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Figure 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer
below1). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level
reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn
and exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on
large-scale video datasets.

Abstract

We seek to understand the arrow of time in videos – what
makes videos look like they are playing forwards or back-
wards? Can we visualize the cues? Can the arrow of time
be a supervisory signal useful for activity analysis? To this
end, we build three large-scale video datasets and apply a
learning-based approach to these tasks.

To learn the arrow of time efficiently and reliably, we de-
sign a ConvNet suitable for extended temporal footprints
and for class activation visualization, and study the ef-
fect of artificial cues, such as cinematographic conven-
tions, on learning. Our trained model achieves state-of-the-
art performance on large-scale real-world video datasets.
Through cluster analysis and localization of important re-
gions for the prediction, we examine learned visual cues
that are consistent among many samples and show when
and where they occur. Lastly, we use the trained ConvNet
for two applications: self-supervision for action recogni-
tion, and video forensics – determining whether Hollywood
film clips have been deliberately reversed in time, often used
as special effects.

1. Introduction

We seek to learn to see the arrow of time – to tell whether
a video sequence is playing forwards or backwards. At a
small scale, the world is reversible–the fundamental physics
equations are symmetric in time. Yet at a macroscopic scale,
time is often irreversible and we can identify certain motion
patterns (e.g., water flows downward) to tell the direction
of time. But this task can be challenging: some motion
patterns seem too subtle for human to determine if they are
playing forwards or backwards, as illustrated in Figure 1.
For example, it is possible for the train to move in either
direction with acceleration or deceleration (Figure 1d).

Furthermore, we are interested in how the arrow of time
manifests itself visually. We ask: first, can we train a reli-
able arrow of time classifier from large-scale natural videos
while avoiding artificial cues (i.e. cues introduced during
video production, not from the visual world); second, what
does the model learn about the visual world in order to solve
this task; and, last, can we apply such learned commonsense
knowledge to other video analysis tasks?

1Forwards: (b), (c); backwards: (a), (d). Though in (d) the train can
move in either direction.



Regarding the first question on classification, we go be-
yond previous work [14] to train a ConvNet, exploiting
thousands of hours of online videos, and let the data de-
termine which cues to use. Such cues can come from
high-level events (e.g., riding a horse), or low-level physics
(e.g., gravity). However, as discovered in previous self-
supervision work [4], ConvNet may learn artificial cues
from still images (e.g., chromatic aberration) instead of a
useful visual representation. Videos, as collections of im-
ages, have additional artificial cues introduced during cre-
ation (e.g. camera motion), compression (e.g. inter-frame
codec) or editing (e.g. black framing), which may be used
to indicate the video’s temporal direction. Thus, we design
controlled experiments to understand the effect of artificial
cues from videos on the arrow of time classification.

Regarding the second question on the interpretation of
learned features, we highlight the observation from Zhou
et al. [26]: in order to achieve a task (scene classification
in their case), a network implicitly learns what is necessary
(object detectors in their case). We expect that the network
will learn a useful representation of the visual world, in-
volving both low-level physics and high-level semantics, in
order to detect the forward direction of time.

Regarding the third question on applications, we use the
arrow-of-time classifier for two tasks: video representa-
tion learning and video forensics. For representation learn-
ing, recent works have used temporal ordering for self-
supervised training of an image ConvNet [6, 13]. Instead,
we focus on the motion cues in videos and use the arrow
of time to pre-train action recognition models. For video
forensics, we detect clips that are played backwards in Hol-
lywood films. This may be done as a special effect, or to
make an otherwise dangerous scene safe to film. We show
good performance on a newly collected dataset of films con-
taining time-reversed clips, and visualize the cues that the
network uses to make the classification. More generally,
this application illustrates that the trained network can de-
tect videos that have been tampered in this way. In both
applications we exceed the respective state of the art.

