm resolution for large-scale data sets. We
demonstrate state-of-the art performance of our pipeline with
respect to automatic dense reconstruction of neuronal tissue, and
also for long range reconstructions covering neuronal processes
over many lm. The workflow is designed to minimize manual
effort and to be easy parallelizable on computer clusters and
GPUs, with most steps scaling linearly with the number of proces-
sors. The electron microscopy data is available at http://opencon-
necto.me/catmaid/?dataview=13#, and the source code is
available at https://github.com/Rhoana.

Future work concentrates on improving the performance of our
pipeline, as well as facilitating the proofreading further. We are
currently focusing our efforts on improving the runtime of the
pipeline by optimizing code and removing MATLAB dependencies.
We are also working on new algorithms to improve the overall
segmentation performance. With respect to proofreading, we are
working on a web-based Mojo version that allows for collaborative
proof reading of large data volumes.
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