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SUMMARY
Lymphocytes are key for immune surveillance of tumors, but our understanding of the spatial organization
and physical interactions that facilitate lymphocyte anti-cancer functions is limited. We used multiplexed im-
aging, quantitative spatial analysis, and machine learning to create high-definition maps of lung tumors from
a Kras/Trp53-mutant mouse model and human resections. Networks of interacting lymphocytes (‘‘lympho-
nets’’) emerged as a distinctive feature of the anti-cancer immune response. Lymphonets nucleated from
small T cell clusters and incorporated B cells with increasing size. CXCR3-mediated trafficking modulated
lymphonet size and number, but T cell antigen expression directed intratumoral localization. Lymphonets
preferentially harbored TCF1+ PD-1+ progenitor CD8+ T cells involved in responses to immune checkpoint
blockade (ICB) therapy. Upon treatment of mice with ICB or an antigen-targeted vaccine, lymphonets re-
tained progenitor and gained cytotoxic CD8+ T cell populations, likely via progenitor differentiation. These
data show that lymphonets create a spatial environment supportive of CD8+ T cell anti-tumor responses.
INTRODUCTION

During cancer progression, immune cells proliferate, migrate, and

adapt in an attempt to impede tumor spread.1,2 Tumor cells

respond by inducing programs that suppress immune-cell func-

tion.3 Detailed characterization of the functional states of immune

cells and their spatial organization relative to tumor cells is there-

fore needed to identify the features of anti-tumor immunity.4,5 One

way to accomplish this is using highlymultiplexed spatial profiling,

a set of analytical methods and computational approaches that

provide quantitative descriptions of the (1) identities and molecu-

lar characteristics of immune, tumor, and stromal cells; (2) phys-

ical and chemical factors that influence the spatial organization

of these cell types; and (3) changes in spatial features over time

and space that constitute tumor responses to therapy.6–8
Cancer Cell 41, 1
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The Kras/Trp53-mutant (KP) lung adenocarcinoma model,

which includes several variants, is prototypical of genetically

engineered mouse models (GEMMs) of cancer having many of

the features of human tumors. In this model, tumorigenesis is

synchronously initiated in multiple cells by intratracheal delivery

of lentivirus-encoded Cre recombinase into KrasLSL�G12D/+;

Trp53fl/fl animals.9,10 This gives rise to �10–15 tumor nodules

per 2-dimensional lung cross-section and progression

from hyperplasia to adenocarcinoma occurs over the course of

1–5 months. Because these tumors have low rates of somatic

mutations, they are not highly immunogenic.11 To overcome

this, T cell antigens are introduced by way of the tumor-initiating

lentiviruses. In the LucOS variant of the KP model, two model

CD8+ T cell antigens, the SIINFEKL (SIIN) epitope from chicken

ovalbumin and the synthetic peptide SIYRYYGL (SIY), are
–16, May 8, 2023 ª 2023 The Authors. Published by Elsevier Inc. 1
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expressed as a fusion to luciferase in tumor cells.12 Conventional

single-marker immunohistochemistry (IHC) analysis of tumor-

bearing lung tissue from KP-LucOS vs. control (KP-Cre) mice

has shown that expression of tumor-specific LucOS antigens

substantially increases the number of CD8+ T cells infiltrating

tumors. However, despite this engagement of immunosurveil-

lance mechanisms, tumor growth rebounds within weeks with

a concomitant decline in the CD8+ T cell response.12

While dissociative single-cell methods such as single-cell RNA

sequencing, cytometry by time of flight (CyTOF), and fluores-

cence-activated cell sorting (FACS) can provide deep insight

into tumorigenesis and immunosurveillance in GEMMs,13 these

methods lack information on cell-cell interactions and locations

of cell populations. Conventional histology and IHC provide po-

sitional information; however, they do not supply the detailed

molecular information needed to identify and phenotype cells

precisely.

Here, we used multiplexed tissue imaging to characterize

spatial features of tumor-immune interactions in KP-LucOS

lung tumors, including when chemokine-mediated trafficking

was modulated, and after treatment with antigen-targeted

vaccine or immune checkpoint blockade (ICB) therapies. This

study establishes generally useful methods for spatial analysis

of GEMMs and identifies lymphocyte networks (lymphonets)

that harbor stem-like progenitor CD8 T cells as components of

functional T cell responses in early tumor lesions and following

immunotherapy.

RESULTS

Spatial analysis of KP GEMM tumor-immune
microenvironment by multimodal data integration
To generate high-content spatial maps of tumor and immune-

cell interactions in KP lung tumors under multiple biologically

informative conditions, KP mice were exposed to different tu-

mor-initiating lentiviruses via intratracheal delivery and treated

with immune therapies (Figure 1A). Six to 9 weeks after tumor

initiation, H&E staining, mRNA in situ hybridization (ISH), and

24-plex cyclic immunofluorescence (CyCIF)14 (Table S1) were

performed on serial whole-slide sections (�1cm2) of formalin-

fixed, paraffin-embedded (FFPE) tissue containing two or three

lung lobes. Histopathological annotation of H&E images pro-

vided data on the position of tumor nodules and normal anatomic

structures, including medium-large airways and blood vessels

(Figure S1A). RNA ISH provided information on critical chemo-

kines (e.g., Cxcl9, Cxcl10) that are difficult to image in tissues

using antibodies. For CyCIF, a 24-plex antibody panel was

developed that included lineage-specific transcription factors

such as NKX2-1 (TTF-1) and intermediate filament protein pan-

cytokeratin (Pan-CK), both markers of epithelial/tumor cells,

and vimentin (VIM), a marker of mesenchymal cells, as well as

markers expressed on specific lymphoid and myeloid cells

(CD45, CD3e, B220, NKp46, CD11b, CD11c, Ly6G, CD103)

(Figures 1B–1D and S1B). These immune markers made it

possible to delineate cell types with increasing depth, separating

lymphoid andmyeloid lineages, and subdividing them into T cell,

B cell, natural killer (NK) cell, neutrophil, CD103+ dendritic cell

(DC), alveolar macrophage, and tumor-associated macrophage

(TAM) populations (Figure 1D; see Figure S1C for cell-type clas-
2 Cancer Cell 41, 1–16, May 8, 2023
sification dendrogram). Additional markers (CD4, CD8, FOXP3)

made it possible to distinguish T helper (Th), T cytotoxic (Tc),

and T regulatory (Treg) cell populations. Functional markers

were used to define the states of these cells with respect to

Ki67 positivity (proliferation), cytotoxicity markers (granzyme B

[GZMB]; perforin [PRF]), the presence of immune inhibitory

receptors PD-1 and TIM-3, and expression of the T cell transcrip-

tion factor (TCF1), a key regulator of T cell function and differen-

tiation (Figures 1C-1D and S1C).

The resulting data were analyzed using several computational

approaches. For CyCIF, images were stitched and registered

and then segmented to identify single cells (typically �1–5 3

105 cells per sample/mouse) and staining intensities quantified

at a single-cell level; for mRNA ISH, foci were identified, their

densities quantified, and data registered to CyCIF images from

serial sections. Distance metrics were used to characterize cell

positions relative to boundaries between tumor nodules and

non-neoplastic lung tissue (‘‘tumor edge’’) and blood vessels

(Figure 1B). Single-cell positions were used to identify interacting

cells in physical proximity and to create ‘‘graphs’’ of interacting

cell ‘‘networks’’ (Figure 1B).

Tumor-antigen expression reorganizes the immune
landscape in KP lung cancer
We first profiled immune responses triggered by the LucOS

CD8+ T cell antigens 8 weeks after lentiviral infection, a timepoint

that represents a transition between a functional and dysfunc-

tional CD8+ T cell response.12,15,16 The tumor burden in LucOS

mice was significantly lower than Cre mice (Figure 2A,

Table S2); however, the presence in LucOS mice of immuno-

genic SIIN and SIY CD8+ T cell antigens resulted in only modest

differences in immune-cell composition when lung tissue was

examined as a whole (both tumor and non-tumor compartments

together). For example, the numbers of neutrophils and B cells

were slightly higher in LucOS whole lungs as compared with

Cre lungs, and Treg cells and CD103+ DCs were slightly lower,

but these differences did not reach statistical significance

(Figures 2B–2D and S2A–S2C).

By contrast, when tumor areas were examined separately

from non-neoplastic areas, the density of all lymphocyte subsets

(Tc, Th, Treg, B cells) was significantly higher in LucOS tumors as

comparedwith Cre tumors, increasing 3.3- to 8-fold (Figures 2B–

2D and S2A–S2C). Increased infiltration in LucOS tumors was

observed even for Treg cells that were less abundant in LucOS

as compared with Cre lung as a whole (>3-fold higher in

LucOS vs. Cre tumors) (Figure 2D). Both NK (myeloid lineage

marker-defined, see Figure S1C) and CD103+ DCs were also

significantly increased within LucOS tumors but not in whole-

lung tissues (Figures 2C, 2D, and S2D). Notably, the ratio of Tc

cells to Treg cells was significantly increased in LucOS tumors

(5.8-fold; this was also true, to a lesser extent in non-tumor tis-

sue) (Figure S2E); a higher ratio is a hallmark of a more im-

mune-permissive tumor microenvironment (TME).17 In addition,

Tc cells inside tumors were enriched for expression of the cyto-

toxicity-associated marker PRF and the inhibitory receptors

PD-1 and TIM-3, suggestive of a greater functional anti-tumor

response moving toward T cell exhaustion (Figure 2E). Flow

cytometry analysis of T cell populations from dissociated tu-

mor-bearing lung lobes from the same mice was consistent
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Figure 1. Spatial analysis of KP GEMM tumor-immune microenvironment by multimodal data integration

(A) Schematic: KP lung cancer GEMM, treatments, and multi-modality data integration.

(B) Images acquired from KP-LucOS GEMM tumor nodule (expressing CD8+ T cell antigens): H&E, multiplexed CyCIF image of immune/tumor markers (DNA,

blue), Cxcl9, Cxcl10 RNAScope (DNA, blue) (serial sections), map showing distance of cells from tumor edge, cell-type annotation map, and ‘‘graph’’ map of

physically interacting cells (Delaunay Triangulation).

(C) Gallery of lineage, cell-state, and functional markers from CyCIF images of KP-LucOS. Scale bar, 1 mm.

(D) Sequential clustering of CyCIF data using marker combinations in Figure S1C for immune, epithelial/tumor, and stromal populations (rows = individual cells).

See also Figure S1 and Table S1.

ll
OPEN ACCESSArticle

Cancer Cell 41, 1–16, May 8, 2023 3

Please cite this article in press as: Gaglia et al., Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung
adenocarcinoma, Cancer Cell (2023), https://doi.org/10.1016/j.ccell.2023.03.015



A B

C D E

50 μm 50 μm

TTF1
B220CD4

CD8

CD11c1 mm1 mm

KP Cre KP LucOS KP Cre KP LucOS

T cell spatial frequency

Cre
OS

G

F

H
I

Normal p=0.3

0

1

2

ce
ll 

nu
m

be
r (

10
)

Tumor p=0.008

0

1

2

3

ce
ll 

nu
m

be
r (

10
)

Cre OS

Cre OS

100 μm

Tumor

Vessel

Airway
Outside Tumor Inside Tumor

CD8 Tc phenotypes

Ki67

GzmB

Prf

PD-1

TIM-3

**
**

% positive CD8+ T cells
log2 fold LucOS/Cre

-1 0 21 -1 0 21

**p<10-4

1

10-3

10-6

* p<10-2

*

Tumor
Area
p~10-4

0

0

100

200

p=0.03

Whole
Lung

CD103+

DC

Treg

p~10-3

p=0.7

Cre OS

p=0.03

0

100

200

Cre OS

Neutr

p=0.04

density
(x1mm²)

Distance from
Vessel (μm)

Distance from
Tumor Boundary (μm)

outside inside

Vessel Tumor

0

.05

.1

30 10 0 102030100 20

0

.2 B

0
020

.15 Alveolar Mac

.025 Treg.08 CD4 Th

TAM

.05

.04 CD8 Tc

.06 Neutrophil
.03

CD103+ DC

020 020 020
Distance from Tumor Boundary (μm)

-.6 0 .6
Tumor-by-tumor

cell type correlation

CD4 T
h
Treg

CD8 T
c B DC

TAM
Neu

tr

Alv 
Mac

CD4 Th

Treg

CD8 Tc

B
CD103+

DC
TAM

Neutrophil
Alveolar

Mac

Cell type composition

*p < 0.01
**p < 0.001

0.0001

0.001

.01

.1

1

Whole Lung Area Tumor Area

Cell Density LucOS/Cre
(log2 fold ratio)

-2 0 2 4

Alveolar Mac
Treg

CD103+ DC
NK-L

NK-M
CD4 Th

Other
TAM

CD8 Tc
B

Neutrophil

Epithelial
Alveolar Mac

Neutrophil
NK-L
TAM

-2 0 2 4

Epithelial *

B *

CD4 Th *
Treg *

**
*

CD8 Tc **

Other *

Cell Density LucOS/Cre
(log2 fold ratio)

Fr
ac

tio
n 

of
 c

el
ls

NK-M
CD103+ DC

150

300

Figure 2. Tumor-antigen expression reorganizes KP lung cancer immune landscape

(A and B) H&E, CyCIF images (taken from whole-slide images) of KP-Cre vs. KP-LucOS (antigen-expressing) tumors and quantification of normal and tumor-cell

number (n = 5 mice/group, bar = mean).