In the following, we first describe our ConvNet model
(Section 2), incorporating recent developments for human
action recognition and network interpretation. Then we
identify and address three potential confounds to learning
the arrow of time discovered by the ConvNet (Section 3),
for example, exploiting prototypical camera motions used
by directors. With the properly pre-processed data, we train
our model using two large video datasets (Section 4): a
147k clip subset of the Flickr100M dataset [22] and a 58k
clip subset of the Kinetics dataset [10]. We evaluate test
performance and visualize the representations learned to
solve the arrow-of-time task. Lastly, we demonstrate the
usefulness of our ConvNet arrow of time detector for self-
supervised pre-training in action recognition and for iden-

Arrow 
of 

Time . . .  

(a) Late Temporal Fusion 

GAP 
+Logistic 

Concat. 

(b) Classification 

tT 

t1 

Input flow 

Conv. 

. . .  

Conv. 

Conv. 

(T groups) 

Figure 2: Illustration of our Temporal Class-Activation-
Map Network (T-CAM) for the arrow of time classification.
Starting from the traditional VGG-16 architecture [18] for
image recognition, (a) we first concatenate the conv5 fea-
tures from the shared convolutional layers, (b) and then re-
place the fully-connected layer with three convolution lay-
ers and global average pooling layer (GAP) [11, 20, 21, 27]
for better activation localization.

tifying clip from Hollywood films made using the reverse-
motion film technique (Section 5).

1.1. Related Work

Several recent papers have explored the usage of the tem-
poral ordering of images. Basha et al. [1, 3] consider the
task of photo-sequencing – determining the temporal order
of a collection of images from different cameras. Others
have used the temporal ordering of frames as a supervisory
signal for learning an embedding [15], for self-supervision
training of a ConvNet [6, 13], and for construction of a rep-
resentation for action recognition [7].

However, none of these previous works address the task
of detecting the direction of time. Pickup et al.[14] ex-
plore three representations for determining time’s arrow
in videos: asymmetry in temporal behaviour (using hand-
crafted SIFT-like features), evidence for causality, and an
auto-regressive model to determine if a cause influences fu-
ture events. While their methods work on a small dataset
collected with known strong arrow of time signal, it is
unclear if the method works on generic large-scale video
dataset with different artificial signals. The study of the ar-
row of time is a special case of causal inference, which has
been connected to machine learning topics, such as transfer
learning and covariate shift adaptation [16].

In terms of ConvNet architectures, we borrow from re-
cent work that has designed ConvNets for action recogni-
tion in videos with optical flow input to explicitly capture
motion information [17, 24]. We also employ the Class Ac-
tivation Map (CAM) visualization of Zhou et al. [27].
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2. ConvNet Architecture
To focus on the time-varying aspects of the video, we

only use optical flow as input to the ConvNet, and not its
RGB appearance. Below, we first motivate the architecture,
and then describe implementation details.
Model design. Our aim is to design a ConvNet that has
an extended temporal footprint, and that also enables the
learned features to be visualized. We also want the model
to have sufficient capacity to detect subtle temporal signals.
To this end, we base our model on three prior ConvNets:
the VGG-16 network [18] as the backbone for the initial
convolutional layers, for sufficient capacity; the temporal
chunking in the model of Feichtenhofer et al. [5] to give an
extended temporal footprint; and the CAM model of Zhou
et al. [27] to provide the visualization.

The resulting architecture is referred to as “Temporal
Class-Activation Map Network” (T-CAM) (Figure 2). For
the temporal feature fusion stage (Figure 2a), we first mod-
ify the VGG-16 network to accept a number of frames (e.g.
10) of optical flow as input by expanding the number of
channels of conv1 filters [24]. We use T such temporal
chunks, with a temporal stride of τ . The conv5 features
from each chunk are then concatenated. Then for the classi-
fication stage (Figure 2b), we follow the CAM model design
to replace fully-connected layers with three convolution lay-
ers and global average pooling (GAP) before the binary lo-
gistic regression. Batch-Normalization layers [9] are added
after each convolution layer.
Implementation details. To replace the fully-connected
layers from VGG-16, we use three convolution layers with
size 3×3×1024, stride 1×1 and pad 1×1 before the GAP
layer. For input, we use TV-L1 [25] to extract optical flow.

