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This document contains additional experimental and analysis
details that were not included in the main paper. Moreover, we
provide a large collection of visual results to demonstrate the
various success and failure modes of our models and applica-
tions. We include also the interfaces used in our user studies,
and discuss results of additional variants of the experiments
that were run.

BUBBLEVIEW DATA COLLECTION DETAILS
Participants were shown blurry images of data visualizations,
and were instructed to type a text caption describing the image
(Fig. 1). Clicking on different parts of the image revealed
small regions, or bubbles, of the image at full resolution. We
posted 476 MTurk HITs (tasks), each consisting of 3 images
randomly selected from an original set of 1411 images. An
average of 15 participants completed each HIT. To accept one
of our HITs, a participant had to have an approval rate of
over 95% and live in the United States. A participant was
paid $0.5 for each successfully-completed HIT. We removed
data corresponding to participants who provided duplicate or
garbage descriptions and who clicked fewer than 10 times.
Similar to Komarov et al. [10], we exclude workers whose
click rates were more than 3× IQR (interquartile range) higher
than the third quartile, or more than 3× IQR lower than the
first quartile.

MODEL TRAINING DETAILS
The FCN-32s network was initialized with a base learning rate
(lr) of 1e−05, scaled by a factor of 0.1 every 20K iterations.
A stochastic gradient descent [3] solver with a momentum of
0.9 and weight decay of 0.0005 was used, and run for 100K
iterations. The FCN-16s network was initialized with the
weights of the FCN-32s network and a base lr of 1e−11 (the
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Figure 1. The BubbleView set-up from [9] that we used to collect the
ground truth importance data (via BubbleView clicks) for 1.4K data vi-
sualizations.

learning rate used on the last iterations training the FCN-32s
network, scaled by 0.001). The rest of the training parameters
were the same. The FCN-8s network was similarly initialized
with the weights of the FCN-16s network and a base lr of
1e− 17. Our learning rate schedule was similar to the one
used for semantic segmentation [12].

MORE PREDICTION EXAMPLES
Fig. 2 contains more examples of predicted and ground truth
importance on graphic designs. We provide a sampling of
results with different performance scores. High scoring exam-
ples (Spearman’s rank correlation close to 1) are ones where
design elements are similarly ranked by predicted and ground
truth importance. Our model can correctly distribute impor-
tance across text and visual elements. Our model can correctly
predict the relative importance of different types of text (e.g.
titles versus secondary text). We also show cases where model
predictions disagree with ground truth. Failure cases include
distributing importance across large visual elements (e.g., a
face or person taking up a large portion of the image), unusual
fonts, and images with many separate elements.

Fig. 3 contains more examples of predicted and ground truth
importance on data visualizations. Our predicted importance
localizes titles well, no matter where they are spatially located
in the image. This matches ground truth data, because people
also pay a lot of attention to the titles of visualizations [2]. Our



model looks for the most important text first. If a title is absent,
the description, caption, or legend might be predicted as most
important. Our model also learns that the most relevant points
on a graph are those at the extremes (e.g., at the top or bottom
of a table, left and right on a bar/line plot). This is all learned
automatically from the training data, without the need for
explicit text detection or a rule-based approach. Despite this,
some of the failure modes of our model include assigning too
much importance to salient visual regions.

FINE-GRAINED DESIGN VARIATIONS
The Design Improvement Results dataset [13] consists of 11
design templates in multiple variants, produced by MTurk
workers. We used the methodology in [13] to gather Explicit
Importance annotations for all 393 designs. Fig. 4 contains
examples of some of these designs, along with our collected
annotations, and our model predictions. Crucially, our model
was not trained on systematic design variations, like changes
in font, text size, or element location; nevertheless, it can
correctly assign relative importance values to different design
elements, as they are moved around and resized. This provides
evidence that our model can provide meaningful predictions
within an interactive tool setting.

COMPARISON TO RELATED WORK
Here we include all baselines from O’Donovan et al. [13], re-
computed on our train-test split of the GDI dataset, compared
to, and combined with, our predicted importance model (Ta-
ble 1). To replicate the evaluation in [13], we report root-mean-
square error (RMSE) and the R2 coefficient, where R2 = 1
indicates a perfect predictor, and R2 = 0 is the baseline of pre-
dicting the mean importance value. Defining Q as the ground
truth importance map and P as the predicted importance map,
we iterate over all pixels i to compute:
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The full O’Donovan model (OD-Full) includes human-
annotated text, face, and person regions. For a fair comparison,
we compare our automatic predicted importance model (Ours)
to the automatic portion of the O’Donovan model, which does
not rely on human annotations (OD-Automatic). The addi-
tion of our predicted importance model to the OD-Full model,
Ours+OD, improves performance, indicating that our origi-
nal model captures some features not already captured by the
other features in OD-Full.