(C) Log2 fold ratio of cell-type densities between LucOS and Cre in whole-lung and tumor areas (n = 5 mice/group, color: p value).

(D) Cell-density measurements for indicated immune-cell types in whole-lung and tumor areas (n = 5 mice/group, bar = mean).

(E) Log2ratiobetweenLucOSandCredensityofCD8+Tcellspositive for indicatedsinglephenotypicmarkers (right, inside tumor; left, outside tumor, n=5mice/group).

(F) Representative pathology annotation of H&E.

(G and H) T cell spatial frequency relative to vessels and tumor boundaries (G); (H) frequency of indicated cell types from tumor boundaries (Cre and LucOS, n = 5

mice/group, mean ± SEM).

(I) Tumor-by-tumor correlation values within LucOS tumor nodules for indicated cell types (n = 29 tumors). In all mouse experiments in this manuscript, all tumor

nodules were analyzed from two to three lung lobes/mouse for each experiment. p values, two-tailed t test on mean of n = 5 mice/group. See also Figures S1 and

S2, and Table S2.
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with the whole-lung area analysis rather than the tumor-area

analysis; no significant changes in Tc, Th, or Treg populations

were observed, although trends toward increased Tc cells and

decreased Treg cells resulted in an increased Tc/Treg ratio (Fig-

ure S2F). Thus, enumeration of T cell populations by dissociative

techniques does not fully capture the tumor-specific changes re-

vealed by high-plex tissue imaging.

To investigate the effects of LucOS antigen expression on the

spatial distribution of immune cells relative to blood vessels and

the tumor margin, we combined CyCIF with anatomical annota-

tions from H&E images (Figures 2F and S1A). In both Cre and

LucOS samples, we observed immune-cell accumulation near
4 Cancer Cell 41, 1–16, May 8, 2023
blood vessels. LucOS mice had a greater accumulation of B

cells, Tc cells, and neutrophils, whereas Cre tumors had

more Treg cells, CD103+ DCs, and alveolar macrophages

(Figures 2G and S2G). Lymphocytes in Cre animals were

excluded from tumors, whereas in LucOS animals, the lympho-

cytes breached the tumor boundary and infiltrated into the tumor

(Figures 2B, 2G, and 2H). Moreover, the degree of infiltration by

different types of lymphocytes (B, CD4+ Th, CD8+ Tc, Treg cells)

was highly positively correlated in individual tumor nodules (Fig-

ure 2I), suggesting coordinated infiltration into tumors. By

contrast, most types of myeloid cells were evenly distributed in

the normal lung tissue, without evidence of perivascular
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accumulation. Myeloid cells were more abundant at the tumor

margin but did not infiltrate into tumors in either Cre or LucOS

micewith the exception of dendritic cells, which readily infiltrated

the tumor in the LucOS model with spatial patterns similar to

those of lymphocytes (Figures 2D, 2H, and 2I). Tumor exclusion

was particularly evident in the case of neutrophils, which were

substantially more abundant in LucOS than Cre lungs

(Figure 2H).

Antigen expression is associated with intratumoral
localization of lymphocyte networks (‘‘lymphonets’’)
The co-occurrence of different types of lymphocytes in LucOS

tumors (Figure 2I) prompted us to look for evidence of cell-cell in-

teractions among lymphocytes. We applied the Visinity method

recently developed by our group18 to interactively identify and

quantify spatial arrangements among cells in whole-slide tissue

images (see STAR Methods). This method organizes cells into a

2-dimensional embedding based on the cell types within a

neighborhood of defined diameter (50 mm); cells close to each

other in this representation are surrounded by similar cell types

(Figure 3A). When applied to the �2.6 million cells in the com-

bined datasets from Cre and LucOS mouse lungs, the shared

embedding space revealed a clear separation of neighborhood

composition in both normal lung and tumor (Figures S3A–S3C).

The lymphoid population accumulated in two areas of the plot

(clusters), at the intersection of normal and tumor neighborhoods

and encompassed both B and T cells (Figures 3B and S3A–S3C),

quantitatively demonstrating the spatial coordination of lympho-

cytes within cellular neighborhoods.

To characterize these T and B cell clusters, we generated

graphs of cell-cell interactions by performing Delaunay Triangu-

lation19,20 on each specimen individually (Figures 3C and 3D);

Delaunay Triangulation identifies networks of cells that directly

contact each other. We identified lymphocyte cell-cell networks

that ranged from small clusters of <10 lymphocytes to >100 lym-

phocytes that were in direct contact (Figures 3C and 3D; Fig-

ure 3D shows examples of lymphonets ranging in size from 8

to 204 cells). Across Cre and LucOS mice, a minority of lympho-

cytes were organized into lymphonets using as a cutoff R6

lymphocytes connected by direct cell-cell contacts (mean

15.5% ± 6.8% SD of total lymphocytes present in lymphonets,

Figure S3D). We detected an average of �77 lymphonets per

mouse lung lobe with an average of 17 cells/network. Analysis

of lymphonet composition showed that Th and B cells were the

most common structural elements; >50% of individual lympho-

nets had amajority of either Th or B cells (31% and 23%, respec-

tively) in contrast to 2%of lymphonets composed of amajority of

Tc cells or 8% of majority Treg cells (Figure S3E). The fraction of

B and T cells was strongly correlated with lymphonet size; small

lymphonets were enriched in T cells and large lymphonets in B

cells (Figure 3E). Notably, lymphonets having <16 cells were

almost exclusively composed of T cells and the frequency of B

cells increased linearly beyond this threshold (Figure 3F). This

relationship between network size and cell composition sug-

gests that lymphonets nucleate from a core of T cells and subse-

quently grow by recruiting B cells.

The overall number and size of lymphonets increased in a tu-

mor-dependent manner (P Cre/LucOS vs. KP-Cre), but did not

change substantially with LucOS antigen expression (KP-Cre
vs. KP-LucOS) across the lung tissues (Figures 3G, 3H, S3F,

and S3G). Lymphonet number (but not size) was correlated

with tumor burden in Cre mice, but not LucOS mice

(Figures S3H and S3I). This suggests that tumors and lympho-

nets develop in concert in the absence of tumor-antigen expres-

sion. The composition of lymphonets in LucOS vs. Cre mice

differed substantially, with LucOS lymphonets containing signif-

icantly more Tc cells and significantly fewer Tregs as compared

to lymphonets in Cre lungs (Figure 3I). Analysis of myeloid pop-

ulations showed that CD103+ DCs were more proximal to

lymphonets and interacted more frequently with lymphonets

than other myeloid subtypes in both LucOS and Cre mice

(Figures S3J and S3K). Thus, CD103+ DCsmay play a role in lym-

phonet formation or maintenance, likely through their function as

antigen-presenting cells. In addition, LucOS antigen expression

dramatically relocalized lymphonets relative to histopathological

features (Figure 3J): in LucOS lungs, the majority of lymphonets

were located inside tumors whereas in Cre mice most lympho-

nets were located outside of tumors, with a substantial fraction

residing within 20 mm of a major blood vessel (Figure 3J). These

findings reveal a strong correlation between T cell antigen

expression and lymphonet formation inside tumors.

To investigate temporal control over lymphonet composition,

we compared lymphonets from 6-week and 9-week LucOS

mice. We found that lymphonet size increased significantly over

time and there was also a trend toward increased number (Fig-

ure S3L). Interestingly, the composition of lymphonets was largely

unchanged, with similar proportions of Th, Treg, and B cells at

both timepoints (Figures S3M and S3N). As observed previously

(Figures 3E and 3F) small lymphonets were predominantly

composed of Th cells and large lymphonets were predominantly

composed of B cells (Figure S3N). Notably, the proportion of Tc

cells decreased significantly from 6 to 9 weeks (Figures S3M

and S3N), which may reflect contraction of the Tc compartment

that occurs between these timepoints.12,15,16 Altogether, our find-

ings suggest lymphonet composition in LucOS mice is deter-

mined by lymphonet size rather than tumor size or tumor age.

CXCR3 ligands modulate lymphonet formation and size
but not intratumoral localization
The recruitment of activated Th and Tc cells to the TME is medi-

ated in part by binding of the CXCL9 and CXCL10 chemokines

(and also CXCL11 in humans) to CXCR3 receptors on

T cells.21,22 Given that small lymphonets predominantly con-

tained T cells (Figures 3E and 3F), we hypothesized that

CXCR3-mediated recruitment of T cells might contribute to lym-

phonet nucleation. Because Cxcl9 and Cxcl10 levels are tightly

controlled at a transcriptional level,23 and antibodies suitable

for imaging these cytokines in tissue are unavailable, we

measured cytokine distribution using RNA ISH (Figures 1A, 1B,

and 4A). In total, the levels ofCxcl9 andCxcl10mRNA in lung tis-

sue were modestly increased in LucOS compared with Cre mice

(changes were not statistically significant; Figure 4B). Cxcl9 and

Cxcl10were expressed across multiple cell types in both LucOS

and Cre samples and were expressed in a higher proportion of

T cells, CD103+ DCs, TAMs, and epithelial cells in LucOS mice

(Figures S4A and S4B). In LucOS (but not Cre) mice, Cxcl9

expression was strongly localized within tumors (Figures S4C

and S4D). Compared with Cre mice, B and T cells were localized
Cancer Cell 41, 1–16, May 8, 2023 5
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Figure 3. Antigen expression is associated with intratumoral localization of lymphonets
(A) Schematic of Visinity neighborhood quantification. Each cell is assigned to a unique neighborhood (all cells within a specified radius to the reference cell).

Feature vectors are calculated representing weighted presence of each cell type within a neighborhood. Similar neighborhood vectors correspond to spatial

patterns.

(B) Visinity embedding of Cre and LucOS; arrows indicate immune neighborhoods enriched in normal (green) and tumor areas (black).

(C) CyCIF images and corresponding graphic maps of interacting cell populations (Delaunay Triangulation) in LucOS.

(D) Example lymphonets.

(E) Lymphonet composition across network sizes. Left, B, T cells; right, T cell subtypes (mean ± 25th percentile).

(F) Number of B cells/network vs. lymphonet size (mean).

(G) Number of lymphonets identified/mouse of indicated size in Cre- and LucOS-lung tissue.

(H) Fraction of B and T lymphocytes and (I) T cell subsets in lymphonets in Cre vs. LucOS (n = 5 mice/group, bar = mean, two-tailed t test).

(J) Left, density plots of lymphonets by distance from closest blood vessel (y axis) and tumor (x axis) in Cre and LucOS. Dot size represents lymphonet size (n = 5

mice/group). See also Figure S3 and Table S2.
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Figure 4. CXCR3 ligands modulate lymphonet formation and size but not intratumoral localization

(A) CyCIF and RNAScope images from LucOS tumor (serial sections); cell type/state calls indicated.

(B) Percent total cells expressing Cxcl9 and Cxcl10 mRNA in Cre- vs. LucOS-lung tissue (n = 4 mice/group, bar = mean).

(C and D) Probability density functions of distance of (C) indicated immune-cell populations or (D) T and B cells in or out of lymphonets from Cxcl9 and Cxcl10

mRNA-expressing cells in Cre and LucOS.

(E) Correlation between likelihood of lymphocytes belonging to lymphonets and their distance to the closestCxcl9 or Cxcl10mRNA-expressing cells in Cre (blue)

and LucOS (red) (n = 4 mice/group, bar = mean).

