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Abstract We seek to understand the arrow of time in videos
— what makes videos look like they are playing forwards or
backwards? Can we visualize the cues? Can the arrow of
time be a supervisory signal useful for activity analysis? To
this end, we build three large-scale video datasets and apply
a learning-based approach to these tasks.

To learn the arrow of time efficiently and reliably, we
design a ConvNet suitable for extended temporal footprints
and for class activation visualization, and study the effect
of artificial cues, such as cinematographic conventions, on
learning. Our trained model achieves state-of-the-art per-
formance on large-scale real-world video datasets. Through
cluster analysis and localization of important regions for the
prediction, we examine learned visual cues that are consis-
tent among many samples and show when and where they
occur. Lastly, we use the trained ConvNet for two appli-
cations: self-supervision for action recognition, and video
forensics — determining whether Hollywood film clips have
been deliberately reversed in time, often used as special ef-
fects.
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1 Introduction

We seek to learn to see the arrow of time — to tell whether
a video sequence is playing forwards or backwards. At a
small scale, the world is reversible—the fundamental physics
equations are symmetric in time. Yet at a macroscopic scale,
time is often irreversible and we can identify certain motion
patterns (e.g., water flows downward) to tell the direction of
time. But this task can be challenging: some motion patterns
seem too subtle for human to determine if they are playing
forwards or backwards, as illustrated in Figure 1. For exam-
ple, it is possible for the train to move in either direction
with acceleration or deceleration (Figure 1d).

Furthermore, we are interested in how the arrow of time
manifests itself visually. We ask: first, can we train a reli-
able arrow of time classifier from large-scale natural videos
while avoiding artificial cues (i.e. cues introduced during
video production, not from the visual world); second, what
does the model learn about the visual world in order to solve
this task; and, last, can we apply such learned commonsense
knowledge to other video analysis tasks?

Regarding the first question on the arrow of time classifi-
cation, we go beyond the previous work (Pickup et al 2014)
to train a ConvNet, exploiting thousands of hours of online
videos, and let the data determine which cues to use. Such
cues can come from high-level events (e.g., riding a horse),
or low-level physics (e.g., gravity). But as discovered in the
previous self-supervision work (Doersch et al 2015), Con-
vNet may learn artificial cues from still images (e.g., chro-
matic aberration) instead of a useful visual representation.
Videos, as collections of images, have additional artificial
cues introduced during creation (e.g. camera motion), com-
pression (e.g. inter-frame codec) or editing (e.g. black fram-
ing), which may be used to indicate the video’s temporal
direction. Thus, we design controlled experiments to under-
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Fig. 1: Seeing these ordered frames from videos, can you tell whether each video is playing forward or backward? (answer
below'). Depending on the video, solving the task may require (a) low-level understanding (e.g. physics), (b) high-level
reasoning (e.g. semantics), or (c) familiarity with very subtle effects or with (d) camera conventions. In this work, we learn
and exploit several types of knowledge to predict the arrow of time automatically with neural network models trained on

large-scale video datasets.

stand the effect of artificial cues from videos on the arrow of
time classification.

Regarding the second question on the interpretation of
learned features, we highlight the observation from Zhou
et al (2014): in order to achieve a task (scene classification
in their case), a network implicitly learns what is necessary
(object detectors in their case). We expect that the network
will learn a useful representation of the visual world, involv-
ing both low-level physics and high-level semantics, in order
to detect the forward direction of time.

Regarding the third question on applications, we use the
arrow-of-time classifier for two tasks: video representation
learning and video forensics. For representation learning, re-
cent works have used temporal ordering for self-supervised
training of an image ConvNet (Misra et al 2016; Fernando
et al 2017). Instead, we focus on the motion cues in videos
and use the arrow of time to pre-train action recognition
models. For video forensics, we detect clips that are played
backwards in Hollywood films. This may be done as a spe-
cial effect, or to make an otherwise dangerous scene safe
to film. We show good performance on a newly collected
dataset of films containing time-reversed clips, and visual-
ize the cues that the network uses to make the classification.
More generally, this application illustrates that the trained
network can detect videos that have been tampered in this
way. In both applications we exceed the respective state of
the art.

In the following, we first describe our ConvNet model
(Section 2), incorporating recent developments for human
action recognition and network interpretation. Then we iden-
tify and address three potential confounds to learning the ar-
row of time discovered by the ConvNet (Section 4), for ex-
ample, exploiting prototypical camera motions used by di-

' Forwards: (b), (c); backwards: (a), (d). Though in (d) the train can
move in either direction.

rectors. With the properly pre-processed data, we train our
model using two large video datasets (Section 5): a 147k clip
subset of the Flickr100M dataset (Thomee et al 2016) and a
58k clip subset of the Kinetics dataset (Kay et al 2017). We
evaluate test performance and visualize the representations
learned to solve the arrow-of-time task. Lastly, we demon-
strate the usefulness of our ConvNet arrow of time detec-
tor for self-supervised pre-training in action recognition and
for identifying clip from Hollywood films made using the
reverse-motion film technique (Section 7).

1.1 Related Work

Several recent papers have explored the usage of the tempo-
ral ordering of images. Dekel et al (2014) consider the task
of photo-sequencing — determining the temporal order of a
collection of images from different cameras. Others have
used the temporal ordering of frames as a supervisory sig-
nal for learning an embedding (Ramanathan et al 2015), for
self-supervision training of a ConvNet (Misra et al 2016;
Fernando et al 2017), and for construction of a representa-
tion for action recognition (Fernando et al 2015).

However, none of these previous works address the task
of detecting the direction of time. Pickup et al (2014) ex-
plore three representations for determining time’s arrow in
videos: asymmetry in temporal behaviour (using hand-crafted

SIFT-like features), evidence for causality, and an auto-regressive

model to determine if a cause influences future events. While
their methods work on a small dataset collected with known
strong arrow of time signal, it is unclear if the method works
on generic large-scale video dataset with different artificial
signals. The study of the arrow of time is a special case
of causal inference, which has been connected to machine
learning topics, such as transfer learning and covariate shift
adaptation (Scholkopf et al 2012). Recently, Xie et al (2017)
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Fig. 2: Illustration of our Temporal Class-Activation-Map
Network (T-CAM) for the arrow of time classification. Start-
ing from the traditional VGG-16 architecture (Simonyan
and Zisserman 2014b) for image recognition, (a) we first
concatenate the convS features from the shared convolu-
tional layers, (b) and then replace the fully-connected layer
with three convolution layers and global average pooling
layer (GAP) (Lin et al 2013; Springenberg et al 2014;
Szegedy et al 2015; Zhou et al 2016) for better activation
localization.

discovered that the I3D action recognition model (Carreira
and Zisserman 2017) is invariant to the direction of time but
not to the frame order, when trained on RGB frame input.