EVALUATION OF RETARGETING APPLICATION
Given a graphic design and a target aspect ratio as input to
retargeting, we computed an energy map, and removed image
regions with lowest energy, until the desired aspect ratio was
achieved (Fig. 6a-b). This is similar to seam carving [1], ex-
cept instead of removing arbitrary seams, we removed only

Model RMSE↓ R2 ↑
Saliency .229 .462

OD-Automatic .212 .539
Ours .203 .576

Annotations .195 .608
Ours+Annot .164 .725

OD-Full .155 .754
Ours+OD .150 .769

Table 1. A comparison of our automatic predicted importance model
(Ours) to the importance model of O’Donovan et al. [13]. Our model out-
performs the fully automatic O’Donovan variant (OD-Automatic). The
OD-Full variant includes manual annotations of text, face, and person
regions. The performance of these features is also reported separately
as Annotations. The Saliency features include a learned combination of
4 separately-computed saliency models: Itti&Koch [7], Hou&Zhang [6],
Judd et al. [8], and Goferman et al. [5]. Note that the first 3 rows of
this table correspond to fully automatic models, while the last 4 include
manual annotations. The top-performing model is bolded in each case.

straight seams from the image. We also tried seam carving,
but found that it generated significant visual distortions in
graphic designs (Fig. 6c). To compare importance-based re-
targeting to other approaches, we used 5 variants of energy
maps and a random baseline (Fig. 7). For energy maps, we
used predicted importance, ground truth importance (GDI an-
notations [13]), Judd saliency, DeepGaze saliency, and edge
energy maps. Judd saliency is a top-performing natural image
saliency model [8] often used as a baseline for saliency com-
parisons. DeepGaze is a more recent saliency model with a
neural network architecture [11], and currently a top performer
on the MIT Saliency Benchmark [4]. Edge energy maps have
pixel values proportional to gradient magnitudes, and were the
initial energy maps used in seam carving applications [1].

MTurk details: Fig. 8 is a screenshot of our MTurk experi-
ment and instructions for evaluating retargeting results. Each
MTurk participant scored 6 retargeted design variants on a
5-point Likert scale, from 1 = very poor to 5 = very good. Par-
ticipants were provided with the original design and instructed
to highly rate redesigns that include the most important design
elements, are legible, and not too distorted. Each participant
completed the task for 12 designs, 10 randomly selected from
a collection of 216 images, and another 2 validation images
for ensuring quality results. The order of images and the place-
ment of validation images in the sequence was randomized.
One of the validation images contained identical retargeted de-
signs. If a participant did not assign identical scores for these
designs, all of their results were excluded from analyses. An-
other validation image had significantly distorted designs. If a
participant did not assign poor (< 2) scores for these designs,
all of their results were excluded from analyses.

We ran three versions of the experiment: (a) retargeting with
straight seams, (b) retargeting with crops, and (c) banner retar-
geting with crops. In (a) and (b), an input image with portrait
orientation was retargeted to a landscape with aspect ratio 2:3,
while an input image with a landscape orientation was retar-
geted to a portrait with aspect ratio 3:2. These aspect ratios
correspond to the standard mobile screen size, so a motivating
application is given a design, to retarget it to a mobile screen.



Figure 2. Examples of importance predictions for graphic designs, sorted by performance. We include both successful and unsuccessful predictions.
Performance is measured as the Spearman rank correlation (R) between the importance scores assigned to design elements by the ground truth GDI
annotations and by the predicted importance maps. The model is most successful when there are a few clear elements. Failures occur in predicting
the importance of text written in unusual fonts; when a visual element takes up a large portion of the image (requiring reasoning about the relative
importance of object parts); and when there are too many elements in the graphic design. Many of these failures can be ameliorated by training models
on larger datasets.



Figure 3. Examples of importance predictions for data visualizations, sorted by performance. We include both successful and unsuccessful predictions.
Higher CC scores and lower KL scores are better. Our predicted importance model correctly evaluates the relative importance of different text regions,
whether a title, legend, or annotation. This is learned automatically, without the need for decision trees or a rule-based approach. A title need not be
located at the top of the visualization to be detected. Our model also learns that the data extremes (top and bottom of tables, left and right of graphs)
are more important than the rest of the data. Some visual features continue to confuse the model and lead to some failures of prediction. We include
some failures in the right column.