For all experiments in this paper, we split each dataset
70%-30% for training and testing respectively, and feed
both forward and backward versions of the video to the
model. The model is trained end-to-end from scratch, us-
ing fixed five-corner cropping and horizontal flipping for
data augmentation. Clips with very small motion signals
are filtered out from the training data using flow. Given a
video clip for test, in addition to the spatial augmentation,
we predict AoT on evenly sampled groups of frames for
temporal augmentation. The final AoT prediction for each
video is based on the majority vote of confident predictions
(i.e. score |x − 0.5| > 0.1), as some groups of frames may
be uninformative about AoT.
Verification on synthetic videos. Before testing on real
world videos which may have comfounding factors (e.g.
temporal codec, or cinematographer bias) to tell the time
direction, we first examine the effectiveness of our T-CAM
model on computer graphics videos where we have full con-
trol of the AoT signal. In the arXiv version of the paper,
we train models on three-cushion billiard game videos sim-
ulated with different physical parameters (e.g. friction co-
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Figure 3: Illustration of artificial signals from videos in
UCF101 dataset. (a) The black framing of the clip has
non-zero intensity value (left), and a vertical slice over
time displays an asymmetric temporal pattern (right). Af-
ter training, we cluster the learned last-layer feature of top-
confident test clips. We find some clusters have consistent
(b) tilt-down or (c) zoom-in camera motion. We show two
frames from two representative clips for each cluster.

efficient) by the physics engine in [8] with our extension
to handle multiple balls. Trained only with the AoT sig-
nal on the synthetic videos, our model can not only learn
video features to cluster test synthetic videos by their phys-
ical parameters, but also achieves 85% AoT classification
accuracy on a collection of real three-cushion tournament
videos (167 individual shots) from Youtube.

3. Avoiding Artificial Cues from Videos
A learning-based algorithm may “cheat” and solve the

arrow-of-time task using artificial cues, instead of learning
about the video content. In this section, we evaluate the ef-
fect of three artificial signals, black framing, camera motion
and inter-frame codec, on ConvNet learning and the effec-
tiveness of our data pre-procession to avoid them.

3.1. Datasets regarding artificial cues

We use the following two datasets to study artificial cues.
UCF101 [19]. To examine the black framing and cam-
era motion signal, we use this popular human action video
dataset (split-1). Through automatic algorithms (i.e. black
frame detection and homography estimation) and manual
pruning, we find that around 46% of the videos have black
framing, and 73% have significant camera motion (Table 1).
MJPEG Arrow of Time Dataset (MJPEG-AoT). To in-
vestigate the effect of inter-frame codec, we collect a new
video dataset containing 16.9k individual shots from 3.5k
videos from Vimeo2with diverse content. The collected

3



Black frame +Camera motion
Percent of videos 46% 73%

Acc. before removal 98% 88%
after removal 90% 75%

Table 1: AoT classification results to explore the effect of
black framing and camera motion on UCF101 dataset. AoT
test accuracy drops around 10% after removing black fram-
ing and drops another 10% after removing camera motion.

videos are either uncompressed or encoded with intra-frame
codecs (e.g. MJPEG and ProRes) where each frame is
compressed independently without introducing temporal di-
rection bias. We can then evaluate performance with and
without inter-frame codecs by using the original frames or
the extracted frames after video compression with an inter-
frame codec (e.g. H.264). The details of the dataset are in
the arXiv version of the paper.