(F) Schematic: lentiviral system to deliver dRNAs and HSF1/p65 activation complex for CRISPR-a Cxcl10 in KP Cas9 mice.

(G) Images of Cxcl9 and Cxcl10 mRNAs using RNAScope in KP-Cre vs. KP Cxcl10-activated tumor nodules.

(H) Percent total cells expressing Cxcl9 and Cxcl10 mRNA in KP-Cre vs. KP-Cxcl10 (n = 4 mice/group, bar = mean).

(I) Number of lymphonets/mouse in KP-Cre, KP-LucOS, and KP-Cxcl10 (n = 5 mice/group, bar = mean).

(J) Histogram of mean number of lymphonets/mouse of indicated size in KP-Cre and KP-Cxcl10 (n = 5 mice/group, two-tailed KS test).

(K) Plots of fraction of lymphocyte populations within lymphonets in KP-Cre and KP-Cxcl10 (n = 5 mice/group, bar = mean). All p values are from two-tailed t test

unless specified. See also Figure S4 and Table S2.
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closer to theCxcl9 andCxcl10-positive cells in LucOSmice (Fig-

ure 4C) and these immune populations were predominantly pre-

sent within lymphonets (Figure 4D). Overall, the likelihood of lym-

phocytes belonging to lymphonets was negatively correlated

with the distance to the closest Cxcl9 or Cxcl10-positive cell

(i.e., lymphocytes are more likely to be networked when they

are closer to Cxcl9/10-expressing cells) (Figure 4E). Thus, lym-

phonets are spatially correlated with chemokine expression in

LucOS mice.
To test whether CXCR3 ligands promote lymphonet formation,

we used CRISPR-activation to ectopically express Cxcl10 in

KP-Cre tumors (Figure 4F), resulting in a 38-fold induction of

Cxcl10mRNA levels (Figures 4G–4H). Concomitantly, lymphonet

number and size increased significantly (Figures 4I–4J) and

involved recruitment of B cells and all T cell subsets (Figure 4K).

Lymphonets were more proximal to blood vessels in mice over-

expressing Cxcl10 compared with control mice but remained

excluded from the inside of tumors (Figure S4E). These data
Cancer Cell 41, 1–16, May 8, 2023 7
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show that expression of Cxcl10 in the TME can promote forma-

tion and growth of lymphonets but that additional antigen-

dependent mechanisms are required for lymphonet localization

to tumors.

Spatial analysis reveals dynamic shifts in Tc cell states
with immunotherapy treatments
To investigate the role of lymphonets in anti-tumor Tc responses,

we first assayed Tc differentiation states and functional potential

using markers associated with cytotoxicity (GZMB, PRF) and pro-

liferation (Ki67), inhibitory receptors (PD-1, TIM-3), and the tran-

scription factor TCF1. LucOS mice were exposed to one of two

immunotherapy regimens previously shown to improve the anti-

tumor functionality of the Tc response15: (1) therapeutic vaccina-

tion (Vax) against SIIN and SIY antigens, and (2) antibody-medi-

ated PD-1/CTLA-4 ICB (Figure S5A). For vaccination, LucOS

mice were injected subcutaneously with SIIN and SIY 30-mer

peptides and cyclic-di-GMP as an adjuvant 6 weeks post-tumor

initiation followed by a booster at 8 weeks; mice were sacrificed

at 9 weeks for analysis. Vax treatment resulted in a significant

reduction of tumor burden (Figure S5B15). For ICB therapy, a

mixture of anti-PD-1 and anti-CTLA-4 antibodies or isotype con-

trols were administered by intraperitoneal injection starting

8 weeks post-tumor initiation (three doses spaced 3 days apart:

day 0, 3, 6) and mice were then sacrificed, also 9 weeks after tu-

mor initiation. Anti-PD-1 and anti-CTLA-4 ICB treatment is not

known to result in a significant reduction in tumor burden in this

model (Figure S5C), but has been shown to increase tumor-spe-

cific effector Tc activity and synergize with chemotherapy.15,24

The resulting data were analyzed using Palantir, an algorithm

that uses multidimensional expression data to align single cells

along differentiation trajectories, thereby capturing both continu-

ity in cell states and stochasticity in cell-fate determination.25

Three predominant CD8 T cell states (S1 to S3, Figures 5A and

S5D) were identified in both Vax and ICB mice and gated using

a supervised approach typical of FACS data analysis (see

STAR Methods). Phenotypic markers used here do not empiri-

cally demonstrate cell functionality but are suggestive of differ-

entiation state and potential activity of Tc cell subsets. State

S1 had high levels of TCF1 expression and no expression of

markers of activation/exhaustion (PD-1, TIM-3) or cytotoxicity

(GZMB, PRF) and therefore corresponded to a naive T cell state

(Figures 5B and S5E). S2 had high expression of GZMB and/or

PRF and the proliferation marker Ki67, indicative of a prolifera-

tive, cytotoxic T cell state. S3 had low expression of GZMB,

PRF, and Ki67 and high expression of inhibitory receptors

PD-1 and TIM-3, denoting an exhausted T cell state. The three

discrete states we identified were interconnected by cells—

about one-third of the total—having transitional phenotypes

(T1, T2, T3) in which the expression of multiple markers was

graded and mixed (Figures 5A, 5B, S5D, and S5E).

Using this division of cell types and states, we examined shifts

in Tc phenotype induced by the two immunotherapy regimens. In

the untreated LucOS cohorts, the majority of Tc cells were naive

(S1), but Vax and ICB protocols shifted cells into cytotoxic (S2)

and exhausted (S3) states (Figures 5C and S5F). In the Vax

cohort, the cytotoxic (S2) population split into two groups distin-

guished by levels of PD-1 and TIM-3 expression (S2A and S2B in

Figures 5A–5C): the S2A state had low PD-1/TIM-3 expression
8 Cancer Cell 41, 1–16, May 8, 2023
and appeared to have greater cytotoxic potential, expressing

high levels of both GZMB and PRF, whereas cells in the S2B

state expressed high levels of PD-1/TIM-3 cells and lower levels

of GZMB. In the phenotypic landscape, cells in the S2B state

were adjacent to the exhausted (S3) population, suggesting

that S2B may represent a cell state directly preceding exhaus-

tion/dysfunction. In the ICB cohort, the S2 state did not split

and resembled the PD-1/TIM-3high GZMBlow state of S2B Vax

cells (Figures S5D–S5F). These data suggest that Vax is substan-

tially more effective than ICB in generating cytotoxic and prolifer-

ative effector T cell states.

Functionally distinct Tc cell states are spatially
segregated in the tumor microenvironment
To characterize the spatial distribution of Tc states relative to tu-

mor cells, we split the Palantir phenotypic landscape depending

onwhether immune cells (1) resided inside tumors, (2) were prox-

imal to the edge of tumors (<50 mm of an edge), or (3) were distal

to tumors (>50 mm away from edges) (Figures 5D, 5E, and S5G–

S5I). Strikingly, we found that the proliferative/cytotoxic S2A

state, which was unique to Vax mice, was found distal to tumors

(Figures 5D and 5E), whereas the cytotoxic/early exhausted S2B

(Vax) and S2 (ICB) states were enriched inside tumors

(Figures 5D, 5E, S5G, and S5H). We therefore posit that cells in

the distal S2A state are poised to enter tumors at which point

they differentiate to an S2B state. The exhausted S3 population

in both Vax and ICB mice was found proximal to tumor edges

and more frequently outside of tumors compared with S2B sug-

gesting the S3 cell state is associated with progressive

exclusion from tumors (Figures 5D–5F, S5H, and S5I). This

finding suggests that Tc cells exit tumors upon upregulating sup-

pressive inhibitory receptors and downregulating cytotoxic

activity.

Neither the Vax nor ICB protocols significantly changed the

fraction (�30%) of CD8+ T cells that displayed transitional phe-

notypes (T1–T3; Figures 5C and S5F). This may be due to flux

through transitional states as Tc cells differentiate from naive

S1 to effector S2 and exhausted S3 states. In Vax, T2 cells

were spatially enriched inside tumors (Figure 5E) and were sub-

stantially enriched for cells co-expressing TCF1 and PD-1

(an 8- and 200-fold increase was observed relative to other

T cell states, Figure 5G); this enrichment was also observed in

T1 and T2 states in ICB (Figure S5J). TCF1+ PD-1+ CD8+

T cells have recently been shown to play a critical role in driving

therapeutic responses to ICB in both mice and humans.26–29

Such cells are thought to be in a progenitor-like state and

induced to differentiate into cells with cytotoxic function

in response to treatment.28,29 Our data suggest that TCF1+

PD-1+ progenitor CD8+ T cells are enriched in specific transi-

tional states that efficiently traffic into tumors and can establish

residence within the tumor bed.

One limitation of multiplexed imaging methods in character-

izing T cell phenotypes is the inability to detect tumor antigen-

specific T cell populations in fixed tissue. To determine whether

the Tc phenotypes we observed in tumors were tumor-antigen

specific, we performed a flow cytometric analysis of SIIN and

SIY-specific Tc cells in dissociated lung samples from Vax- and

ICB-treated mice using peptide-MHC tetramers. The majority of

TIM-3+ and PD-1+ TIM-3+ cells, which resembled the exhausted
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S3 state, were Tetramer+ (i.e. T cells expressing T cell receptors

directed against either the SIIN or SIY antigens) in control mice

and this association increased with ICB and Vax to >70% of

this population (Figures S5K–S5L). In contrast, the majority of

TCF1+ cells resembling the naive S1 state were not tumor-anti-

gen specific; however, TCF1+ PD-1+ (T2) cells were more en-

riched for Tetramer+ cells. Most Tc cells with a proliferative

(Ki67+) and/or cytotoxic (GZMB+) phenotype resembling the S2

state were not tumor antigen-specific in control mice but both

ICB and Vax significantly expanded the Tetramer+ cell propor-

tions, with Vax increasing the proportion of Tetramer+ cells to

>50% (Figures S5K–S5L). Interestingly, increases in T cell popu-

lations induced by Vax were restricted to the Tetramer+ cell frac-

tion whereas ICB increased both Tetramer+ and Tetramer� cells.

These findings indicate that vaccination against SIIN and SIY

specifically targets SIIN- and SIY-specific T cells, whereas ICB

additionally acts on other Tc populations. These additional Tc
populations may be responding to tumor-associated antigens

in the model30 or may be ‘‘bystander’’ T cells specific to non-tu-

mor antigens.31

TCF1+ PD-1+ progenitor CD8+ T cells reside within
intratumoral lymphonets
We next used data from Vax-treated LucOS mice to investigate

how changes in lymphonets are related to changes in Tc cell

phenotypes. While Vax did not substantially change the overall

size, number, or localization of lymphonets (Figures S6A and

S6B), it did increase lymphonet association of Tc cells; this

was not true of other T cell subsets (Figures 6A, 6B, and S6C–

S6E). Remarkably, the TCF1+ PD-1+ progenitor phenotype was

the most highly and significantly enriched Tc phenotype in lym-

phonets (Figure 6C, KS p value = 10�3). Moreover, across the

Vax cohort the total number of Tc cells in lymphonets was line-

arly correlated with the number of TCF1+ PD-1+ cells (Figure 6D).
Cancer Cell 41, 1–16, May 8, 2023 9



B

E F

CD8 Tc

CD4 Th
Treg

Ctrl Vax
0

.4

.8

T 
ce

ll 
su

bt
yp

e 
fra

c 
in

 L
N

et
s 1.2

CD4 Th
p=0.73

Treg
p=0.77

CD8 Tc
p=0.03

Vax
0

.4

.8

1.2

Ctrl VaxCtrl VaxCtrl

GzmB+

Prf+

Ki67+

PD-1+

TIM-3+

TCF1+

.5

1

2

CD8 Tc phenotype enrichment in LNets
Vax

Gzm
B
+

Prf+
Ki67

+

PD-1
+

TIM
-3

+

TCF1+

Ctrl

C

100 200 300
# TCF1+ PD-1+ Tc cells

0

200

400

600

# 
Tc

 c
el

ls
 in

 L
N

et
s R2 ~ 0.81

D

# 
ce

lls
 in

 L
N

et
s 

(1
03 )

Vax

Ctrl

Outside LNets Inside LNets

S1

S2A
S2B

S3

T1
T2
T3

00 +1-1 00 +1-1

Ctrl Vax

S1

S2
S3

T1
T2
T3

0
Enrichment of CD8 Tc cells in LNets (log2 scale)

0 +1-1 00 +1-1

Ctrl ICB

Enrichment of CD8 Tc cells in LNets (log2 scale)

Vax
Cohort
Tumor
CD8 Tc
Cells

ICB
Cohort
Tumor
CD8 Tc
Cells

Outside LNets Inside LNetsG H

.3

.2

.1 .02
.04
.06

A

0
.15
.3

0
.04
.08

** * **

***

** **** ** ** **

***

T2

T2

Inside
Tumor

Outside
TumorS2A

S2BLymphonets
T2

S1

T1 T3 S3

S3

I

GzmB+

Prf+

Ki67+

PD-1+

TIM-3+

TCF1+

Gzm
B
+

Prf+
Ki67

+

PD-1
+

TIM
-3

+

TCF1+

Figure 6. TCF1+ PD-1+ progenitor CD8+ T cells reside within intratumoral lymphonets
(A) Proportion of T cell subtypes in lymphonets (Ctrl n = 7, Vax n = 8 mice, mean + SD, same LucOS cohort in Figure 5).