In terms of ConvNet architectures, we borrow from re-
cent work that has designed ConvNets for action recognition
in videos with optical flow input to explicitly capture motion
information (Simonyan and Zisserman 2014a; Wang et al
2016). We also employ the Class Activation Map (CAM)
visualization of Zhou et al (2016).

2 ConvNet Architecture

To focus on the time-varying aspects of the video, we only
use optical flow as input to the ConvNet, and not its RGB
appearance. Below, we first motivate the architecture, and
then describe implementation details.
Model design. Our aim is to design a ConvNet that has
an extended temporal footprint, and that also enables the
learned features to be visualized. We also want the model
to have sufficient capacity to detect subtle temporal signals.
To this end, we base our model on three prior ConvNets: the
VGG-16 network (Simonyan and Zisserman 2014b) as the
backbone for the initial convolutional layers, for sufficient
capacity; the temporal chunking in the model of Feichten-
hofer et al (2016) to give an extended temporal footprint;
and the CAM model of Zhou et al (2016) to provide the vi-
sualization.

The resulting architecture is referred to as “Temporal
Class-Activation Map Network™ (T-CAM) (Figure 2). For

(b) warped frame

(a) original frame (c) simulation

Fig. 3: The 3-cushion billiard dataset. (a) Original frame
from a 3-cushion video; (b) the frame warped (with a ho-
mography transformation) to an overhead view of the bil-
liard table; and, (c) a simulated frame to match the real one
in terms of size and number of balls.

the temporal feature fusion stage (Figure 2a), we first mod-
ify the VGG-16 network to accept a number of frames (e.g.
10) of optical flow as input by expanding the number of
channels of conv1 filters (Wang et al 2016). We use T such
temporal chunks, with a temporal stride of 7. The conv5 fea-
tures from each chunk are then concatenated. Then for the
classification stage (Figure 2b), we follow the CAM model
design to replace fully-connected layers with three convolu-
tion layers and global average pooling (GAP) before the bi-
nary logistic regression. Batch-Normalization layers (Ioffe
and Szegedy 2015) are added after each convolution layer.
Implementation details. To replace the fully-connected lay-
ers from VGG-16, we use three convolution layers with size
3x3x1024, stride 1x1 and pad 1x1 before the GAP layer.
For input, we use TV-L1 (Zach et al 2007) to extract optical
flow.

For all experiments in this paper, we split each dataset
70%-30% for training and testing respectively, and feed both
forward and backward versions of the video to the model.
The model is trained end-to-end from scratch, using fixed
five-corner cropping and horizontal flipping for data aug-
mentation. Clips with very small motion signals are filtered
out from the training data using flow. Given a video clip for
test, in addition to the spatial augmentation, we predict AoT
on evenly sampled groups of frames for temporal augmenta-
tion. The final AoT prediction for each video is based on the
majority vote of confident predictions (i.e. score |x —0.5] >
0.1), as some groups of frames may be uninformative about
AoT.

3 Learning from Simulation Videos

An an initial evaluation of the T-CAM model, we first avoid
the compounding factors in real world videos (e.g. temporal
codec or sample bias) and turn to graphic simulations where
we have full control of the physics. We choose to simulate a
simple world, the three-cushion billiards game (Figure 3a),
where the principal signals for the arrow of time are: rolling
friction and energy loss at collisions/bounces. We then apply
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Method 3c-AoT-S | 3c-AoT Signal | Acc
Pickup et al (2014) 63% 59% none 50%
T-CAM (T=1) 78% 83% friction | 97%
T-CAM (T=2) 81% 85% collision | 95%

(a) (b)

Table 1: Test accuracy on the Three-cushion datasets. (a) We
compare T-CAM model with either one (T=1) or two (T=2)
temporal segments with the baseline model on both simula-
tion (3¢c-AoT-S) and real wolrd (3c-AoT) datasets. (b) For
the simulation dataset, we show the test accuracy for videos
grouped by different physical settings.

Sl e B 0 (T |

e PRk

random learned none friction  collision damp

(a) AoT heatmap

(b) density map of physical settings

Fig. 4: Visualization results on 3c-AoT-S dataset. (a)
heatmap; (b) density map.

the T-CAM model, trained on the simulations, to sequences
of real billiards games.

3.1 Dataset

Three-cushion Arrow of Time Dataset (3c-AoT). We down-
load YouTube videos from a three-cushion billiard tourna-
ment and extract 167 individual shots (around 200 frames
each). These are only used for testing. As the cameras are
placed at different angles, and the perspective projection may
cause the ball to appear to move faster as it comes towards
the camera. To avoid this artifact, we warp the original frames
(Figure3a) into a canonical overhead position (Figure3b).
Three-cushion Arrow of Time Simulation Dataset (3c-
AoT-S). We extend the physics engine in Fragkiadaki et al
(2015) to handle multiple balls with friction and collision
damping (Figure 3c). We simulate 15k videos (100 frames)
and randomly make them with one of the three scenarios:
no friction nor collision damp, friction only and collision
damp only. The physical parameters (rolling friction coef-
ficient u = 0.5, and collision damping factor n = 0.5) are
estimated from real videos in 3c-AoT.

3.2 Experiments
Classification. We train our model on the simulation dataset

(3c-AoT-S) with different number of input segments (7=1
and T=2). We not only test on 3c-AoT-S, but also on the real

sequences in 3c-AoT directly. As the baseline, we train Pickup
et al (2014) (results reproduced on TA180) with the same
setup.

Table 1 shows that temporal fusion (i.e. T=2) helps the

most when the signal is weak (i.e. friction) and the collision
damping is a stronger signal. Note, there are frequent colli-
sions, and so collision damping makes a significant contri-
bution to the time asymmetry.
Visualization. In addition to test accuracy, we visualize the
2-dimensional t-SNE space of the last-layer motion feature
learned by our T-CAM model (7=2). For each test video
from 3c-AoT-S, equal chance to be forward or backward,
we only extract the feature on the central crop.

Shown in Figure 4a, we discretize the t-SNE space into
20%20 bins and compute the heatmap through averaging
ground truth AoT labels for videos from each bin. For com-
parison, we also visualize the heatmap for the feature from
the same network architecture with random weights. As the
t-SNE space is learned without any supervision, the heatmap
reveals that the network learns to transform the initially tem-
porally symmetric feature space into a temporally asymmet-
ric one.