3.2. Experiments regarding artificial cues

We choose the T-CAM model to have two temporal seg-
ments and a total of 10 frames. More experimental details
are in the arXiv version of the paper.
Black framing. Black frame regions present at the bound-
ary may not be completely black after video compression
(Figure 3a). The resulting non-zero image intensities can
cause different flow patterns for forward and backward tem-
poral motion, providing an artificial cue for the AoT.

For control experiments, we train and test our model on
UCF101 before and after black framing removal, i.e., zero
out the intensity of black frame regions. The test accuracy
of the AoT prediction drops from 98% to 90% after the re-
moval. This shows that black frame regions provides artifi-
cial cues for AoT and should be removed.
Camera motion. To understand the visual cues learned
by our model after black framing removal, we perform K-
means (K=20) clustering on the extracted feature before the
logistic regression layer for the top-1K confidently classi-
fied test videos (foward or backward version). We esti-
mate the homography for each video’s camera motion with
RANSAC, and compute the average translation and zoom in
both horizontal and vertical directions. We find some video
clusters have consistently large vertical translation motion
(Figure 3b), and some have large zoom-in motion (Fig-
ure 3c). Such strong correlation among the confident clips
between their learned visual representation and the camera
motion suggests that cinematic camera motion conventions
can be used for AoT classification.

For control experiments, we use a subset of UCF101
videos that can be well-stabilized. The test accuracy of the
AoT prediction further drops from 88% to 75% before and

2http://vimeo.com

Train/Test Original H.264-F H.264-B
Original 59.1% 58.2% 58.6%
H.264-F 58.1% 58.9% 58.8%
H.264-B 58.3% 59.0% 58.8%

Table 2: AoT classification results to explore the effect of
the inter-frame codec on MJPEG-AoT dataset. We train
and test on three versions of the data: original (no temporal
encoding), encoded with H.264 in forward (H.264-F) and
backward (H.264-B) direction. Similar AoT test accuracy
suggests that the common H.264 codec doesn’t introduce
significant artificial signals for our model to learn from.

after stabilization. Thus, we need to stabilize videos to pre-
vent the model from using camera motion cues.

Inter-frame codec. For efficient storage, most online
videos are compressed with temporally-asymmetric video
codecs, e.g. H.264. They often employ “Forward predic-
tion”, which may offer an artificial signal for the direction
of time. As it is almost impossible to revert the codecs,
we train and test on our specially collected MJPEG-AoT
dataset, where videos are not subject to this artificial signal.

We first remove black framing from these videos and
choose individual shots that can be well-stabilized, based
on the discoveries above. Then we create different versions
of the downloaded MJPEG-AoT dataset (Original) by en-
coding the videos with the H.264 codec in either the for-
ward (H.264-F) or backward direction (H.264-B), to sim-
ulate the corruption from the inter-frame codec. In Ta-
ble 2 we show results where the model is trained on one
version of the MJPEG-AoT dataset and tested on another
version. Notably, our model has similar test accuracy, indi-
cating that our model can not distinguish videos from each
dataset for the AoT prediction. This finding offers a pro-
cedure for building a very large scale video dataset starting
from videos that have been H.264 encoded (e.g. Youtube
videos), without being concerned about artificial signals.

Conclusion. We have shown that black framing and cam-
era motion do allow our model to learn the artificial signals
for the AoT prediction, while the inter-frame codec (e.g.
H.264) does not introduce significant signals to be learned
by our model. For the experiments in the following sections
we remove black framing and stabilize camera motion to
pre-process videos for the AoT classification.

4. Learning the Arrow of Time

After verifying our T-CAM model on simulation videos
and removing the known artificial signals from real world
videos, we benchmark it on three real world video datasets
and examine the visual cues it learns to exploit for the AoT.

4
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# chunks T=1 T=2 T=4
# frame 10 20 40 10 20 20

0% overlap 65% 62% 67% 79% 81% 71%
50% overlap N/A 75% 76% 73%

Table 3: Empirical ablation analysis of T-CAM on Flickr-
AoT. We compare the AoT test accuracy for models with
a different number of input chunks (T ), total number of
frames, and overlap ratio between adjacent chunks. The
best model takes in a total 20 frames of flow maps as input,
and divides them into two 10-frame chunks without overlap
to feed into the model.