Figure 4. Examples of fine-grained design variations from [13], importance annotations we collected from MTurk participants as ground truth, and our
automatic model predictions. Our model was not trained on systematic design variations; nevertheless, it can correctly assign relative importance values
to different design elements, as they are moved around and resized. Example 3 shows that the model is not perfect, and can under or over-estimate the
importance of various design elements, like the salient logo and the human faces.



The difference is that in (a) we carved away straight seams, in
(b) we extracted crops, and in (c) we cropped all visualizations
to an aspect ratio 1:4, akin to a banner for a webpage.

Results: We present the aggregate ratings for all design vari-
ants in Fig. 5. We include the total counts for each retargeted
design in the 3 experiments described above. provided the
mean ratings.

Experiment (a) retargeting with straight seams: A total of
143 MTurk HITs were completed, resulting in 92 HITs after
filtering. Retargeting by ground truth importance achieves
the highest score (Mean: 2.83), but the scores of the other
4 variants: DeepGaze, predicted importance, Judd saliency,
and edge maps, were not statistically significantly different
from each other at the p = 0.05 level. All comparisons were
made using Bonferonni-corrected t-tests. Most design vari-
ants achieved relatively low scores, and upon inspection, the
MTurk workers could not differentiate between design quality
when straight seam carving was used. Pilot experiments with
standard seam carving showed even lower scores, and so re-
targeting by cropping was found to be more suitable for this
task.

Experiment (b) retargeting with crops: A total of 147
MTurk HITs were completed, resulting in 96 HITs after fil-
tering. Retargeting by ground truth importance achieves the
highest score (Mean: 3.27), followed by DeepGaze saliency
(Mean: 3.19), and predicted importance (Mean: 3.06). How-
ever the differences between DeepGaze, predicted importance,
and edge energy (Mean: 2.95) were not statistically significant
at the p = 0.05 level. All were significantly better scoring than
Judd saliency (Mean: 2.78) and the random jumbled baseline
(Mean: 1.24).

Experiment (c) banner retargeting with seams: A total of
146 MTurk HITs were completed, resulting in 90 HITs after
filtering. Differences between the retargeting variants are
larger compared to experiments (a-b) because the cropping
is more aggressive, requiring a more careful selection of the
important design regions to include in the retargeted result. As
reported in the main paper, retargets obtained using ground
truth importance had the highest score (Mean: 3.19), followed
by DeepGaze (Mean: 2.95) and predicted importance (Mean:
2.92). However, the difference between the latter two models
was not statistically significant. Edge energy maps (Mean:
2.66) and Judd saliency (Mean: 2.47) were significantly worse,
but not statistically different from each other. The random crop
baseline (Mean: 2.23) was significantly worse than all other
methods. One notable difference in the random baselines
between (a-b) and (c) is that in the case of the first two, a
jumbled image was used (broken up into 6 rectangular blocks),
as in the bottom left of Fig. 8. In the case of (c), a random
crop was taken, by selecting a random image coordinate. As
a result, the random jumbled baseline in (a-b) tends to be
significantly worse than the random crop baseline in (c).

Summary: Across all three experiments, retargeting based
on ground truth importance consistently received the high-
est scores, indicating it can capture the relevant regions of a
graphic design. Both our predicted importance and DeepGaze

saliency performed similarly, but worse than the ground truth
importance. Both models are neural network models that at-
tempt to capture observer attention patterns on images. While
predicted importance was trained on graphic designs and
DeepGaze on natural images, the latter model was trained
on 10x more data, and may be able to generalize to graphic
designs as a result of learning image statistics from a larger
collection of images.

EVALUATION OF THUMBNAILING APPLICATION
Given a visualization as input, we generate thumbnails us-
ing straight seam carving and blending. Qualitatively, we
found that the straight seam carving worked for the structured
visualization images - e.g., removing the middle rows of ta-
bles, removing the clusters of data points near the middle of
the plots, etc. - while preserving the spatial relationships be-
tween visualization elements like axes. Some examples of
automatically-generated thumbnails are in Fig. 9.

MTurk details: We ran an MTurk task where given a de-
scription and a grid of thumbnails, the goal of participants
was to find the visualization corresponding to the description
(Fig. 10). Clicking on a thumbnail displayed a pop-up window
with an enlarged version of the visualization (this provided
additional disinsentive to click around randomly, as it would
slow down task completion). Only when the correct image
was clicked on, would the task end.