Further, as we also have the labels for the physical set-
tings for each video, we can visualize different groups on the
t-SNE space. In Figure 4b, for each bin, we visualize the ra-
tio of each group, that is the ratio that is close to 1 indicates
most videos from this bin are from such group. see that for-
ward and backward videos with “friction” are clearly sep-
arable; with “collision damp” are often separable as colli-
sions may not happen within the central temporal crop; with
“none” are inseparable.

4 Avoiding Artificial Cues from Videos

A learning-based algorithm may “cheat” and solve the arrow-
of-time task using artificial cues, instead of learning about
the video content. In this section, we evaluate the effect of
three artificial signals, black framing, camera motion and
inter-frame codec, on ConvNet learning and the effective-
ness of our data pre-procession to avoid them.

4.1 Datasets regarding artificial cues

We use the following two datasets to study artificial cues.
UCF101 (Soomro et al 2012). To examine the black fram-
ing and camera motion signal, we use this popular human
action video dataset (split-1). Through automatic algorithms
(i.e. black frame detection and homography estimation) and
manual pruning, we find that around 46% of the videos have
black framing, and 73% have significant camera motion (Ta-
ble 2).
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Fig. 5: Illustration of artificial signals from videos in
UCF101 dataset. (a) The black framing of the clip has non-
zero intensity value (left), and a vertical slice over time dis-
plays an asymmetric temporal pattern (right). After training,
we cluster the learned last-layer feature of top-confident test
clips. We find some clusters have consistent (b) tilt-down or
(c) zoom-in camera motion. We show two frames from two
representative clips for each cluster.

Black frame | +Camera motion
Percent of videos 46% 73%
Acc. before removal 98% 88%
after removal 90% 75%

Table 2: AoT classification results to explore the effect of
black framing and camera motion on UCF101 dataset. AoT
test accuracy drops around 10% after removing black fram-
ing and drops another 10% after removing camera motion.

MJPEG Arrow of Time Dataset (MJPEG-AoT). To in-
vestigate the effect of inter-frame codec, we collect a new
video dataset containing 16.9k individual shots from 3.5k
videos from Vimeo”with diverse content. The collected videos
are either uncompressed or encoded with intra-frame codecs
(e.g. MJPEG and ProRes) where each frame is compressed
independently without introducing temporal direction bias.
We can then evaluate performance with and without inter-
frame codecs by using the original frames or the extracted
frames after video compression with an inter-frame codec
(e.g. H.264). The details of the dataset are in the appendix.

4.2 Experiments regarding artificial cues

We choose the T-CAM model to have two temporal seg-
ments and a total of 10 frames. More experimental details
are in the appendix.

2 http://vimeo.com

5
Train/Test | Original | H.264-F | H.264-B
Original | 59.1% | 582% | 58.6%
H.264-F | 58.1% | 589% | 58.8%
H.264-B | 583% | 59.0% | 58.8%

Table 3: AoT classification results to explore the effect of the
inter-frame codec on MJPEG-AoT dataset. We train and test
on three versions of the data: original (no temporal encod-
ing), encoded with H.264 in forward (H.264-F) and back-
ward (H.264-B) direction. Similar AoT test accuracy sug-
gests that the common H.264 codec doesn’t introduce sig-
nificant artificial signals for our model to learn from.

Black framing. Black frame regions present at the boundary
may not be completely black after video compression (Fig-
ure 5a). The resulting non-zero image intensities can cause
different flow patterns for forward and backward temporal
motion, providing an artificial cue for the AoT.

For control experiments, we train and test our model on

UCF101 before and after black framing removal, i.e., zero
out the intensity of black frame regions. The test accuracy
of the AoT prediction drops from 98% to 90% after the re-
moval. This shows that black frame regions provides artifi-
cial cues for AoT and should be removed.
Camera motion. To understand the visual cues learned by
our model after black framing removal, we perform K-means
(K=20) clustering on the extracted feature before the logis-
tic regression layer for the top-1K confidently classified test
videos (foward or backward version). We estimate the ho-
mography for each video’s camera motion with RANSAC,
and compute the average translation and zoom in both hor-
izontal and vertical directions. We find some video clus-
ters have consistently large vertical translation motion (Fig-
ure 5b), and some have large zoom-in motion (Figure 5c).
Such strong correlation among the confident clips between
their learned visual representation and the camera motion
suggests that cinematic camera motion conventions can be
used for AoT classification.

For control experiments, we use a subset of UCF101
videos that can be well-stabilized. The test accuracy of the
AoT prediction further drops from 88% to 75% before and
after stabilization. Thus, we need to stabilize videos to pre-
vent the model from using camera motion cues.
Inter-frame codec. For efficient storage, most online videos
are compressed with temporally-asymmetric video codecs,
e.g. H.264. They often employ “Forward prediction”, which
may offer an artificial signal for the direction of time. As it is
almost impossible to revert the codecs, we train and test on
our specially collected MJPEG-AoT dataset, where videos
are not subject to this artificial signal.

We first remove black framing from these videos and
choose individual shots that can be well-stabilized, based
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on the discoveries above. Then we create different versions
of the downloaded MJPEG-Ao0T dataset (Original) by en-
coding the videos with the H.264 codec in either the for-
ward (H.264-F) or backward direction (H.264-B), to sim-
ulate the corruption from the inter-frame codec. In Table 3
we show results where the model is trained on one version of
the MJPEG-AoT dataset and tested on another version. No-
tably, our model has similar test accuracy, indicating that our
model can not distinguish videos from each dataset for the
AoT prediction. This finding offers a procedure for build-
ing a very large scale video dataset starting from videos that
have been H.264 encoded (e.g. Youtube videos), without be-
ing concerned about artificial signals.

Conclusion. We have shown that black framing and camera
motion do allow our model to learn the artificial signals for
the AoT prediction, while the inter-frame codec (e.g. H.264)
does not introduce significant signals to be learned by our
model. For the experiments in the following sections we
remove black framing and stabilize camera motion to pre-
process videos for the AoT classification.

5 Learning the Arrow of Time

After verifying our T-CAM model on simulation videos
and removing the known artificial signals from real world
videos, we benchmark it on three real world video datasets
and examine the visual cues it learns to exploit for the AoT.

5.1 Datasets

The previous AoT classification benchmark (Pickup et al
2014) contains only a small number of videos that are man-
ually selected with strong AoT signals. To create large-scale
AoT benchmarks with general videos, we pre-process two
existing datasets through automated black framing removal
and camera motion stabilization within a footprint of 41
frames. We use a fixed set of parameters for the data pre-
processing, with the details in the appendix. We then use the
following three video datasets to benchmark AoT classifica-
tion.