(B) Number of T cell subtypes present in lymphonets (bar = mean, two-tailed t test).

(C) Pair-wise enrichment analysis of marker co-expression in Tc cells in Ctrl and Vax groups (KS p value *p < 0.05, **p < 0.01, ***p < 10�3, ****p < 10�4).

(D) Plot of Tc cells present in lymphonets vs. TCF1+ PD-1+ cells in Ctrl and Vax per mouse (dotted line, linear regression, R2 = 0.81).

(E) Heatmap of cell densities of tumor-localized Tc cells present outside and inside lymphonets in Palantir projections for Vax-treated cohort (n = 3,736 and 806

cells, respectively).

(F) Enrichment of tumor-localized Tc cells in lymphonets for Ctrl and Vax mice.

(G) Heatmap of cell densities of tumor-localized Tc cells present outside and inside lymphonets in Palantir projections for anti-PD-1 and anti-CTLA-4 treated (ICB)

cohort (n = 6 mice/group, n = 4,276 and 1,041 cells, respectively).

(H) Enrichment of tumor-localized Tc cells in lymphonets for Ctrl and ICB mice (n = 6 mice/group).

(I) Schematic of data interpretation from Figures 5 and 6. See also Figure S6 and Table S2.
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The Tc compartment of lymphonets was also predominantly

composed of the transitional T2 state containing TCF1+ PD-1+

progenitor cells (Figures 6E, 6F, and S6F); this was true of

lymphonets both inside and outside of tumors; however,

cells in the T2 state were mostly found within tumors (Fig-

ure 5E). Lymphonets were similarly enriched for transitional

phenotypes containing TCF1+ PD-1+ cells in the ICB cohort

(i.e., T1 and T2, Figures 6G, 6H, and S6G). Notably, the only Tc

state that increased in adundance in lymphonets following Vax

or ICB treatment was the cytotoxic S2 state (S2B for Vax

and S2 for ICB, Figures 6E–6H). Thus, after either Vax or ICB

treatment, cells with cytotoxic potential colocalized with

TCF1+ PD-1+ progenitor cells in lymphonets. Given that TCF1+

PD-1+ progenitor cells give rise to cytotoxic Tc cells in

tumors,29 these data suggest that lymphonets are the site of dif-

ferentiation of progenitor cells into cytotoxic cells in response to

immunotherapy.
10 Cancer Cell 41, 1–16, May 8, 2023
Taken together, our data support a model wherein Tc cells

migrate into intratumoral lymphonets upon differentiation from

an TCF1+ S1 state into a T2 TCF1+ PD-1+ state (Figure 6I). ICB

and Vax immunotherapies promote differentiation of TCF1+

PD-1+ cells to a cytotoxic S2B state within tumors, and these

cells then progress to a tumor-excluded exhausted S3 state

upon upregulation of inhibitory receptors and downregulation

of cytotoxic activity.

Lymphonets enriched for TCF1+ PD-1+ progenitor CD8+

T cells are abundant in early-stage human lung
adenocarcinoma
To begin to investigate the relevance of these findings to human

disease we used a panel of CyCIF-qualified antibodies to char-

acterize the features of lymphonets in whole-slide sections of

early-stage human lung adenocarcinoma from 14 patients

(Table S3); these early-stage human tumors are likely analogous
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Figure 7. Lymphonets enriched for TCF1+ PD-1+ progenitor CD8 T cells are abundant in early-stage human lung adenocarcinoma

(A) Sequential clustering of immune, epithelial/tumor, stromal and ‘‘other’’ cell populations (Lv1); immune cells were further clustered into lymphoid and myeloid

(Lv2) and immune subsets (Lv3, Lv4). Rows = individual cells. 7.8 3 106 cells plotted from n = 14 human lung adenocarcinomas. Immune clusters shown in

heatmap (right).

(B) Horizontal-stacked bar graphs of cell-type fractions (Lv1-2) and lymphocyte-subtype fractions (Lv3-Lv4).

(C) H&E, CyCIF representative images; map indicates lymphonet size. Top: tumor with small lymphonets (n < 64 cells). Bottom: tumor with large lymphonets

(n > 64 cells). Scale bar, 1 mm.

(D) Histogram: average number of lymphonets/sample (n = 14) by lymphonet size.

(E) Composition of lymphonets by lymphocyte type across different network sizes (mean ± 25th percentile).

(F) Spatial correlation of lymphocytes’ likelihood of belonging to a lymphonet and the likelihood of non-lymphoid cells expressing the indicated markers (n = 14

samples, bar = mean, Pearson correlation and p values).

(G) Heatmap of density of total Tc in and out of lymphonets of different sizes; density of TCF1+ PD-1+ CD8+ T cells in Palantir projection from 14 human lung

adenocarcinomas (n = 21*103 cells sampled from n = 14 samples).

(H) Phenotypic correlation of Palantir distributions of TCF1+ PD-1+ CD8+ Tc cells and lymphonets binned by lymphonet size (correlation of likelihood of CD8+ Tc

belonging to a lymphonet [binned by size] and the likelihood of CD8+ Tc being TCF1+ PD-1+); gray lines represent data from individual tumors (n = 14, n = 3,000

cells/sample); black line = mean ± SD; Pearson correlation and two-tailed t test. See also Figure S7, Tables S3 and S4.
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to the early-stage tumors we studied in the KP-LucOS GEMM.

We performed sequential clustering of �7.8 million cells from

these images and identified tumor and stromal cells (Figure 7A,

Lv1) and immune cells (�3.4 million cells) for further cell-type

calling (Figure 7A, Lv2–Lv4). Human specimens had highly

variable fractions of tumor, stromal, and lymphocyte subtypes

(Figure 7B). In histopathologically annotated tumor areas, we

identified many lymphonets per sample, and they varied sub-

stantially in size. Similar to lymphonets in mice, the vast majority

of these networks in human tumors were small (Figures 7C, 7D,

and S7A–S7C), and the fraction of B cells was positively corre-

lated with lymphonet size (Figure 7E). We found that the number

of lymphonets with >500 cells matched the number of tertiary

lymphoid structures (TLSs) as scored by pathology review (linear
regression coefficient = 0.99, R2 = 0.74, Figures S7A and S7B,

Table S4). These findings suggest that anti-cancer immune

responses in both early-stage human and mouse lung cancer

is characterized by a preponderance of small lymphocyte

networks.

As in KP-mouse tumors, smaller lymphonets in human tumors

were composed of T cells, with the B cell fraction increasing with

lymphonet size (Figure 7E). Uniquely to human samples, the CD8

T cell fraction decreased as lymphonets increased in size, being

replaced by CD4 Th cells (Figure 7E). A positive spatial correla-

tion (i.e., increased probability of spatial proximity) between

major histocompatibility class I (MHC I) expression on non-

lymphoid cells in tumors and lymphonets was observed (Fig-

ure 7F), suggesting lymphonet organization in early-stage human
Cancer Cell 41, 1–16, May 8, 2023 11
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lung cancer may be regulated by CD8+ T cell antigen presenta-

tion. A negative spatial correlation (i.e., increased probability of

being spatially distant) was observed between non-lymphoid

cells in tumors expressing PD-L1 and lymphonets (Figure 7F),

which implies that PD-L1may promote their distancing from lym-

phonets. Subsets of myeloid cells exhibited similar negative

spatial correlation (Figure S7D) perhaps due to high expression

of PD-L1 on myeloid cells such as TAMs (Figure S7E). MHC II

was expressed in many cell types, including B cells, TAMs,

and epithelial cells (Figure S7E), as previously reported for lung

tissue32; however, no correlation was observed between lym-

phonet formation and MHC II expression on non-lymphoid cells

in tumors or myeloid cells (Figures 7F and S7D). When we pro-

filed Tc cells withmarkers of functional potential and used Palan-

tir to identify the TCF1 and PD-1 co-expressing population of

progenitor CD8+ T cells, we found that Tc cells were present

both outside and inside of lymphonets, but TCF1+ PD-1+ progen-

itor cells were largely restricted to lymphonets (Figure 7G) and

became increasingly enriched as lymphonet size increased (Fig-

ure 7G and 7H). Altogether, these findings reveal that lympho-

nets as identified in the KP-GEMM model are found in

abundance in human lung adenocarcinomas where they may

have a similar function in supporting progenitor CD8+ T cell

maturation.

DISCUSSION

Multiplexed imaging of the KP GEMM of lung cancer revealed

striking changes in the spatial arrangements of lymphocytes

and dendritic cells following expression of tumor antigens (in

the KP-LucOS model) and consequent induction of T cell-medi-

ated anti-tumor immunity. Both T and B cells were recruited to

tumors when tumor antigens were expressed with lymphocytes

forming networks of cells that directly contacted each other. We

termed these networks of six to several hundred interacting cells

‘‘lymphonets.’’ The smallest primarily contained T cells, but the

proportion of B cells increased as networks enlarged. A key

feature of lymphonets is that they contain TCF1+ PD-1+ CD8+

T cell progenitors and gain cytotoxic CD8+ T cells following treat-

ment with ICB or antigen-targeted vaccines, most likely due to

differentiation and activation of the progenitor cells. We specu-

late that paracrine and juxtacrine signaling among cells in lym-

phonets promotes or coordinates this critical aspect of induced

anti-tumor immunity.

Compartmentalized and structured rather than mixed organi-

zation of lymphocytes with respect to tumors has previously

been correlated with tumor control,33 particularly with respect

to TLS formation across multiple cancer types.34,35 TLS are ag-

gregates of immune cells with cellular composition and organiza-

tion resembling secondary lymphoid organs. Fully mature TLSs

generally contain B and T cell zones and germinal centers, con-

taining follicular dendritic cells. The presence of TLS is predictive

of better patient survival and response to ICB and vaccine immu-

notherapies across multiple cancer types.36,37 However, it

remains unclear whether TLSs directly facilitate anti-tumor im-

mune responses or are merely evidence of a prior immune

response with potential for reinvigoration by immunotherapy.

Characterization of dynamic changes within TLS over time or

with therapy is difficult to investigate in humans and studies in
12 Cancer Cell 41, 1–16, May 8, 2023
mice have been limited due to the absence of TLS formation in

most transplantable tumor models.38

In the KP-LucOS model, we previously described the

formation of mature TLSs peritumorally around 20 weeks

post-tumor initiation,39 a timepoint correlated with loss of func-

tional anti-tumor CD8+ T cell immunity and lack of response to

anti-PD-1/anti-CTLA-4 ICB therapy.12,15,16 In comparison with

TLS, the lymphonets we describe here (at 9 weeks post-tumor

initiation) are coincident across conditions with functional Tc

responses in tumors and are less structured, lacking distinct

T and B cell zones; however, we did find a significant associa-

tion between lymphonets and cross-presenting CD103+

dendritic cells. It is possible that some lymphonets represent

precursors to the TLS observed later during tumor progression.

Additional spatial profiling of the TME longitudinally between 9

and 20 weeks post-tumor initiation is needed to investigate the

connection between and TLS and lymphonets, to identify fac-

tors that support anti-tumor Tc immunity in lymphonets, and

to distinguish bystander and immunosuppressive functions.