4.1. Datasets

The previous AoT classification benchmark [14] con-
tains only a small number of videos that are manually se-
lected with strong AoT signals. To create large-scale AoT
benchmarks with general videos, we pre-process two exist-
ing datasets through automated black framing removal and
camera motion stabilization within a footprint of 41 frames.
We use a fixed set of parameters for the data pre-processing,
with the details in the arXiv version of the paper. We then
use the following three video datasets to benchmark AoT
classification.
TA-180 [14]. This dataset has 180 videos manually se-
lected from Youtube search results for specific keywords
(e.g. “dance” and “steam train”) that suggest strong low-
level motion cues for AoT. As some videos are hard to
stabilize, in our experiments we only use a subset of 165
videos that are automatically selected by our stabilization
algorithm.
Flickr Arrow of Time Dataset (Flickr-AoT). The Flickr
video dataset [22, 23] is unlabeled with diverse video con-
tent, ranging from natural scenes to human actions. Starting
from around 1.7M Flickr videos, we obtain around 147K
videos after processing to remove artificial cues.
Kinetics Arrow of Time Dataset (Kinetics-AoT). The
Kinectics video dataset [10] is fully labeled with 400 cat-
egories of human actions. Starting from around 266K train
and validation videos, we obtain around 58K videos after
processing to remove artificial cues. To balance for the AoT
classification, we re-assign train and test set based on a 70-
30 split for each action class.

4.2. Empirical ablation analysis

On the Flickr-AoT dataset, we present experiments to
analyze various design decisions for our T-CAM model.
With the same learning strategies (e.g. number of epochs
and learning schedule), we compare models trained with (i)
a different number of temporal segments (chunks); (ii) dif-
fering total number of input frames of flow; and (iii) varying
overlap ratio between adjacent temporal segments.

Data (#clip) [14] T-CAM HumanFlickr Kinetics
TA-180 [14] (165) 82% 83% 79% 93%
Flickr-AoT (147k) 62% 81% 73% 81%

Kinetics-AoT (58k) 59% 71% 79% 83%

Table 4: AoT classification benchmark results on three
datasets. We compare the T-CAM model, trained on ei-
ther Flickr-AoT or Kinetics-AoT, with the previous state-
of-the-art method [14] and with human performance. The
T-CAM models outperform [14] on the large-scale datasets
and achieves similar results on the previous TA-180 bench-
mark [14] (for test only).

In Table 4, we find that the best T-CAM model on Flickr-
AoT has two temporal segments with 20 frames total with-
out overlap. We use this model configuration for all the
experimental results in this section.