TA-180 (Pickup et al 2014). This dataset has 180 videos
manually selected from Youtube search results for specific
keywords (e.g. “dance” and “steam train”) that suggest strong
low-level motion cues for AoT. As some videos are hard to
stabilize, in our experiments we only use a subset of 165
videos that are automatically selected by our stabilization
algorithm.

Flickr Arrow of Time Dataset (Flickr-AoT). The Flickr
video dataset (Thomee et al 2016; Vondrick et al 2016) is
unlabeled with diverse video content, ranging from natural
scenes to human actions. Starting from around 1.7M Flickr

# chunks T=1 T=2 T=4

# frame 10 20 40 10 20 20

0% overlap | 65% | 62% | 67% | 79% | 81% | 71%

50% overlap N/A 75% | 76% | 73%

Table 4: Empirical ablation analysis of T-CAM on Flickr-
Ao0T. We compare the AoT test accuracy for models with
a different number of input chunks (7), total number of
frames, and overlap ratio between adjacent chunks. The best
model takes in a total 20 frames of flow maps as input, and
divides them into two 10-frame chunks without overlap to
feed into the model.

videos, we obtain around 147K videos after processing to
remove artificial cues.

Kinetics Arrow of Time Dataset (Kinetics-AoT). The Kinec-
tics video dataset (Kay et al 2017) is fully labeled with 400
categories of human actions. Starting from around 266K train
and validation videos, we obtain around 58K videos after
processing to remove artificial cues. To balance for the AoT
classification, we re-assign train and test set based on a 70-
30 split for each action class.

5.2 Empirical ablation analysis

On the Flickr-AoT dataset, we present experiments to an-
alyze various design decisions for our T-CAM model. With
the same learning strategies (e.g. number of epochs and learn-
ing schedule), we compare models trained with (i) a differ-
ent number of temporal segments (chunks); (ii) differing to-
tal number of input frames of flow; and (iii) varying overlap
ratio between adjacent temporal segments.

In Table 4, we find that the best T-CAM model on Flickr-
AoT has two temporal segments with 20 frames total with-
out overlap. We use this model configuration for all the ex-
perimental results in this section.

5.3 Experiments

In the following, we benchmark AoT classification results
on all three datasets above.

Setup. For the baseline comparison, we implement the pre-
vious state-of-the-art, statistical flow method (Pickup et al
2014), and achieve similar 3-fold cross-validation results on
the TA-180 dataset. To measure human performance, we use
Amazon Mechanical Turk (AMT) for all three benchmark
datasets (using random subsets for the large-scale datasets),
where input videos have the same time footprint (i.e. 20
frames) as our T-CAM model. More details about the AMT
study are in the appendix.

Classification results. On the TA-180 benchmark (Pickup
et al 2014), we only test with models trained on Flickr-AoT
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(a) Clusters in Flickr-AoT

(b) Action classes in Kinetics-AoT

Fig. 6: Examples of T-CAM localization results on test clips from (a) Flickr-AoT and (b) Kinetics-AoT dataset. For each
input clip, we compute its class activation map (CAM) from the model trained on the same dataset. We show its middle frame
on the left, and overlay color-coded CAM (red for high probability of being forward, blue for backwards) and sparse motion
vector on regions with confident AoT classification. For each dataset, we show localization results for two AoT-consistent
clusters (i.e., most clips have the same AoT label within the cluster) and one AoT-inconsistent cluster. All the examples here
are played in the forward direction and AoT in regions with red CAM are correctly classified. Notice that examples from

AoT-inconsistent clusters have a mix of red and blue regions.

Data (#clip) Flow- i T_CAM . Human
Word Flickr | Kinetics
TA-180 (165) 82% 83% 79% 93%
Flickr-AoT (147k) 62% 81% 73% 81%
Kinetics-AoT (58k) | 59% 71% 79 % 83%

Table 5: AoT classification benchmark results on three
datasets. We compare the T-CAM model, trained on ei-
ther Flickr-AoT or Kinetics-AoT, with the previous state-of-
the-art method (Pickup et al 2014) and with human perfor-
mance. The T-CAM models outperform Pickup et al (2014)
on the large-scale datasets and achieves similar results on
the previous TA-180 benchmark (Pickup et al 2014) (for test
only).

or Kinetics-AoT dataset, as the dataset is too small to train
our model. As shown in Table 5, the performance of the T-
CAM models on TA-180, without any fine-tuning, are on-
par with Pickup et al (2014), despite being trained on differ-
ent datasets. Testing on the large-scale datasets, Flickr-AoT
and Kinetics-AoT, our T-CAM models are consistently bet-
ter than Pickup et al (2014) and are on par with human judg-
ment. To compare the effectivenss of different architecture,
we replace the backbone from VGG-16 with ResNet-50 and
get similar performance on Flicker-AoT dataset.

Localization results. We localize regions that contribute most
to the AoT prediction using techniques in Zhou et al (2016).

Given the 14 x 14 class activation map, we normalize it to a
0-1 probability heatmap p and resize it back to the original
image size. Image regions are considered important for AoT
prediction if their probability value is away from the ran-
dom guess probability 0.5, i.e. |[p — 0.5 > 0.2. To visualize
these important regions, we compute both the color-coded
heatmap with a “blue-white-red colormap”, where time for-
ward evidence is red (close to 1) and backward is blue (close
to 0), and also the sparse motion vectors on the middle frame
of the input. In Figure 6, for each example we show its mid-
dle frame and that with the heatmap and motion vector over-
lay for regions with confident predictions.

Clustering results. For both Flickr-AoT and Kinetics-AoT
datasets, we discover clusters of consistent motion pattern
that are either indicative or not for the AoT. Given the fea-
ture maps from the last convolutional layer, we perform K-
means clustering with K=50. For each cluster, we compute
the standard deviation of AoT label from the cluster sam-
ples. A cluster with low standard deviation of AoT label is
“AoT-consistent”, as its samples share the common feature
that is indicative for AoT prediction. For the Flickr-AoT
dataset, the two visualized AoT-consistent clusters corre-
spond to the visual concepts of “human walk” and “water
fall” (Figure 6a). For the Kinetics-AoT dataset, the two vi-
sualized AoT-conistent action classes are “crawling baby”
and “shredding paper”, while the AoT-inconsistent action
class is “playing ukulele” (Figure 6b).
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Fig. 7: AoT classification results on the Kinectics-AoT
dataset by human action classes. (a) top three action classes
that have either highest or lowest test accuracy. The high
accuracy classes (“roller skating”, “passing American foot-
ball in game” and “riding mule”) have clear motion direc-
tion; while the low accuracy classes (“brush painting”, “do-
ing nails” and “shining shoes”) are visually repetitive. (b)
distribution of test accuracy over different actions.