Multiparametric analysis of key functional Tc cell markers in

LucOS tumors defined three major Tc cell states, naive (S1),

cytotoxic (S2), and dysfunctional/exhausted (S3), and character-

ized the flux through these states and connecting transitional

phenotypes (T1–T3) in response to immunotherapies. Tumor an-

tigen-targeted vaccination (Vax) and anti-PD-1/anti-CTLA-4 ICB

shifted Tc cells from the naive S1 state to the S2 and S3 states.

Parallel flow cytometry analysis of SIIN and SIY antigen-specific

Tc cells in dissociated lung tissue showed that the majority of S3

cells were tumor-specific as were many S2 cells, especially

post-treatment. These differentiated functional states were

phenotypically related to cells exhibiting intermediate transi-

tional phenotypes (T1–T3). TCF1+ PD-1+ cells that have been

described as giving rise to cytotoxic and exhausted CD8+

T cell populations in response to ICB therapy40 occupied intratu-

moral transition states and were tightly associated with lympho-

nets both before and after immunotherapy treatment. After

therapy, S2 cells colocalized with TCF1+ PD-1+ cells in lympho-

nets, consistent with progenitor cells seeding the S2 population.

Notably, vaccination resulted in two S2 populations (cytotoxic

S2A T cells marked by Ki67 and high expression of GZMB, and

cytotoxic/early exhausted S2B T cells marked by low expression

of inhibitory receptors) that were spatially segregated; only the

S2B population localized to tumors and lymphonets while the

S2A population was present outside of tumors. The exhausted/

dysfunctional T cells (S3) were largely excluded to just outside

of the tumor margin. We hypothesize that in contrast to the

S2B (and ICB S2 populations), S2A cells are not derived from in-

tratumoral TCF1+ PD-1+ cells and instead seed directly from the

periphery. Upon entering tumors, S2A cells may pass through

the S2B state before they become terminally exhausted (S3).

Consistent with this, we previously reported that vaccination

acutely promotes substantial peripheral Tc expansion rather

than expanding the existing Tc populations in the lung by flow

cytometric analysis.15 In contrast to Vax, ICB induced only the

intratumoral S2B-like S2 state associatedwith TCF1+ PD-1+ pro-

genitor cells, and this may help to explain the central role of

progenitor cells in driving ICB response in mice and humans.

Consistent with our observation in mice that intratumoral

lymphonets harbor TCF1+ PD-1+ progenitor CD8+ T cells,
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we found that TCF1+ PD-1+ cells were also localized to lym-

phonets in human lung cancer resections. Localization of

stem-like cells (defined as CXCR5+ TCF1+) to intratumoral

lymphocyte ‘‘niches’’ has been previously reported in human

renal cell carcinoma, where the ‘‘niches’’ were proposed to

support generation of cytotoxic T cells.41 These niches were

not mature TLS and instead were defined by lymphocyte ag-

gregation around MHC II-expressing cells, presumably

marking regions rich in antigen-presenting cells. Interestingly,

we did not find a correlation between MHC II expression and

lymphonets of any size in human lung cancer, but we did

observe a significant association between CD103+ DCs (also

expressing MHC II) and lymphonets in mice. The expression

of MHC II on multiple cell populations and the lack of DC-spe-

cific markers in the human antibody panel prevented us from

validating this CD103+ DC phenotype in human lung tumors.

However, MHC I expression level was correlated with lympho-

nets in human tumors, and this may suggest that antigen

presentation to CD8+ T cells is necessary for lymphonet for-

mation and/or that lymphonets promote MHC I upregulation

(perhaps through T cell secretion of IFNg). Consistent with

this observation, lymphonets in the mouse were found intratu-

morally only following expression of LucOS T cell antigens and

these lymphonets were significantly associated with cells ex-

pressing IFNg-induced chemokines (Cxcl9, Cxcl10). We also

observed that ectopic expression of Cxcl10 was able to in-

crease the size and number of lymphonets in Cre mice lacking

LucOS antigen expression. Pelka et al.4 recently reported a

significant association between formation of ‘‘immune hubs’’

enriched in T lymphocytes (similar to the lymphonets reported

here) and expression of CXCR3 ligands during a productive

anti-tumor immune response to mismatch repair deficient

(MMRd) human colorectal cancer. Our findings provide mech-

anistic evidence that CXCR3 ligands such as CXCL9 and

CXCL10 actively promote the formation of lymphocyte niches

correlated with productive anti-tumor immunity; however,

localization of these cell networks inside tumors depends on

antigen expression or associated factors.

Lymphonets in KP-LucOS mice were predominantly

composed of Th and B cells, with the B cell fraction increasing

with lymphonet size in both mouse and human. An association

of B cell gene signatures with better patient survival and

response to ICB therapy has been found across many cancer

types.38 Interestingly, however, B cells in cancer have been

demonstrated to have both pro- and anti-tumorigenic func-

tions. For example, B regulatory cells contribute to tumor-pro-

moting inflammation and suppression of anti-tumor T cell re-

sponses, while antibody-producing plasma cells (frequently

associated with TLS) are more commonly associated with tu-

mor control.38 Future imaging studies with additional markers

of B cell states paired with spatial transcriptomics in the KP

GEMM could clarify the function of B cells and Th cells in lym-

phonets and how they might support TCF1+ PD-1+ progenitor

CD8+ T cell function. Given that antigen is necessary for

nucleation of lymphonets inside KP lung tumors and MHC I

expression is associated with lymphonets in human lung can-

cer, one hypothesis is that B cells regulate CD8+ T cells and

support Th cell function through their role as antigen-present-

ing cells.42
Limitations of the study
Antibody panels used in this study focused on effector T cell

states; additional antibodies are required to characterize other

T cell populations and myeloid cells.43 Analysis of dendritic cells

(DCs) was limited to cross-presenting CD103+ DCs analyzed in

mouse studies and MHC II-expressing cells in humans; this lim-

itation could be overcome in future studies. Immunogenic model

antigens were expressed throughout LucOS tumors, which may

not be representative of situations of limited antigen availability in

human tumors. Multiparametric fixed timepoint measurements

used here permit inference of dynamic properties of cell popula-

tions, but not direct visualization of transitions over time.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

InVivoMAb PD1 BioXCell Clone 29F.1A12; Cat# BE0273; RRID:

AB_2687796

InVivoMAb CTLA4 BioXCell Clone 9H10; Cat# BE0131; RRID:

AB_10950184

InVivoMAb rat IgG2a BioXCell Clone 2A3; Cat# BE0089; RRID: AB1107769

InVivoMAb polyclonal Syrian Hamster IgG BioXCell Cat# BE0087; RRID: AB_1107782

t-CyCIF: anti-human and mouse TTF1 Abcam Clone EPR5955(2); Cat# ab206726; RRID:

AB_2857980

t-CyCIF: anti-mouse B220 (CD45R) ThermoFisher Scientific Clone RA3-6B2; Cat# 41-0452-80; RRID:

AB_2573598

t-CyCIF: anti-mouse CD45 BioLegend Clone 30-F11; Cat# 103123; RRID: AB_493534

t-CyCIF: anti-mouse FOXP3 ThermoFisher Scientific Clone FJK-16s; Cat# 11-5773-82; RRID:

AB_465243

t-CyCIF: anti-mouse CD4 ThermoFisher Scientific Clone 4SM95; Cat# 41-9766-82; RRID:

AB_2573637

t-CyCIF: anti-mouse CD8a Cell Signaling Technology Clone D4W2Z; Cat# 98941; RRID: AB_2756376

t-CyCIF: anti-mouse CD103 R&D Systems Clone Polyclonal; Cat# AF1990; RRID:

AB_2128618

t-CyCIF: anti-mouse CD11c Cell Signaling Technology Clone D1V9Y; Cat# 97585; RRID: AB_2800282

t-CyCIF: anti-human and mouse CD11b Abcam Clone EPR1344; Cat# ab204471; RRID:

AB_2650514

t-CyCIF: anti-mouse Nkp46 R&D Systems Clone Polyclonal; Cat# FAB2225F-025; RRID:

AB_2149149

t-CyCIF: anti-mouse CD3e Cell Signaling Technology Clone D4V8L; Cat# 99940; RRID: AB_2755035

t-CyCIF: anti-human and mouse Ki-67 Cell Signaling Technology Clone D3B5; Cat# 12075; RRID: AB_2728830

t-CyCIF: anti-mouse PD-L1 Cell Signaling Technology Clone D5V3B; Cat# 64988s; RRID:

AB_2799672

t-CyCIF: anti-mouse PD-1 Cell Signaling Technology Clone D7D5W; Cat# 61237; RRID: AB_2799604

t-CyCIF: anti-mouse Granzyme B Cell Signaling Technology Clone E5V2L; Cat# 44153; RRID: AB_2857976

t-CyCIF: anti-mouse Perforin Cell Signaling Technology Clone E3W4I; Cat# 31647; RRID: AB_2857978

t-CyCIF: anti-mouse TIM3 Cell Signaling Technology Clone D3M9R; Cat# 83882; RRID: AB_2800033

t-CyCIF: anti-mouse Ly6G eBioscience Clone 1A8-Ly6G; Cat#: 12-9668-82; RRID:

AB_2572720

t-CyCIF: anti-human and mouse TCF1 Cell Signaling Technology Clone C63D9; Cat# 6709; RRID: AB_2797631

t-CyCIF: anti-human and mouse Vimentin Cell Signaling Technology Clone D21H3; Cat# 9854; RRID: AB_10829352

t-CyCIF: anti-human and mouse aSMA Cell Signaling Technology Clone D4K9N; Cat# 76113; RRID: AB_2857972

t-CyCIF: anti-mouse F4/80 Cell Signaling Technology Clone D2S9R; Cat# 70076; RRID: AB_2799771

t-CyCIF: anti-human and mouse Pan-Keratin ThermoFisher Scientific Clone AE1/AE3; Cat# 53-9003-82; RRID:

AB_1834350

t-CyCIF: anti-human and mouse PCNA Abcam Clone PC10; Cat# ab201674; RRID:

AB_2857977

t-CyCIF: anti-human CD4 R&D Clone Polyclonal; Cat# FAB8165G; RRID:

AB_2728839

t-CyCIF: anti-human CCR6 Abcam Clone EPR22259; Cat# ab243852; RRID:

AB_2860033

t-CyCIF: anti-human Granzyme B Agilent Dako Clone GrB-7; Cat# M7235; RRID: AB_2114697

t-CyCIF: anti-human and mouse TCF1 Cell Signaling Technology Clone C63D9; Cat# 6444; RRID: AB_2797627

(Continued on next page)

Cancer Cell 41, 1–16.e1–e10, May 8, 2023 e1



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

t-CyCIF: anti-human FOXP3 eBioscience Clone 236A/E7; Cat# 41-4777-82; RRID:

AB_2573609

t-CyCIF: anti-human CD8a eBioscience Clone AMC908; Cat# 50-0008-82; RRID:

AB_2574149

t-CyCIF: anti-human and mouse TTF1 Abcam Clone EPR5955(2); Cat# ab206726; RRID:

AB_2857980

t-CyCIF: anti-human PD-L1 Cell Signaling Technology Clone E1L3N; Cat# 14123; RRID: AB_2798397

t-CyCIF: anti-human CD20 eBioscience Clone L26; Cat# 50-0202-82; RRID:

AB_11150959

t-CyCIF: anti-human TIM-3 Cell Signaling Technology Clone D5D5R; Cat# 54669; RRID: AB_2799468

t-CyCIF: anti-human CD45 BioLegend Clone HI30; Cat# 304008; RRID: AB_314396

t-CyCIF: anti-human PD-1 Abcam Clone EPR4877(2); Cat# ab201825; RRID:

AB_2728811

t-CyCIF: anti-human CD163 Abcam Clone EPR14643-36; Cat# ab218293; RRID:

AB_2889155

t-CyCIF: anti-human CD68 Cell Signaling Technology Clone D4B9C; Cat# 79594; RRID: AB_2799935

t-CyCIF: anti-human and mouse Ki-67 Cell Signaling Technology Clone D3B5; Cat# 12075; RRID: AB_2728830

t-CyCIF: anti-human HLA-DPB1 Abcam Clone EPR11226; Cat# ab201527; RRID:

AB_2890211

t-CyCIF: anti-human CD3D Abcam Clone EP4426; Cat# ab208514; RRID:

AB_2728789

t-CyCIF: anti-human HLA A Abcam Clone EP1395Y; Cat# ab199837; RRID:

AB_2728798

t-CyCIF: anti-human and mouse PCNA Cell Signaling Technology Clone PC10; Cat# 8580; RRID: AB_11178664

t-CyCIF: anti-human aSMA Abcam Clone EPR5368; Cat# ab202509; RRID:

AB_2868435

t-CyCIF: anti-human and mouse Vimentin Cell Signaling Technology Clone D21H3; Cat# 9856; RRID: AB_10834530

t-CyCIF: anti-human CD16 Santa Cruz Clone DJ130c; Cat# sc-20052 AF488; RRID:

AB_2890161

t-CyCIF: anti-human and mouse Pan-Keratin eBioscience Clone AE1/AE3; Cat# 41-9003-82; RRID:

AB_11218704

t-CyCIF: anti-human CD14 Abcam Clone EPR3653; Cat# ab196169; RRID:

AB_2890135

t-CyCIF: anti-human CD19 Abcam Clone EPR5906; Cat# ab196468; RRID:

AB_2889156

t-CyCIF: anti-human CD103 Abcam Clone EPR4166(2); Cat# ab225153; RRID:

AB_2884945

FC: anti-mouse CD3e BD Biosciences Clone 145-2C11; Cat# 565922; RRID:

AB_2738278

FC: anti-mouse CD8ɑ BD Biosciences Clone 53-6.7; Cat# 563786, 612759; RRID:

AB_2732919, AB_2870090

FC: anti-mouse CD4 ThermoFisher Clone: RM4-5; Cat# 46-0042-82; RRID:

AB_1834431

FC: anti-mouse Foxp3 ThermoFisher Clone FJK-16s; Cat# 48-5773-82; RRID:

AB_1518812

FC: anti-mouse CD44 BD Biosciences Clone IM7; Cat# 563736; RRID: AB_2738395

FC: anti-mouse CD45 ThermoFisher Clone 30-F11; Cat# 47-0451-80; RRID:

AB_1548790

FC: anti-human Granzyme B BD Biosciences Clone GB11; Cat# 515408, 562462; RRID:

AB_2562196, AB_2737618

FC: anti-human Ki67 BD Biosciences Clone B56; Cat# 561277; RRID: AB_10611571

FC: anti-mouse PD1 (CD279) BioLegend Clone RMP1-30; Cat# 109120; RRID:

AB_2566641
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FC: TCF1/TCF7 Cell Signaling Technology Clone C63D9; Cat# 6444; RRID: AB_2797627

FC: TIM3 BioLegend Clone RMT3-23; Cat# 119721; RRID:

AB_2616907

FC: H-2Kb SIINFEKL monomer NIH Tetramer Core Facility Custom

FC: H-2Kb SIYRYYGL monomer NIH Tetramer Core Facility Custom

Biological samples

Human formalin fixed paraffin embedded tissue

samples from lung adenocarcinoma cases

Partners Healthcare Institutional

Review Board at Brigham Health,

Boston, MA, USA

Excess tissue, discarded tissue

protocol number 2018P001627

Chemicals, peptides, and recombinant proteins

SMLVLLPDEVSGLEQLESIINYEKLTEWTS New England Peptide Custom

SMLVLLPDEVSGLEQLESIINFEKLTEWTS

peptide

New England Peptide Custom

Cyclic-di-GMP Invitrogen Cat# tlrl-nacdg

Mirus TransIT LT1 Mirus Bio Cat# MIR 2300

Polybrene Infection Reagent Millipore Cat# TR-1003-G

Collagenase IV Worthington Biochemical Cat# LS004189

DNase I Sigma-Aldrich Cat# 10104159001

Streptavidin, allophycocyanin conjugate Invitrogen Cat# S32362

Mirus TransIT LT1 Mirus Bio Cat# MIR 2300

Zombie Fixable Viability Kit BioLegend Cat# 423102

Critical commercial assays

Mouse CXCL10/IP-10/CRG-2 DuoSet ELISA R&D Systems Cat# DY466-05

Fisherbrand Superfrost Plus Microscope Slides ThermoFisher Scientific Cat# 12-550-15

Intracellular Fixation & Permeabilization Buffer

Set Kit

ThermoFisher Scientific Cat# 88-8824-00

Deposited data

Processed imaging data Synapse.org https://doi.org/10.7303/syn30715952

Experimental models: Cell lines

293FS* viral packaging cell line This paper N/A

GreenGo 3TZ for lentiviral titering This paper N/A

1233 KP lung adenocarcinoma This paper N/A

Experimental models: Organisms/strains

Mouse: B6.129S4-Krastm4Tyj/J Jackson

Laboratories

Jackson Laboratories Stock No: 008179

Mouse: B6.129P2-Trp53tm1Brn/J Jackson

Laboratories

Jackson Laboratories Stock No: 008462

Mouse: Rosa26LSL-Cas9-GFP-Csy4 Ng et al., 202046 N/A

Oligonucleotides

Cxcl10 dRNA Oligo 1:

CACCGACAAGCAATGCCCT

Sigma-Aldrich N/A

Cxcl10 dRNA Oligo 2:

AAACAGGGCATTGCTTGTC

Sigma-Aldrich N/A

Tomato dRNA Oligo 1:

CACCCGAGTTCGAGATCGA

Sigma-Aldrich N/A

Tomato dRNA Oligo 2:

AAACTCGATCTCGAACTCG

Sigma-Aldrich N/A

Recombinant DNA

Plasmid: Lenti-Cre DuPage et al., 201112 Addgene Cat# 198712

Plasmid: Lenti-LucOS DuPage et al., 201112 Addgene Cat# 22777

(Continued on next page)

ll
OPEN ACCESSArticle

Cancer Cell 41, 1–16.e1–e10, May 8, 2023 e3

Please cite this article in press as: Gaglia et al., Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung
adenocarcinoma, Cancer Cell (2023), https://doi.org/10.1016/j.ccell.2023.03.015

https://doi.org/10.7303/syn30715952


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Plasmid: Lenti-SAM-Puro This paper Addgene Cat# 198713

Plasmid: Lenti-SAM-Cre This paper Addgene Cat# 198714

Software and algorithms

Aperio ImageScope Leica Biosystems Version 12 https://www.leicabiosystems.com

ImageJ NIH https://imagej.nih.gov/ij/

ImageJ BaSiC Plugin Peng et al., 201755 https://www.helmholtz-muenchen.de/icb/

research/groups/marr-lab/software/basic/

index.html

ASHLAR The Python Package Index;

Muhlich et al. 202156
https://pypi.org/project/ashlar/

Ilastik Berg et al., 201957 https://www.ilastik.org/download.html

Visinity Warchol et al. 202218 https://github.com/labsyspharm/visinity

Code https://doi.org/10.5281/zenodo.7670911
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Sandro

Santagata (ssantagata@bics.bwh.harvard.edu).

Materials availability
As described in the key resources table, cell lines are available upon request, mousemodels are available from Jackson Laboratories

or upon request, and plasmids are available from Addgene.

Data and code availability
Data:

d The imaging data reported in this study cannot be deposited in a public repository because a repository for imaging data is not

yet available. A repository page is made available at Zenodo which contains all updated data release information, processed

datasets derived from multiplexed images, and multiplexed images of a mouse lung specimen (KP LucOS can be viewed in

Minerva Story44,45 an interpretive guide for interacting with multiplexed tissue imaging data). DOIs are listed in the key re-

sources table.

Code:

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table. Any additional information required to reanalyze the data reported in this paper is available from the lead con-

tact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human tissue
Formalin fixed paraffin embedded (FFPE) tissue samples of human lung adenocarcinoma were retrieved from the archives of the

Brigham and Women’s Hospital Department of Pathology following approval of the research study by the Partners Healthcare Insti-

tutional Review Board at Brigham Health, Boston, MA, USA (Excess tissue, discarded tissue protocol number 2018P001627). All

appropriate ethical guidelines were followed for this study.

Mice
Lung adenocarcinomas were initiated in KrasLSL-G12D/+; Trp53fl/fl (KP) on a C57BL/6 background through intratracheal installation of

lentiviruses expressing Cre recombinase.12 KP mice crossed to Rosa26LSL-Cas9-GFP-Csy4 46 and the Rosa26LSL-tdTomato were used for

CRISPR-Cas9-mediated gene activation ofCxcl10. Mice were between 8 and 14weeks of age at the time of lentiviral infection. Males

and females were used equally across all experimental arms. All studies were performed under an animal protocol approved by the

Massachusetts Institute of Technology (MIT) Committee on Animal Care. Mice were assessed for morbidity according to guidelines

set by the MIT Division of Comparative Medicine and were humanely sacrificed prior to natural expiration. Information about each

mouse experiment is provided in Table S2.
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METHOD DETAILS

Lentiviral tumor induction
To initiate lung tumors, KP mice were injected intratracheally (i.t.) with 2.5 x 104 PFU of lentivirus containing Cre recombinase and

model CD8 T cell antigens as previously described.9,12 Details of the lentivirus production can be found below.Micewere randomized

post-infection for immunotherapy trials.

Lentiviral constructs
Lentiviral constructs containing Cre recombinase with or without LucOS antigens (Lenti-Cre and Lenti-LucOS) were previously

described.12 The Lenti-Cre design was modified by Gibson cloning to create Lenti-SAM-Cre for CRISPR/Cas9-mediated gene acti-

vation. A U6 promoter and an activator guide RNA cloning cassette were added upstream and inverted from the Pgk promoter driving

Cre. The cloning cassette contains BsmBI restriction sites for the addition of a 15-nucleotide ‘‘dead’’ guide RNA (dRNA) to mediate

gene activation rather than cutting by catalytically active Cas9.47 The cassette appends the dRNA with stem-loops containing MS2-

binding aptamers as previously described.48 ‘‘SAM’’ transcriptional activation components from p65 (NFkB) and Hsf1 were fused

with theMS2RNAbinding protein47,48 and cloned in tandemwithCre, separated by a P2A self-cleaving peptide. For in vitro validation

of dRNA activity, Lenti-SAM-Cre was modified to replace Cre with a Puromycin selection gene (Lenti-SAM-Puro). In the LucOS

LucOS variant of the KPmodel, twomodel CD8 T cell antigens, the SIINFEKL (SIIN) epitope from chicken ovalbumin and the synthetic

peptide SIYRYYGL (SIY), are expressed as a fusion to luciferase in tumor cells.12 Immunogenic neoantigens isolated from

MCA-induced sarcomas (i.e., , mutant Alg8 andmutant Lama4)49 expressed in KP lung and pancreatic tumors15,50 have been shown

to generate T cell responses of similar magnitude and functionality to the SIIN-specific response in both models (the more immuno-

genic between SIIN and SIY).

Cxcl10 dead guide RNA screening
Short guide RNA (sgRNA) sequences targeting the promoter region of Cxcl10 (up to 200 nucleotides upstream of the TSS) were

selected using the Feng Zhang lab (Broad Institute of MIT andHarvard) online SAMCas9 activator design tool (no longer operational).

The 20 nucleotide sgRNA sequenceswere shortened to 15-nucleotide dead RNAs (dRNAs) to recruit Cas9 to the promoter region but

prevent DNA cleavage by Cas9. The first nucleotide was amended to a G if it did not occur naturally to optimize expression from the

U6 promoter. The dRNAs were screened for their relative ability to activate Cxcl10 expression in the 1233 KP lung adenocarcinoma

cell line. Briefly, oligonucleotides were generated with BsmBI restriction site overhangs (see key resources table) and annealed to

create the double-stranded dRNAs for cloning into Lenti-SAM-Puro. 293FS* viral packaging cells were transfected in a 6-well plate

format with the dRNA-containing Lenti-SAM-Puro constructs (1.5 mg) and psPAX2 (0.75 mg) and VSV-G (0.25 mg) helper plasmids to

generate lentivirus. The lentiviral supernatant was collected through a 0.45 mm filter 48 hrs post-transfection and added 1:1 to 1233

KP Cas9 cells plated at 25,000 cells/well the day before. Polybrene was added to improve transduction efficiency at 4 mg/ml. Puro-

mycin was added 48 hrs later to select for cells expressing the construct. Cells were expanded (under Puromycin selection) and

plated in triplicate in 12-well plates at 200,000 cells/well to generate supernatant containing secreted Cxcl10. The supernatant

was collected 72 hrs later and Cxcl10 protein was quantified using a Cxcl10 ELISA (R&D systems) according to the manufacturer’s

protocol. The dRNA that resulted in the greatest production of Cxcl10 (GACAAGCAATGCCCT) was cloned into Lenti-SAM-Cre and

used to generate large-scale lentivirus for in vivo studies. A non-targeting dRNA shortened from an sgRNA targeting tdTomato

(CGAGTTCGAGATCGA51); was used as a negative control. dRNA sequences and oligonucleotides are listed in the key re-

sources table.