4.3. Experiments

In the following, we benchmark AoT classification re-
sults on all three datasets above.
Setup. For the baseline comparison, we implement the
previous state-of-the-art, statistical flow method [14], and
achieve similar 3-fold cross-validation results on the TA-
180 dataset. To measure human performance, we use
Amazon Mechanical Turk (AMT) for all three benchmark
datasets (using random subsets for the large-scale datasets),
where input videos have the same time footprint (i.e. 20
frames) as our T-CAM model. More details about the AMT
study are in the arXiv version of the paper.
Classification results. On the previous benchmark TA-
180 [14], we only test with models trained on Flickr-AoT or
Kinetics-AoT dataset, as the dataset is too small to train our
model. As shown in Table 4, the performance of the T-CAM
models on TA-180, without any fine-tuning, are on-par
with [14], despite being trained on different datasets. Test-
ing on the large-scale datasets, Flickr-AoT and Kinetics-
AoT, our T-CAM models are consistently better than [14]
and are on par with human judgment.
Localization results. We localize regions that contribute
most to the AoT prediction using techniques in Zhou et
al. [27]. Given the 14×14 class activation map, we normal-
ize it to a 0-1 probability heatmap p and resize it back to the
original image size. Image regions are considered important
for AoT prediction if their probability value is away from
the random guess probability 0.5, i.e. |p−0.5| > 0.2. To vi-
sualize these important regions, we compute both the color-
coded heatmap with a “blue-white-red colormap”, where
time forward evidence is red (close to 1) and backward is
blue (close to 0), and also the sparse motion vectors on the
middle frame of the input. In Figure 4, for each example we
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Figure 4: Examples of T-CAM localization results on test clips from (a) Flickr-AoT and (b) Kinetics-AoT dataset. For each
input clip, we compute its class activation map (CAM) from the model trained on the same dataset. We show its middle
frame on the left, and overlay color-coded CAM (red for high probability of being forward, blue for backwards) and sparse
motion vector on regions with confident AoT classification. For each dataset, we show localization results for two high-
purity clusters (i.e., most clips have the same AoT label within the cluster) and one low-purity cluster. All the examples here
are played in the forward direction and AoT in regions with red CAM are correctly classified. Notice that examples from
low-purity clusters have a mix of red and blue regions.

show its middle frame and that with the heatmap and motion
vector overlay for regions with confident predictions.

For each large dataset, we show localization results for
three visual concepts from the cluster analysis. For each
cluster, we define its “purity” as the average of the clus-
ter samples’ AoT value. A high-purity cluster means that
its samples share the common feature that is indicative for
AoT prediction. For the Flickr-AoT dataset, the two high-
purity visual concepts (confident AoT prediction) corre-
spond to “human walk” and “water fall” (Figure 4a). For the
Kinetics-AoT dataset, the two AoT-confident action classes
are “crawling baby” and “shredding paper”, while the AoT-
unsure action class is “playing ukulele” (Figure 4b).

5. Using the Arrow of Time

In this section, we describe two applications of the ar-
row of time signal: self-supervised pre-training for action
recognition, and reverse film detection for video forensics.

5.1. Self-supervised pre-training

Initialization plays an important role in training neu-
ral networks for video recognition tasks. Self-supervised
pre-training has been used to initialize action classification
networks for UCF101, for example by employing a proxy
task such as frame order, that does not require external la-
bels [6, 12, 13]. For image input (i.e. the spatial stream),

these approaches show promising results that are better than
random initialization. However, their results are still far
from the performance obtained by pre-training on a super-
vised task such as ImageNet classification [17, 24]. Further,
there has been little self-supervision work on pre-training
for the flow input (the temporal stream). Below we first
show that the AoT signal can be used to pre-train flow-based
action recognition models to achieve state-of-the-art results
on UCF101 and HMDB51. Then to compare with previous
self-supervision methods, we explore the effects of different
input modalities and architectures on self-supervision with
the AoT signal for UCF101 split-1.

Results with T-CAM model. To benchmark on UCF101
split-1, we pre-train T-CAM models with three different
datasets and fine-tune each model with three different sets
of layers. For pre-training, we directly re-use the models
trained in the previous sections: one on UCF101 (on the
subset that can be stabilized with black framing removed)
from section 3, and also those trained on Flickr-AoT and
Kinetics-AoT. To fine-tune for action classification, we re-
place the logistic regression for AoT with classification lay-
ers (i.e., a fully-connected layer + softmax loss), and fine-
tune the T-CAM model with action labels. To understand
the effectiveness of the AoT features from the different lay-
ers, we fine-tune three sets of layers separately: the last
layer only, all layers after temporal fusion, and all layers.
To compare with Wang el al. [24], we redo the random and
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Initialization Fine-tune
Last layer After fusion All layers