6 Is Human Motion Visually Symmetric in
Time?

It is interesting to consider whether human motion are visu-
ally reversible. For example, a person sitting down is aided
by gravity, but standing up must work against gravity. This
asymmetry is reflected in the muscle patterns and the tempo-
ral sequence of the body posture. For case studies, we make
use of semantic labels of human motion and investigate what
type of body motion or lip motion is visually symmetric in
time.

6.1 Body Motion

As clips from the Kinetics-AoT dataset are labeled with hu-
man action class, we directly analyze the AoT classifica-
tion result from the previous section for each action class.
We show the histogram of the test accuracy over different
human action (Figure 7a), where most have around 80%
test accuracy. For the extremes, we show the top three ac-
tions with highest accuracy are “roller skating”, “passing
American football in game” and “riding mule”, and the ac-
tions with lowest accuracy (chance performance) are: “brush
painting”, “doing nails” and “shining shoes” (Figure 7b). As
expected, action classes with high AoT accuracy have clear
motion direction; while those with low accuracy are visually

repetitive.

6.2 Lip Motion

We investigate if it is possible to determine if a face is speak-
ing backwards or forwards using visual information alone.
That the direction can be determined will depend, of course,
on what is spoken — some words or phrases will be the vi-
sual equivalent of a palindrome, and it will not be possible

video

# words

flow

08 08 09 095 1
test acc

(b) histogram of acc for each word

(a) example video and input flow

Fig. 8: AoT classification results on the lip reading dataset
by word labels. (a) input motion of mouth region, and (b)
distribution of test accuracy over different words.

to tell the direction for these. Conversely, if we start with a
character palindrome (like ‘racecar’), it does not follow that
this will be a visual palindrome, just as it does not follow
that it will be an audio palindrome.

Dataset. We use the recently released large-scale ‘Lip Read-
ing in the Wild’ (LRW) dataset (Chung and Zisserman 2016).
This has 1-second long video clips for 500 different words,
with around 1000 examples for each word ‘spoken’ by hun-
dreds of different speakers. We use the dataset’s training and
test partitions, so that all tests are on unseen samples of 50
clips per word for the 500 word test set. The dataset provides
a stabilized lip region (which we train and test on) as well as
full faces. An example clip is shown in Figure 8a.

Models and results. We train a new T-CAM model on the
LRW dataset, using the training procedure described in sec-
tion 2. The performance is significantly bettern than that on
generic videos (i.e. on Flickr-AoT), with the T-CAM model
able to capture the arrow-of-time signal very well in this
specific domain. Training on the entire training set gives a
time’s arrow classification test performance of 97.6%. How-
ever, the model is actually able to learn from far fewer words
than this — for example it can reach a performance of 83.2%
when trained on as few as 10 words (meaning that it has not
seen examples of the other 490 words at all).

We show the histogram of the test accuracy over differ-
ent words (Figure 8b), where most have around 95% test
accuracy. For the extremes, we find that the top five words
are: ‘Warning’, ‘“Weekend’, ‘Today’, ‘Morning’ and ‘Build’;
and the words with lowest accuracy (chance performance)
are: ‘System’, ‘National’, ‘Global’, ‘George’ and ‘Enough’.
Of these, ‘George’ is fairly close to an audio palindrome,
though none are character palindromes.

7 Using the Arrow of Time

In this section, we describe two applications of the arrow of
time signal: self-supervised pre-training for action recogni-
tion, and reverse film detection for video forensics.
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Inout Pre-train Arch Fine-tune
P Label \ Dataset ’ Last layer | After fusion All layers

.. VGG-16 - - 81.7% (Wang et al 2016)
N/A (Random init.) T-CAM | 38.0% 53.1% 79.3%

. VGG-16 - - 85.7% (Wang et al 2016)
Flow | |xObjectelass | ImageNet a5 68.3% 84.1%
UCF101 58.6 % 81.2% 86.3%
2 AoT class Flickr-AoT T-CAM 57.2% 79.2% 84.1%
(ours) Kinetics-AoT 55.3% 74.3 % 79.4%

Table 6: Action classification on UCF101 split-1 with flow input for different pre-training and fine-tuning methods. For ran-
dom and ImageNet initialization, our modified T-CAM model achieves similar result to the previous state-of-the-art (Wang
et al 2016) that uses a VGG-16 network. Self-supervised pre-training of the T-CAM model using the arrow of time (AoT)
consistently outperforms random and ImageNet initialization, i.e. for all three datasets and for fine-tuning on three different

sets of levels.

UCF101
Method/Dataset Sphitl Sphic2 SHE HMDBS51
Wang et al (2016) | 85.7% | 88.2% | 87.4% 55.0%
AoT (ours) 86.3% | 88.6% | 88.7% 55.4%

Table 7: Additional action classfication results on UCF101
(3 splits) and HMDBS51. We use the flow input and fine-
tune them for all layers. Our T-CAM models pre-trained
with AoT classes on the respective action recognition data
outperforms the previous state-of-the-art (Wang et al 2016)
using VGG-16 models pre-trained with object classes on Im-
ageNet.

7.1 Self-supervised pre-training

Initialization plays an important role in training neural net-

works for video recognition tasks. Self-supervised pre-training

has been used to initialize action classification networks for
UCF101, for example by employing a proxy task such as
frame order, that does not require external labels (Misra et al
2016; Fernando et al 2017; Liu et al 2017). For image input
(i.e. the spatial stream), these approaches show promising
results that are better than random initialization. However,
their results are still far from the performance obtained by
pre-training on a supervised task such as ImageNet classifi-
cation (Simonyan and Zisserman 2014a; Wang et al 2016).
Further, there has been little self-supervision work on pre-
training for the flow input (the temporal stream). Below we
first show that the AoT signal can be used to pre-train flow-
based action recognition models to achieve state-of-the-art
results on UCF101 and HMDBS51. Then to compare with
previous self-supervision methods, we explore the effects of

different input modalities and architectures on self-supervision

with the AoT signal for UCF101 split-1.
Results with T-CAM model. To benchmark on UCF101

and fine-tune each model with three different sets of layers.
For pre-training, we directly re-use the models trained in the
previous sections: one on UCF101 (on the subset that can
be stabilized with black framing removed) from section 4,
and also those trained on Flickr-AoT and Kinetics-AoT. To
fine-tune for action classification, we replace the logistic
regression for AoT with classification layers (i.e., a fully-
connected layer + softmax loss), and fine-tune the T-CAM
model with action labels. To understand the effectiveness
of the AoT features from the different layers, we fine-tune
three sets of layers separately: the last layer only, all layers
after temporal fusion, and all layers. To compare with Wang
et al (2016), we redo the random and ImageNet initialization
with the T-CAM model instead of the VGG-16 model, use
10 frames’ flow maps as input, and only feed videos played
in the original direction.