Lentivirus production for in vivo instillation
Lentivirus was produced by transfection of 293FS* viral packaging cells in 15 cm plates with lentiviral constructs (10 mg), VSV-G

(2.5 mg) and psPAX2 (7.5 mg) viral packaging plasmids, andMirus TransIT LT1 (MirusBio; 60 ml). Lentiviral supernatant was harvested,

passed through a 0.45 um filter, and concentrated by ultracentrifugation at 25,000 rpm for 2 hrs at 4�C 48- and 72-hrs post-trans-

fection. Viral titers were determined by measuring Cre activation of GFP expression in GreenGo 3TZ cells as previously described.51

Anti-PD-1/anti-CTLA-4 therapy
KP LucOSmice were treated for one week starting at 8 wks post-tumor initiation with InvivomAb anti-PD-1 (29F.1A12; BioXCell) and

InvivomAb anti-CTLA-4 (9H10; BioXCell) or isotype controls (Rag IgG2a, 2A3; Syrian Hamster, polyclonal; BioXCell). Mice received

200 mg of each antibody i.p. at day 0, followed by 200 mg anti-PD-1 and 100 mg anti-CTLA-4 (or isotype controls at the same con-

centrations) on days 3 and 6. Mice were sacrificed for endpoint analysis on day 7.

Antigen-targeted vaccination
KP LucOSmice were vaccinated s.c. at the tail-base with 30 amino acid long peptides containing SIINFEKL and SIYRYYGL (10 nmol;

New England Peptide) and cyclic-di-GMP adjuvant (0.25 mg/mL; Invitrogen) at 6 wks post-tumor initiation. An equivalent booster

dosewas given 2wks later, and themice were sacrificed at 9 wks post-tumor initiation for endpoint analysis. All doses were delivered

in two 50 mL boluses and control mice received PBS. The long peptide sequences used were: SMLVLLPDEVSGLEQLE

SIINFEKLTEWTS and GRCVGSEQLESIYRYYGLLLKERSEQKLIS (New England Peptide).
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Mouse lung tissue processing for flow cytometry
Lung tissue-resident immune cells were distinguished from circulating immune cells by retroorbital injection of a fluorescently-con-

jugated CD45 antibody (APC-eFluor780; 30-F11; BD Bioscience) 3 minutes prior to euthanasia.52 Only tissue-resident cells were

included in downstream analyses. Lung tissue was collected into RPMI 1640 media with 1% heat-inactivated fetal bovine serum,

minced with spring scissors and incubated in 125 U/mL collagenase IV (Worthington Biochemical) and 40 U/mL DNase I (Sigma-

Aldrich) for 30minutes at 37�C. The tissue was then dissociated using the m_lung_2.0.1 protocol on a gentleMACS Dissociator using

gentleMACS C tubes (Miltenyi Biotec) and filtered with a 70 mm cell strainer. Cell suspensions were centrifuged at 1200 rpm for

5 minutes and red blood cell lysis was performed using 1X RBC Lysis Buffer (eBioscience) per the manufacturer’s protocol. Cells

were then stained with a fixable viability dye to exclude dead cells (20 minutes on ice; Zombie Fixable Viability Kit, Biolegend) and

resuspended in FACS buffer (1% heat-inactivated FBS in PBS) and stained with the following surface antibodies for 15-30 minutes

on ice: CD3e (145-2C11), CD8ɑ (53-6.7), CD4 (RM4-5), CD44 (IM7), PD-1 (RMP1-30), TIM-3 (RMT3-23), purchased from

ThermoFisher Scientific, BD Biosciences or Biolegend (see key resources table). In some cases, the cells were simultaneously

stained with H-2Kb peptide-MHC tetramers specific to SIINFEKL and SIYRYYGL (monomer, NIH Tetramer Core Facility; PE and

APC streptavidin, Invitrogen). For intracellular staining, cells were fixed for 1 hour at room temperature using the eBioscience

Fixation/Permeabilization Kit (ThermoFisher Scientific). Cells were then stained overnight at 4�C with the following antibodies:

TCF1/TCF7 (C63D9), Granzyme B (GB11), Ki67 (B56), Foxp3 (FJK-16s) purchased from Cell Signaling Technology, ThermoFisher

Scientific, BD Biosciences (see key resources table). Samples were analyzed on a BD Biosciences LSR Fortessa.

Mouse lung tissue processing for histology and H&E staining
Tumor-bearing lung lobes were collected into 4%paraformaldehyde in PBS and incubated overnight with shaking at 4�C. Tissue was

transferred into 70% ethanol and subsequently paraffin embedded and sectioned (4 mm) onto Fisherbrand Superfrost Plus Micro-

scope Slides (ThermoFisher Scientific). After drying, slides for RNAScope� were stored at 4�C until use. Hematoxylin and eosin

(H&E) stain was performed with a standard method by the Hope Babette Tang Histology Facility at the Koch Institute at MIT.

Pathology annotation of mouse and human H&E-Stained sections
H&E and CyCIF images were reviewed and annotated by a board-certified anatomic pathologist (S.C.), blind to the underlying ge-

notype and diagnosis (e.g., KP Cre vs. KP LucOS). For KP Cre and KP LucOS mouse tissues, all identifiable anatomic structures

were delineated, including medium-large caliber airways (bronchioles, bronchi; �50-300 mm in diameter) and medium-large caliber

vascular structures (�20-300 mm in diameter). Vascular structures were further grouped into arterial (arterioles and arteries) and

venous (venules and veins) categories based on typical histologic features. Smaller capillary structures were not discretely anno-

tated. Large branches of the pulmonary artery and vein were notedwhen present. All tumorswere identified and delineated according

to morphologic features (nuclear atypia, architectural disorganization, hypercellularity, etc.). Regions of epithelial cytologic atypia

that did not form discrete invasive tumors were also annotated. For human tissues, all tumors, regions of atypia, and lymphoid ag-

gregates were annotated. In human tumor specimens, all aggregates of lymphoid cells were identified and delineated in each tissue

section according to typical morphologic features. Tertiary lymphoid structures (TLS) were further defined by identifying aggregates

of lymphoid cells associated with germinal center formation on H&E, or the presence of discrete aggregates of B cells (PAX5+) with

surrounding T cell (CD3, CD4, and/or CD8 positive) populations on CyCIF imaging. Annotation was cross-checked between H&E and

CyCIF images for all tissue sections.

Tissue-based cyclic immunofluorescence (t-CyCIF) staining and imaging
FFPE sections were prepared and stained with a 24-plex antibody panel according to the previously described t-CyCIF proto-

cols14,15,53 (see Table S1). This CyCIF panel has been validated across many different sample types in accordance with standards

defined by our group.54 The number of mice, number of lobes, and number of tumor nodules analyzed from whole slide CyCIF im-

aging are indicated in Table S2. As noted in Table S2, all tumor nodules were analyzed from two or three lung lobes per mouse for

each experiment.

Baking and dewaxing
To prepare samples for antibody staining, slides were automatically baked at 60�C for 30 min, dewaxed at 72�C in BOND Dewax

Solution, and antigen retrieval was performed at 100�C for 20 min in BOND Epitope Retrieval Solution 2 (ER2) by the Leica Bond

RX machine.

Pre-staining background reduction
After slides were baked and dewaxed, they were photobleached by immersing them in bleaching solution (4.5%H2O2, 20mMNaOH

in PBS) with LED light exposure for 2 3 45 min to reduce autofluorescence.

To mitigate non-specific antibody binding, slides were washed for 33 5 min with 1X PBS and then incubated overnight with sec-

ondary antibodies (anti-rat, anti-mouse, and anti-rabbit) diluted in 150 mL of Odyssey Blocking Buffer (1:1000) at 4�C in the dark.

Slides were subsequently washed 3x with 1X PBS before photobleaching them again for 2 x 45 min.
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Antibody staining, slide mounting, and imaging
For each round of t-CyCIF, samples were incubated overnight at 4�C in the dark with Hoechst 33342 (Dilution: 1:10,000; Thermo

Fisher Scientific, cat# 62249) for nuclear staining alongwith either primary conjugated antibodies or primary unconjugated antibodies

diluted (see Table S1 for antibody information) in 150 mL of Odyssey Blocking Buffer (LI-Cor, Cat# P/N 927–40003). Incubation with

primary unconjugated antibodies was followed by secondary antibody incubation at room temperature for 2 hrs in the dark. For

CyCIF antibodies that were only available from vendors as primary unconjugated antibodies, custom conjugates were requested

fromCell Signaling Technology or we performed in-house conjugation of antibodies formulated without BSA and sodium azide using

Invitrogen Alexa Fluor� Antibody Labeling Kits in accordance with themanufacture’s guidelines. 100mg of antibody was labelled at a

1mg/mL dilution in an appropriate buffer (i.e., Phosphate Buffer Saline). Custom ordered antibodies from Cell Signaling Technology

were generated for CD8a CST [D4W2Z], Cat# 98941 (AF 647); CD11c CST [D1V9Y] Cat# 97585 (AF 555); CD3e CST [D4V8L] Cat#

99940 (AF 555); PD-L1 [D5V3B] Cat# 64988 (AF 488); GranzymeB [E5V2L] Cat# 44153 (AF 488); Perforin [E3W4] Cat# 31647 (AF 555);

TIM-3 [D3M9R] Cat# 83882 (AF 488); F4/80 [D2S9R] Cat# 70076 (AF 555). The remaining antibody was conjugated ‘in-house’: CD103

R&D [Polyclonal], Cat# AF1990 (AF 488). Key resources table lists all antibodies used.

Post staining, slides were washed for 3 x 5 min, mounted with 24 x 50mm coverslips using 200 mL of 70% glycerol, and then dried.

Once coverslipped, slides weremanually imaged on the IN Cell Analyzer 6000 or automatically on the RareCyte Cytefinder II HT using

the following channels: UV, cy3, cy5, and cy7. Note that these channel names are nominal names since Cy3/5/7 dyes are not used in

t-CYCIF; see Key resource table for actual flouorophores. Imaingwas performedwith the following parameters: Binning: 1 x 1; Objec-

tive: 20x; Numerical Aperture: 0.75; Resolution: 0.325 mm/pixel. Image exposures were optimized for each channel to avoid signal

saturation but kept constant across samples.

To demount coverslips between CyCIF cycles, slides were placed in containers of 1X PBS and heated in a water bath for 1 hr.

Before additional antibody staining, slides are photobleached for 2 x 45 min to deactivate the fluorophores and washed 3 x 5 min

in 1X PBS. Additional details can be found at protocols.io reference dx.doi.org/10.17504/protocols.io.bjiukkew.

RNA In situ hybridization
RNAScope� was performed as per manufacture’s suggested protocol (Advanced Cell Diagnostics, Inc.) using the LS Multiplex

Reagent Kit (cat# 322800) and probes RNAscope� 2.5 LS Probe- Mm-Cxcl9 (cat #: 489348) and RNAscope� 2.5 LS Probe- Mm-

Cxcl10-C3 (cat #: 408928-C3).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis
Information on the sample size (Table S2) and the statistics are included in the figure legends. Statistical tests used are Pearson cor-

relation, two-sided t-test, and non-parametric Kolmogorov–Smirnov (KS) two-sided test as specified in the figure legends and are

performed with MATLAB built-in functions. Significance was defined as a p-value of less than 0.05. For figures where mice are rep-

resented as individual data points, the data represents the average of all tumor nodules for each mouse. For figures where data is

shown for groups rather than individual mice (e.g., LucOS versus Cre, Vax versus Ctrl), the average was calculated for all tumor nod-

ules from each individual mouse prior to averaging the data from all mice in each group. In this way, we avoided skewing the data

toward mice with a greater number of tumors analyzed.

Quantification
Image processing and single-cell quantification

The image processing of tissue cyclic immunofluorescence was organized in the following steps, each of which is described in

detail below.