Random
[24] - - 81.7%

T-CAM 38.0% 53.1% 79.3%

ImageNet
[24] - - 85.7%

T-CAM 47.9% 68.3% 84.1%

AoT
UCF101 58.6% 81.2% 86.3%

Flickr 57.2% 79.2% 84.1%
(ours) Kinetics 55.3% 74.3 % 79.4%

Table 5: Action classification on UCF101 split-1 with flow
input for different pre-training and fine-tuning methods. For
random and ImageNet initialization, our modified T-CAM
model achieves similar result to the previous state-of-the-
art [24] that uses a VGG-16 network. Self-supervised pre-
training of the T-CAM model using the arrow of time (AoT)
consistently outperforms random and ImageNet initializa-
tion, i.e. for all three datasets and for fine-tuning on three
different sets of levels.

UCF101 HMDB51split1 split2 split3
ImageNet [24] 85.7% 88.2% 87.4% 55.0%

AoT (ours) 86.3% 88.6% 88.7% 55.4%

Table 6: Action classfication on UCF101 (3 splits) and
HMDB51 with flow input. We compare T-CAM models
pre-trained with AoT to VGG-16 models pre-trained with
ImageNet [24]. All models are pre-trained on the respective
action recognition data and fine-tuned for all layers.

ImageNet initialization with the T-CAM model instead of
the VGG-16 model, use 10 frames’ flow maps as input, and
only feed videos played in the original direction.

In Table 5, we compare self-supervision results for dif-
ferent initialization methods that use flow as input. First, it
can be seen from the random and ImageNet initializations,
that a VGG-16 model [24] has similar performance to the
T-CAM model when fine-tuned on all layers. Second, self-
supervised training of the T-CAM model with AoT on each
of the three datasets outperforms random and ImageNet ini-
tialization for fine-tuning tasks at all three different levels
of the architecture. Third, our AoT self-supervision method
exceed the state-of-the-art when pre-trained on UCF101.

To benchmark on UCF101 other splits and HMDB51
dataset, we choose the best setting from above, that is to
pre-train T-CAM model on the action recognition data and
fine-tune for all layers. As shown in Table 6, our AoT self-
supervision results outperform ImageNet pre-training [24]
by around 0.5% consistently.
Comparison with other input and architectures. To
further explore the effect of backbone architectures and

Model/Input Flow RGB D-RGB
VGG-16 86.3% 78.1% 85.8%

ResNet-50 87.2% 86.5% 86.9%

Table 7: Action classification on UCF101 split-1, using
AoT self-supervision but with other input and architectures.
We compare results using VGG-16 and ResNet-50 back-
bone architectures, and flow, RGB and D-RGB input.

Rand. Shuffle [13] Odd-One [6] AoT
RGB 38.6% 50.9% - 55.3%

D-RGB - - 60.3% 68.9%

Table 8: Action classification on UCF101 split-1, using
AlexNet architecture but different self-supervision meth-
ods. We compare our results pre-trained with AoT to previ-
ous self-supervision methods using RGB or D-RGB input.

modalites, we compare T-CAM with VGG-16 to ResNet-
50, and stacked frames of flow to those of RGB and RGB
difference (D-RGB) for action recognition on UCF101
split-1 dataset (Table 7). All models are pre-trained on
UCF101 split-1 with 20-frame input and fine-tuned with all
layers. To pre-train AoT with RGB and D-RGB input, we
modify the number of channels of conv1 filters correspond-
ingly. In terms of the backbone architecture, the ResNet-
50 models consistently outperform VGG-16 for each input
modality. In terms of the input modality, all three modal-
ities have similar performance for action recognition using
ResNet-50 with our AoT pre-training and also with Ima-
geNet pre-training as shown in Bilen et al. [2].
Comparison with other self-supervision methods. To
compare with previous self-supervision methods [6, 13]
that have used AlexNet as the backbone architecture and
fine-tuned with all layers, we include fine-tuning results
for models pre-trained using AoT on UCF101 split-1 for
AlexNet with RGB or D-RGB inputs. In Table 8, our AoT
results significantly outperform the prior art.