In Table 6, we compare self-supervision results for dif-
ferent initialization methods that use flow as input. First, it
can be seen from the random and ImageNet initializations,
that a VGG-16 model (Wang et al 2016) has similar per-
formance to the T-CAM model when fine-tuned on all lay-
ers. Second, self-supervised training of the T-CAM model
with AoT on each of the three datasets outperforms ran-
dom and ImageNet initialization for fine-tuning tasks at all
three different levels of the architecture. Third, our AoT self-
supervision method exceed the state-of-the-art when pre-
trained on UCF101.

To benchmark on UCF101 other splits and HMDB51
dataset, we choose the best setting from above, that is to
pre-train T-CAM model on the action recognition data and
fine-tune for all layers. As shown in Table 7.1, our AoT
self-supervision results outperform ImageNet pre-training
(Wang et al 2016) by around 0.5% consistently.

Comparison with other input and architectures. To fur-
ther explore the effect of backbone architectures and modalites,

split-1, we pre-train T-CAM models with three different datasets we compare T-CAM with VGG-16 to ResNet-50, and stacked
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Input | Pre-train Arch. Accuracy
Flow VGG-16 86.3%
ResNet-50 | 87.2%
VGG-16 78.1%
RGB | AT R esNet-50 | 865%
VGG-16 85.8%
D-RGB ResNet-50 | 86.9%

Table 8: Action classification on UCF101 split-1, using AoT
self-supervision but with other input and architectures. We
compare results using VGG-16 and ResNet-50 backbone ar-
chitectures, and flow, RGB and D-RGB input.

Input Pre-train Arch. Accuracy
Rand. 38.6%
RGB Shuffle 50.9%
AoT (ours) | AlexNet 55.3%
0dd-One 60.3%
D-RGB 30T (ours) 68.9%

Table 9: Action classification on UCF101 split-1, using
AlexNet architecture but different self-supervision meth-
ods. We compare our results pre-trained with AoT to previ-
ous self-supervision methods: shuffle-and-learn (Misra et al
2016) with RGB input and odd-one network (Fernando et al
2017) with D-RGB input.

frames of flow to those of RGB and RGB difference (D-
RGB) for action recognition on UCF101 split-1 dataset (Ta-
ble 8). All models are pre-trained on UCF101 split-1 with
20-frame input and fine-tuned with all layers. To pre-train
AoT with RGB and D-RGB input, we modify the number
of channels of conv] filters correspondingly. In terms of the
backbone architecture, the ResNet-50 models consistently
outperform VGG-16 for each input modality. In terms of
the input modality, all three modalities have similar perfor-
mance for action recognition using ResNet-50 with our AoT
pre-training and also with ImageNet pre-training as shown
in Bilen et al (2016).

Comparison with other self-supervision methods. To com-
pare with previous self-supervision methods (Misra et al 2016;
Fernando et al 2017) that have used AlexNet as the back-
bone architecture and fine-tuned with all layers, we include

fine-tuning results for models pre-trained using AoT on UCF101

split-1 for AlexNet with RGB or D-RGB inputs. In Table 9,
our AoT results significantly outperform the prior art.

7.2 Video forensics: reverse film detection

Reverse action is a type of special effect in cinematogra-
phy where the action that is filmed ends up being shown
backwards on screen. Such techniques not only create artis-

Flow- T-CAM (ours)
Chance Word | Flickr | Kinetics Human
Acc. 50% 58% 76% 72% 80%

Table 10: AoT test accuracy on the Reverse Film dataset.
The T-CAM model pre-trained on either Flicker-AoT or
Kinetics-AoT outperforms the Flow-Word method (Pickup
et al 2014), and is closer to human performance.

tic scenes that are almost impossible to make in real life (e.g.
broken pieces coming back together), but also make certain
effects easier to realize in the reverse direction (e.g. targeting
a shot precisely). Humans can often detect such techniques,
as the motion in the video violates our temporal structure
prior of the world (e.g. the way people blink their eyes or
steam is emitted from an engine). For this video forensics
task, we tested the T-CAM model trained on the Flickr-AoT
and Kinetics-AoT datasets with 10 frames of flow input, as
some clips have fewer than 20 frames.

Reverse Film Dataset. We collected clips from Hollywood
films which are displayed in reverse deliberately. Thanks to
the “trivia” section on the IMDB website, shots that use re-
verse action techniques are often pointed out by the fans as
Easter eggs. With keyword matching (e.g. “reverse motion”)
and manual refinement on the trivia database, we collected
67 clips from 25 popular movies, including ‘Mary Poppins’,
‘Brave Heart’ and ‘Pulp Fiction’. See the project page for
the movie clips and more analysis of the common cues that
can be used to detect the arrow of time.

Classification and localization results. As can be seen in
Table 10, the overall test accuracy of the T-CAM model is
76% (trained on Flickr-AoT) and 72% (trained on Kinetics-
AoT), where human performance (using Amazon Mechani-
cal Turk) is 80%, and the baseline model (Pickup et al 2014)
achieves 58%. In Figure 9, we visualize both successful and
failure cases, and show the T-CAM heatmap score of being
backward in time. The successful cases are consistent with
our earlier finding that the model learns to capture both low-
level cues such as gravity (Figure 9a,c) and entropy (Fig-
ure 9b), as well as high-level cues (Figure 9d-e), and . For
the failure cases, some are due to the symmetric nature of
the motion, e.g. wheel rotation (Figure 9f).