- the software ASHLAR is used to stitch, register, and correct for image acquisition artifacts (using the BaSiC algorithm). The

output of ASHLAR is a single pyramid ome.tiff file for each region imaged;

- the ome.tiff file is re-cut into tiles (typically 5000 x 5000 pixels) containing only the highest resolution image for all channels. One

random cropped image (250 x 250 pixels) per tile is outputted for segmentation training (using Fiji);

- the ilastik software is trained on the cropped images to label, nuclear, cytoplasmic, and background areas. The output of the

Ilastik processing is a 3-color RGB image with label probabilities;

- the RBGprobability images are thresholded andwatershed inMATLAB to segment the nuclear area. The cytoplasmicmeasure-

ments are derived by dilating the nuclear mask;

- single-cell measurements are extracted for each channel (cell pixel median andmean for both nuclear and cytoplasmic area) as

well as morphological measurements of area, solidity, and cell coordinates location.
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BaSiC

The BaSiC ImageJ plugin tool was used to perform background and shading correction of the original images.55 The BaSiC algorithm

calculates the flatfield, the change in effective illumination across an image, and the darkfield, which captures the camera offset and

thermal noise. The dark field correction image is subtracted from the original image, and the result is divided by the flatfield image

correction to obtain the final image.

ASHLAR

Alignment by Simultaneous Harmonization of Layer/Adjacency Registration (ASHLAR) is used to stitch together image tiles and reg-

ister image tiles in subsequent layers to those in the first layer.56 For the first image layer, neighboring image tiles are aligned to one

another via a phase correlation algorithm that corrected for local state positioning error. A similar method is applied for subsequent

layers to align tiles to their corresponding tile in the first layer. ASHLAR outputs anOME-TIFF file containing amulti-channel mosaic of

the full image across all imaging cycles. Full codes available at: https://github.com/labsyspharm/ashlar.

ilastik

ilastik is a machine learning based bioimage analysis tool that is used to obtain nuclear and cytoplasmic segmentation masks from

OME-TIFF files.57 For increased processing speed, randomly selected 250 x 250 pixel regions from the original OME-TIFF are used as

training data. ilastik’s interactive user interface allows the user to provide training annotations on the cropped regions. Users are pre-

sented with a subset of the channels stacked images and label pixels as either nuclear area, cytoplasmic area, or background area.

The annotations are used to train non-linear classifiers that are applied to the entire image to obtain probability masks describing the

probabilities of each pixel belonging to the nuclear, cytoplasmic, or background area. A MATLAB (version 2018a) script uses these

masks to construct binary masks for nuclear and cytoplasmic area.

Single cell segmentation and quantification

Using ilastik’s Pixel Classification workflow, a random forest classifier is trained for each experimental dataset based on manual an-

notations of nuclear, cytoplasmic, and background regions within the CroppedData. Batch processing is subsequently performed by

the classifier on the FullStacks, generating .tif probability maps for nuclei, background, and cytoplasm.

Cell nuclei are segmented through thresholding maps based on nuclear, cytoplasm, and background probabilities and performing

water shedding on them using MATLAB. Cytoplasmic segmentation masks are produced by dilating nuclear segmentation masks

radially by 3 pixels and then excluding the segmented nuclear area.

Median nuclear and cytoplasmic marker expression, centroid coordinates, area (nuclear and cytoplasmic), and solidity are quan-

tified for each segmented cell usingMATLAB’s regionprops function and outputted as a single ‘‘Results.mat’’ file for each FFPE slide.

All MATLAB scripts used for segmentation and quantification can be found here: https://github.com/santagatalab.

Data analysis workflow
The data analysis is divided in a set of pre-processing steps in which data fromdifferent tissues is i) log2-transformed and aggregated

together, ii) filtered for image analysis errors, and iii) normalized on a channel-by-channel basis across the entire data from a single

experiment. All the steps are performed in MATLAB.

Data aggregation

The image processing workflow outputs one ome.tiff image and one data file (.mat) for each tissue area imaged. The data matrices

from each .mat file are concatenated into a single matrix for each metric measured (median/mean, nuclear/cytoplasmic) into a single

structure (‘‘AggrResults’’). The morphological data (i.e., area, solidity, and centroid coordinates) is concatenated into a single struc-

ture (‘‘MorpResults’’), which also contains the indexing vector to keep track of the tissue of origin within the dataset.

Data filtering

Single cells are filtered to identify and potentially exclude from subsequent analysis errors in segmentation and cells lost through the

rounds of imaging. Two types of criteria are used to filter cells: morphological criteria based on cell object segmented area, which are

applied to all the rounds for the cell object, and DAPI-based criteria which are applied to the DAPI measurement for each imaging

round. The latter corrects for cell loss during cycling and computational misalignment, which are both round specific.

Morphological filtering criteria are:

- nuclear area within a user-input range;

- cytoplasmic area within a user-input range;

- nuclear object solidity above a user-input threshold.

DAPI-based criteria are:

- nuclear DAPI measurement above a user-input threshold;

- ratio between nuclear and cytoplasmic DAPI measurement above a user-input threshold;

The filter information for the criteria is allocated to a logical (0-1) structure ‘Filter’, which is used to select the cells to analyze in the

further analysis by indexing. The threshold selection is dataset dependent and is performed by data inspection. The values used in

each dataset are available with the codes used for data analysis in the Synapse.org repository syn30715952.
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Data normalization

Each channel distribution is normalized by probability density function (pdf) centering and rescaling. The aim is to center the dis-

tribution of the log2 fluorescent signal at 0 and rescale the width of the distribution to be able to compare across channels. The

data is first log-transformed (base 2). The standard normalization is performed using a 2-component Gaussian mixture model,

each model capturing the negative and the positive cell population. If the 2-component model fails to approximate the channel

distribution, two other strategies are attempted: i) a 3-component model is used assuming the components with the two highest

means are the negative and positive distribution (i.e., discarding the lowest component) or ii) the user selects a percentage ‘x’ of

assumed positive cells and a single Gaussian distribution fit is performed on the remainder of the data to capture the negative

distribution. The single Gaussian fit is then used as the lower component in a 2-component model to estimate the distribution

of the positive population. The strategy chosen for each channel in each dataset is available in the code section of the

Synapse.org repository syn30715952.

The ‘‘add_coeff’’ is defined as the intersection of the negative and positive distributions. The ‘‘mult_coeff’’ is defined as the differ-

ence between themean of the negative and positive distributions. The full distribution is normalized by subtracting the add_coeff and

dividing by the mult_coeff. The normalization is performed on the nuclear and cytoplasmic single-cell, single-channel distributions

individually.

The data preprocessing workflow is performed on all datasets. The individual analyses used in the paper are performed only in

selected datasets as follows.

Cell type classification

Cell type classification is performed hierarchically on the filtered, normalized expression data. Each cell is evaluated based on

marker expression and then assigned to cell types in a layered fashion according to the dendrogram schematic in Figure S1C,

with each successive layer being more specific than the previous one. A cell is considered to be positive for a marker if its median

expression is above 0. Cell types are defined in the dendrogram by the presence or exclusion of multiple markers using ‘‘&&’’ and

‘‘||’’ operators representing ‘‘AND’’ and ‘‘OR’’ logic respectively. If multiple marker conditions must be met to assign a cell type,

these marker conditions are grouped using parentheses. If a cell is ‘‘positive’’ for two markers that are expected to be mutually

exclusive, the marker that is expressed at a higher value takes precedence as long as the difference in expression surpasses a

user-defined threshold.

Multimodal data integration

H&E, RNAScope� and CyCIF images are rescale and registered using the open-source software elastix58 using non-shearing global

transformation. The CyCIF images are used as the fixed images in elastix. To integrate the CyCIF and histological data, H&Es are

annotated for tumors, blood vessels, and airways by a trained pathologist. The elastix registration is used to overlay the pathology

annotation onto the CyCIF single cell coordinates and then to calculate the distance from tumor boundaries and blood vessels.

RNAscope foci detection

Custom spot detection scripts (https://github.com/Yu-AnChen/wsi-fish) are used to identify RNAScope� foci and quantify their in-

tensity. Each RNAScope� dot is assigned as belonging to the closest cell based on the segmented area. A cell is considered Cxcl

positive if it is assigned at least twoRNA foci and if the cumulative RNAScope� dot intensity of all the dots assigned to the cell exceed

a preset threshold (based on the positive tail of the single cell distribution).

Lymphonet definition

The single cell centroids are tessellated using the Delaunay Triangulation using a custom script in MATLAB (https://github.com/

santagatalab) to obtain a 2D graph, setting a maximum edge length of 16.25 microns (50 pixels). Using conventional graph opera-

tions, the graph edges are then filtered to include only connection between lymphocytes (Lv3 of cell type dendogram), after which

connected subgraphs of length greater than 5 are than defined as ‘‘lymphonets’’.

Palantir algorithm and CD8 T cell state definition

The algorithm Palantir25 was adapted to CyCIF data by bypassing the initial dimensionality reduction applied to single-cell RNA-seq

data and using the CyCIF channel information as the dimensionality reduction output. The Python Jupiter Notebooks used to run the

Palantir analyses can be found at https://github.com/santagatalab. The CD8 T cell phenotypic states S1-S3 and T1-T3 were

obtained using a flow cytometry manual gating approach combining Palantir point density and marker intensity. The gating was per-

formed in MATLAB using the ‘‘Flow Cytometry GUI for Matlab’’ by Nitai Steinberg (2022) available at https://www.mathworks.com/

matlabcentral/fileexchange/38080-flow-cytometry-gui-for-matlab, MATLAB Central File Exchange.

Spatial and phenotypic correlation analysis

Spatial correlations Cxy(r) were computed as the Pearson correlation between two groups of spatially defined objects; (1) a cell of

group X and (2) its kth nearest neighbor of group Y, for their respective variables x and y. A value of Cxy (r) is computed for each

k up to 100, and a distance r was assigned to each k as the average distance between kth nearest neighbors. More detail can be

found in Gaglia et al.53 In Figures 7F and S7D, spatial correlation between direct neighbors k = 2 was calculated between the likeli-

hood of lymphocytes belonging to lymphonets and non-lymphocyte cells’ likelihood of being positive for the indicated markers.

Hence in the Cxy formula above: X = lymphocytes, x = {0 not part of a lymphonet, or 1 part of a lymphonet}, Y = non-lymphocyte

cell, y = {0 negative or, 1 positive for marker}. For each marker the analysis is repeated within each of 14 human lung cancer tissues

independently. The phenotypic correlation (in Figure 7H) is calculated by comparing the 2D probability density function in Palantir

space, by correlating the likelihood of CD8 Tc belonging to a lymphonet (binned by size) and the likelihood of CD8 Tc being

TCF1+ PD-1+ double positive.
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Visinity - visual spatial neighborhood analysis
To visually explore the spatial neighborhoods within these data, we use the Visinity,18 a scalable system for visual analysis in whole-

slidemultiplexed tissue imaging data. This system supports the analysis of recurrent cellular spatial neighborhoods across cohorts of

specimens. Visinity is an open-source project (https://github.com/labsyspharm/visinity), with a JavaScript client for browser-based

visualization and a Python server for efficient and scalable backend computation.

Quantifying cellular neighborhoods

Visinity quantifies the spatial neighborhood for each cell in terms of the types of cells that surround it (for Visinity the information con-

tained in level 4 (Lv4) was used as the cell type information). More specifically, this process is as follows:

A ball-tree index structure is constructed using nuclei centroids of each segmented cell in a specimen, which allows for O(n + k)

range queries, where n is the number of cells and k is the number of points within this range.We use the scikit-learn59 implementation

of this data structure.

With the ball-tree, we identify neighboring cells within a 50 mm radius of each cell.

We create feature vectors representing the neighborhood of each cell. Vectors are 1 x n, where n is the number of cell types.

Columns in this vector correspond to the presence of a specific cell type. We linearly weight each cell in a neighborhood by its

distance from the center so that cells just at the edge of the neighborhood radius contribute the least and sum these weights by

cell type.

We repeat this process for every cell across all specimens, L1 normalizing the vectors. Each vector, which represents the neighbor-

hood of an individual cell, is a row in a matrix representing all cells across all specimens.

We create a 2D embedding of this matrix using UMAP60 with the parameters n_neighbors = 50, min_dist = 0.1. Points close to each

other in this embedding space represent cells with similar spatial neighborhoods.

We display this embedding as an interactive scatterplot. Selecting regions in this embedding highlights the corresponding cells

within the tissue image and we visualize the cell types that compose the selected neighborhood with a parallel coordinates plot.

Visinity supports both confirmatory and exploratory analysis, allowing users to detect spatial neighborhood patterns in a semi-

automated manner and visually query across specimens for specific cellular neighborhoods. This workflow and the system as a

whole are described in detail in ref.18
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