5.2. Video forensics: reverse film detection

Reverse action is a type of special effect in cinematog-
raphy where the action that is filmed ends up being shown
backwards on screen. Such techniques not only create artis-
tic scenes that are almost impossible to make in real life
(e.g. broken pieces coming back together), but also make
certain effects easier to realize in the reverse direction (e.g.
targeting a shot precisely). Humans can often detect such
techniques, as the motion in the video violates our temporal
structure prior of the world (e.g. the way people blink their
eyes or steam is emitted from an engine). For this video
forensics task, we tested the T-CAM model trained on the
Flickr-AoT and Kinetics-AoT datasets with 10 frames of
flow input, as some clips have fewer than 20 frames.
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(a)� (b)�
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(e)� (f)�

Figure 5: Example results from our Reverse Film dataset–short clips appearing time-reversed in Hollywood movies. For each
example, we show four images: three frames from the input clip for our T-CAM model in their displayed order in the movie,
and the class activation map with sparse motion field overlaid on the middle frame. As all the clips are played in the reverse
direction, the ground truth class activation map color is blue. On examples that our T-CAM model classifies AoT correctly
and confidently, the model exploits both low-level physical cues, e.g. (a) water falls, (b) smoke spreads, and (c) block falls
and spreads; and high-level cues, e.g. (d) fish swim forwards, and (e) human action. The T-CAM model is unconfident about
a motion that can be intrinsically symmetric, e.g. (f) wheel rotation.

Reverse Film Dataset. We collected clips from Hollywood
films which are displayed in reverse deliberately. Thanks
to the “trivia” section on the IMDB website, shots that use
reverse action techniques are often pointed out by the fans
as Easter eggs. With keyword matching (e.g. “reverse mo-
tion”) and manual refinement on the trivia database, we col-
lected 67 clips from 25 popular movies, including ‘Mary
Poppins’, ‘Brave Heart’ and ‘Pulp Fiction’. See the project
page for the movie clips and more analysis of the common
cues that can be used to detect the arrow of time.
Classification and localization results. As can be seen in
Table 9, the overall test accuracy of the T-CAM model is
76% (trained on Flickr-AoT) and 72% (trained on Kinetics-
AoT), where human performance (using Amazon Mechani-
cal Turk) is 80%, and the baseline model [14] achieves 58%.
In Figure 5, we visualize both successful and failure cases,
and show the T-CAM heatmap score of being backward in
time. The successful cases are consistent with our earlier
finding that the model learns to capture both low-level cues
such as gravity (Figure 5a,c) and entropy (Figure 5b), as
well as high-level cues (Figure 5d-e), and . For the failure
cases, some are due to the symmetric nature of the motion,
e.g. wheel rotation (Figure 5f).

6. Summary
In this work, we manage to learn and use the prevalent ar-

row of time signal from large-scale video datasets. In terms

Chance [14] T-CAM (ours) HumanFlickr Kinetics
Acc. 50% 58% 76% 72% 80%

Table 9: AoT test accuracy on the Reverse Film dataset.
The T-CAM model pre-trained on either Flicker-AoT or
Kinetics-AoT outperforms Pickup et al. [14], and is closer
to human performance.

of learning the arrow of time, we design an effective Con-
vNet and demonstrate the necessity of data pre-processing
to avoid learning artificial cues. We develop two large-scale
arrow of time classification benchmarks, where our model
achieves around 80% accuracy, significantly higher than the
previous state-of-the-art method at around 60%, and close
to human performance. In addition, we can identify the
parts of a video that most reveal the direction of time, which
can be high- or low-level visual cues.

In terms of using the arrow of time, our model outper-
forms the previous state-of-the-art on the self-supervision
task for action recognition, and achieves 76% accuracy on
a new task of reverse film detection, as a special case for
video forensics.
Acknowledgments. This work was supported by NSF
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