8 Summary

In this work, we manage to learn and use the prevalent ar-
row of time signal from large-scale video datasets. In terms
of learning the arrow of time, we design an effective Con-
vNet and demonstrate the necessity of data pre-processing
to avoid learning artificial cues. We develop two large-scale
arrow of time classification benchmarks, where our model
achieves around 80% accuracy, significantly higher than the
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Fig. 9: Example results from our Reverse Film dataset—short clips appearing time-reversed in Hollywood movies. For each
example, we show four images: three frames from the input clip for our T"-CAM model in their displayed order in the movie,
and the class activation map with sparse motion field overlaid on the middle frame. As all the clips are played in the reverse
direction, the ground truth class activation map color is blue. On examples that our T-CAM model classifies AoT correctly
and confidently, the model exploits both low-level physical cues, e.g. (a) water falls, (b) smoke spreads, and (c) block falls
and spreads; and high-level cues, e.g. (d) fish swim forwards, and (e) human action. The T-CAM model is unconfident about
a motion that can be intrinsically symmetric, e.g. (f) wheel rotation.

previous state-of-the-art method at around 60%, and close to
human performance. In addition, we can identify the parts of
a video that most reveal the direction of time, which can be
high- or low-level visual cues.

In terms of using the arrow of time, our model outper-
forms the previous state-of-the-art on the self-supervision
task for action recognition, and achieves 76% accuracy on a
new task of reverse film detection, as a special case for video
forensics.

Acknowledgments. This work was supported by NSF Grant
1212849 (Reconstructive Recognition), and by the EPSRC
Programme Grant Seebibyte EP/M013774/1.

References

Bilen H, Fernando B, Gavves E, Vedaldi A, Gould S (2016) Dynamic
image networks for action recognition. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp 3034-3042 10

Carreira J, Zisserman A (2017) Quo vadis, action recognition? a
new model and the kinetics dataset. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, pp
4724-4733 3

Chung JS, Zisserman A (2016) Lip reading in the wild. In: ACCV 8

Dekel T, Moses Y, Avidan S (2014) Photo sequencing. IJICV 2

Doersch C, Gupta A, Efros AA (2015) Unsupervised visual represen-
tation learning by context prediction. In: ICCV 1

Feichtenhofer C, Pinz A, Zisserman A (2016) Convolutional two-
stream network fusion for video action recognition. In: CVPR 3

Fernando B, Gavves E, Oramas JM, Ghodrati A, Tuytelaars T (2015)
Modeling video evolution for action recognition. In: CVPR 2
Fernando B, Bilen H, Gavves E, Gould S (2017) Self-supervised video
representation learning with odd-one-out networks. In: CVPR 2,
9,10

Fragkiadaki K, Agrawal P, Levine S, Malik J (2015) Learning visual
predictive models of physics for playing billiards. In: ICLR 4

Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: ICML 3

Kay W, Carreira J, Simonyan K, Zhang B, Hillier C, Vijayanarasimhan
S, Viola F, Green T, Back T, Natsev P, Suleyman M, Zisserman
A (2017) The kinetics human action video dataset. arXiv preprint
arXiv:170506950 2, 6

Lin M, Chen Q, Yan S (2013) Network in network. In: ICLR 3

LiuZ, Yeh R, Tang X, Liu Y, Agarwala A (2017) Video frame synthesis
using deep voxel flow. In: ICCV 9

Misra I, Zitnick L, Hebert M (2016) Shuffle and learn: Unsupervised
learning using temporal order verification. In: ECCV 2,9, 10

Pickup LC, Pan Z, Wei D, Shih Y, Zhang C, Zisserman A, Scholkopf
B, Freeman WT (2014) Seeing the arrow of time. In: CVPR 1, 2,
4,6,7,10

Ramanathan V, Tang K, Mori G, Fei-Fei L (2015) Learning temporal
embeddings for complex video analysis. In: ICCV 2

Scholkopf B, Janzing D, Peters J, Sgouritsa E, Zhang K, Mooij J (2012)
On causal and anticausal learning. In: ICML 2

Simonyan K, Zisserman A (2014a) Two-stream convolutional net-
works for action recognition in videos. In: NIPS 3, 9

Simonyan K, Zisserman A (2014b) Very deep convolutional networks
for large-scale image recognition. In: ICLR 3

Soomro K, Zamir AR, Shah M (2012) UCF101: A dataset of 101 hu-
man actions classes from videos in the wild. In: arXiv preprint
arXiv:1212.0402 4

Springenberg JT, Dosovitskiy A, Brox T, Riedmiller M (2014) Striving
for simplicity: The all convolutional net. In: ICLR 3



12

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D,
Vanhoucke V, Rabinovich A (2015) Going deeper with convolu-
tions. In: CVPR 3

Thomee B, Shamma DA, Friedland G, Elizalde B, Ni K, Poland D,
Borth D, Li LJ (2016) Yfcc100m: The new data in multimedia
research. Communications of the ACM 59(2):64-73 2, 6

Vondrick C, Pirsiavash H, Torralba A (2016) Generating videos with
scene dynamics. In: NIPS 6

Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van Gool L (2016)
Temporal segment networks: towards good practices for deep ac-
tion recognition. In: ECCV 3,9

Xie S, Sun C, Huang J, Tu Z, Murphy K (2017) Rethinking spatiotem-
poral feature learning for video understanding. arXiv preprint
arXiv:171204851 2

Zach C, Pock T, Bischof H (2007) A duality based approach for real-
time tv-1 1 optical flow. In: JPRS 3

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2014) Object
detectors emerge in deep scene CNNs. In: ICLR 2

Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A (2016) Learning
deep features for discriminative localization. In: CVPR 3, 7

Appendices

A Dataset Details

In the main submission, we construct three datasets of real
videos, MJPEG-AoT, Flickr-AoT and Kinetics-AoT, to study
the arrow of time classification problem. Below, we describe
the details of our video collection for MJIPEG-AoT and video
pre-processing for all three datasets.

A.1 Video Collection for MJPEG-AoT

Unlike Youtube, where videos are mosty H.264 compressed,
Vimeo’hosts many professional videos in a variety of origi-
nal formats, which are known. To download videos without
temporal codec compression, we search on Vimeo with key-
words such as “mjpeg”, “prores”, and “cannon+raw” etc. We
verify the codec of the downloaded video with “ffmpeg”. We
initially obtain around 7,000 videos before pre-processing.
To show the diversity of the videos, we use Amazon Me-
chanical Turk to label them into five categorie: talk, walk,
human-object interaction, human-human interaction, and oth-
ers (Figure 10).

A.2 Video Pre-processing

We pre-process the videos as follows:

Black frame removal: For each video, we select five uni-
formly spaced frames and compute the mean RGB value for
each row and column. To remove the black frame, we find

3 http://vimeo.com
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Fig. 10: The MJPEG AoT dataset. It contains around 16.9k
clips without inter-frame video coding from Vimeo. (a) ratio
of videos for each of the five semantic categories: walk, talk,
human-object interaction (H-O), human-human interaction
(H-H), and others (e.g. water, animals, vehicle); (b) sample
frames from the dataset.

the first or last consecutive rows or columns whose mean
value are less than our manually set threshold.