This task was intended to imitate a search through a database
of visuals to determine if our thumbnails can facilitate this
search. A single MTurk HIT consisted of finding the matching
visualization for a specific description. We selected a total
of 13 user-generated descriptions from our BubbleView data
collection. For a given HIT, we randomly selected a descrip-
tion and a set of 60 images to show on the screen, in a 20x3
grid. These images were randomly sampled from our 202
test set of visualizations (except for the 1 image matching
the description). We ran two versions of the study: (a) with
the original visualizations resized to thumbnails, and (b) with
our automatically-computed importance-based thumbnails. In
both cases, we measured how many clicks it took for partici-
pants to find the visualization matching the description.

We employed the interquartile range (IQR)-based outlier re-
moval procedure from Komarov et al. [10] in order to exclude
experimental runs where the number of clicks generated was
more than 3xIQR higher than the third quartile, or more than
3xIQR lower than the first quartile. A total of 223 MTurk
HITs were completed for experiment version (a), which after
the outlier removal procedure, produced 200 HITs for analysis.
A total of 182 HITs were completed for version (b), resulting
in 169 HITs after outlier removal.

Results: We measured how many clicks it took for participants
to find the right visualization with the resized visualizations
(Mean: 3.25 clicks, Median: 2 clicks), and the importance-
based thumbnails (Mean: 1.96 clicks, Median: 1 click). Each
MTurk assignment, containing a single description search task
assigned to a single participant, was treated as a repeated
observation. The difference in the mean number of clicks was
statistically significant at the p = 0.001 level.



We repeated this task with thumbnails computed using ground
truth importance. We again ran two versions of the study: (a)
with the original resized visualizations (191 total HITs, 178
after filtering), and (b) with importance-based thumbnails (209
total HITs, 201 after filtering). The total clicks required to find
the visualization corresponding to the description was again
higher for the resized visualizations (Mean: 3.38 clicks, Me-
dian: 2 clicks) than the importance-based thumbnails (Mean:
1.90 clicks, Median: 1 click), statistically significant at the
p = 0.001 level.

These results demonstrate that our importance-based thumb-
nails captured visualization content that was relevant for re-
trieval. Moreover, thumbnails generated using predicted im-
portance were sufficiently effective for this task, not far from
ground truth importance.
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(a)

(b)

(c)

Figure 5. Three study versions of retargeting: (a) retargeting with
straight seams, (b) retargeting with crops, and (c) banner retargeting
with crops. In each study, we compared 6 methods of retargeting, based
on different energy maps. The mean scores of each method are provided
in the legend; the aggregate counts of each score are plotted.



Figure 6. Additional retargeting variants: (a) retargeting with cropping, (b) retargeting with straight seams, (c) retargeting by seam carving.

Figure 7. (a) Input design. (b) Predicted importance maps. Retargeted results using: (c) ground truth GDI importance annotations [13], (d) predicted
importance map, (e) DeepGaze saliency [11], a top-performing neural network saliency model, (f) image gradient magnitudes, (g) Judd saliency [8], a
commonly-used natural image saliency model, (h) a random crop baseline.



Figure 8. Screenshot of the retargeting experiment. Participants are given a design and 6 redesign variants, and their goal is to rate the quality of each
redesign on a 5-point Likert scale. Instructions ask participants to more highly rate redesigns that contain the most important content from the original
design, and those that are legible and not distorted. The redesigns are obtained by retargeting the original design using 5 different input energy maps.
A random jumbled baseline is used to validate that participants are completing the task correctly.



(a) (b)
Figure 9. More examples of (a) input data visualizations and (b) corresponding automatically-generated thumbnails. The extremes of the data are
predicted important, and the middle regions and data points are removed during thumbnailing. The boundaries of the remaining regions are blurred
using the importance map as an alpha-mask with a fade to white.



Figure 10. Screenshot of the the thumbnail search task. Participants are given an image caption and instructed to scroll through a list of 60 thumbnails
to find the data visualization matching the caption. Clicking the correct thumbnail ends the task. Clicking the wrong visualization brings up a modal
window with the full sized visualization, which slows down the task, and discourages participants from clicking around randomly. This task is intended
to simulate a search through a database, and we measure the effectiveness of importance-based thumbnails at facilitating the search, measured as the
number of clicks until the correct visualization is found.
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