Shot detection: We compute the frame difference for each
video and save the mean RGB difference for each frame.
Then, we select 41-frame-long clips whose mean frame dif-
ferences are not 0 (e.g. static frames) and are not large (e.g.
shot transition or fast camera motion).

Clip stabilization: For each 41-frame-long clip, we first
compute the homography between each frame and the cen-
tral frame independently, and then smooth the estimated ho-
mography with outlier rejection. We stabilize each clip with
these estimated homographies.

Human selection: As a final check on quality, Amazon Me-
chanical Turk is used to remove clips with either black stripes,
multiple-shots or an unstabilized camera. Then, we manu-
ally refine the selection for the final round.

B Artificial Cues: Controlled Experiments

Here we provide experimental details regarding the effect of
black framing and camera motion for the arrow of time pre-
diction (Section 4). We train the T-CAM model on two ver-
sions of the same dataset, one original (A) and one with iden-
tified artificial signals removed (A*). If the model trained on
A has significantly better test result on A than A*, then it is
likely that this model does learn to rely on artificial signals
for predictions. If both models have similar test accuracy on
A*, then it is likely that the artificial signal removal proce-
dure doesn’t introduce new biases.

Black Framing. Given a video with black framing, we can
remove the artificial signals in either of two ways: zero out
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Train/Test | original | zero-out | crop-out
original 98.1% 87.9% 90.3%
zero-out 88.1% 89.9% 87.6%
crop-out 86.4% 86.5% 90.5%

(a) black framing
Train/Test | original | stabilization
original 88.3% 75.2%
stabilization | 70.7 % 78.4%

(b) camera motion

Table 11: An examination of the artificial cues for arrow
of time prediction. We show results of controlled experi-
ments on the effect of black framing and camera motion on
UCF101 (bold numbers are used in the main submission).

the flow values in the black bar region or crop out the black
bar region. Given the three versions of the UCF-101 dataset,
we train and test our T-CAM model for all nine possible
combinations of train and test sets (Table 11a).

Consistently, the model trained on “original” data has

significantly higher test accuracy on “original” test data, im-
plying that the black framing is significantly contributing to
the video direction classification. In contrast, all three mod-
els have similar test accuracies on either version of the mod-
ified data, suggesting both removal procedures are effective
to avoid black frame signals. Thus, to avoid learning the ar-
tificial signals from black frame, we can either zero-out or
crop-out the corresponding flow maps regions.
Camera Motion. Out of the 13.3k videos from UCF101,
we select 9.6k videos which can be well-stabilized within a
chunk of 41 frames. To avoid the effect of black framing, we
crop out the black bar region of the videos. We train-test on
original videos and the stabilized ones (Table 11b).

The T-CAM model trained on ‘original” videos has sig-
nificantly worse performance on the stabilized videos, where
camera motion cues (e.g. zoom-in) not longer exist. On the
other hand, both models have similar test accuracy on the
stabilized videos, suggesting the stabilization method is ef-
fective to cancel out the camera motion bias. Thus, to avoid
learning the artificial camera motion bias, we can stabilize
the videos.

C Human Performance

In Table ??, we show human performance on MJPEG-AoT
and TA 180 dataset through Amazon Mechenical Turk (AMT).
Below, we describe the details of the experiment design and
the interface design.

Experiment Design. Similar to the input duration of our
ConvNet model, we show an animated gif with only 10 frames

Question #1/20 |

(the clip is played in loop)

Is the clip playing forward or backward in time? H Forward | Backward | Not Sure |

Fig. 11: Browser interface for our Amazon Mechanical Turk
study to obtain human performance on the arrow of time
prediction.

(around 0.4 sec) either in forward or backward direction in a
loop. The test subject can either predict the direction of the
displayed clip or choose “not sure”. To control the quality
of the experiment, we add tests inside each AMT job where
the arrow of time signal is obvious (e.g. water falls). For
each clip, we ask five different AMT workers and report the
average accuracy.

Interface. We show the browser interface of our AMT job
in Figure 11.

D Reverse Film Detection
D.1 Common Cues

To understand the common cues used by the T-CAM model
to detect the reverse-playing movie clips, we find clips with
high prediction confidence, cluster their last layer feature
and manually associate these clusters with interpretable cues.
In Figure 12, we show three clips (all played in the back-
ward direction) from each of three identified motion cues:
human head, gravity and human body. For each 10-frame
clip, we show its first, middle and last frame and its predic-
tion heatmap (red for “forward” and blue for “backward”)
overlayed on the middle frame with flow vector in the con-
fident regions.

Human head cluster (Figure 12a) the T-CAM model achieves
high accuracy and the heatmaps are dominated by blue color
in the head region. The first and the third row have global
head motion while the second row shows eye movement.
Gravity cluster (Figure 12b) the T-CAM model is correctly
confident in the region where either water or snow is moving
upward in certain patterns against gravity.

Human body cluster (Figure 12¢) the T-CAM model achieves
around chance accuracy, where the heatmap color varies for
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different human motion patterns. Some motion is indicative
to human for backward arrow of time (e.g. stepping back-
ward motion of the man behind in the first row), while some
motion can be subtle (third row) . Notably, the second row
features Charlie Chaplin’s performance which intentionally
tries to make his backward motion seem natural and suc-
cessfully fools our T-CAM model.

D.2 Full list of videos

The 67 reverse action clips are collected from the follow-
ing 25 movies (in chronological order): Demolition d’un
mur (1896), Modern Times (1936), Shane (1953), Ten Com-
mandments (1956), Mary Poppins (1964), The Rounders (1965),
Butch Cassidy and the Sundance Kid (1969), Chisum (1970),
Superman (1978), Star Wars V: The Empire Strikes Back
(1980), De Lift (1983), Unknown Chaplin (1983), Top Se-
cret! (1984), Evil Dead II (1987), Raising Arizona (1987),
Pulp Fiction (1994), Brave Heart (1995), Anaconda (1997),
A Life Less Ordinary (1997), Bringing Out The Dead (1999),
Memento (2000), The Railway Children (2000), 2 Fast 2 Fu-
rious (2003), Sin City (2005).

Notably, ‘Top Secret!” has a 1.5-minute long single shot
of reverse action!

”
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Fig. 12: Common cues for reverse film detection. In addi-
tion to results in Figure 9, the T-CAM model consistently
focuses on regions with (a) head motion, (b) motion against
gravity, and (c¢) human body motion. For (c), the T-CAM
model can be fooled by professional backward-acting (sec-
ond row) and subtle motion (third row) where red regions
are around performers.



