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Abstract—To study the emergence of cooperative behavior,
we have developed a scalable parallel framework for evolu-
tionary game dynamics. This is a critical computational tool
enabling large-scale agent simulation research. An important
aspect is the amount of history, or memory steps, that each
agent can keep. When six memory steps are taken into account,
the strategy space spans 2%0% potential strategies, requiring
large populations of agents. We introduce a multi-level decom-
position method that allows us to exploit both multi-node and
thread-level parallel scaling while minimizing communication
overhead. We present the results of a production run modeling
up to six memory steps for populations consisting of up to 10'®
agents, making this study one of the largest yet undertaken.
The high rate of mutation within the population results in
a non-trivial parallel implementation. The strong and weak
scaling studies provide insight into parallel scalability and
programmability trade-offs for large-scale simulations, while
exhibiting near perfect weak and strong scaling on 16,384
tasks on Blue Gene/Q. We further show 99% weak scaling
up to 294,912 processors 82% strong scaling efficiency up to
262,144 processors of Blue Gene/P. Our framework marks an
important step in the study of game dynamics with potential
applications in fields ranging from biology to economics and
sociology.

Keywords-game theory; evolutionary dynamics; multicore
optimization;

I. INTRODUCTION

Game theory is commonly employed and exploited to
describe and predict the interactions between agents in a
multi-agent system. It is a general method of studying
decision making and characterizing the strategic stability of
potential outcomes that has been used extensively to model
behaviors such as market trades, petty theft, or nuclear war
(11, 121, (3], [4].

Through game theory, it is possible to measure the emer-
gence of altruistic behaviors that can be of benefit to both
interacting parties. Cooperation is common throughout the
natural world, and forms the basis of human society. Despite
short-term penalty to one or more of the individuals, altruism
arises through the expectation of reciprocity under rational
conditions. Consistent with this observation, innumerable
behavioral experiments have demonstrated the power of
repeated interactions for cooperative promoting behavior

(c.f. [5], [6], [7], [8]. Understanding why and how altruism
emerges in a population is vital for predicting how agents
will interact, whether these agents are companies, nation
states, or biological pathogens.

The common thread among these fields is the desire to
model the interaction between self-interested agents and
draw conclusions about groups of these agents. Each agent
behaves following a prescribed set of moves, or a strategy.
In this work, we focus on situations in which agents will
engage in repeated play against other agents. Each interac-
tion between two individuals in a game is referred to as a
round. The strategy can be as simple as always cooperating
with the opponent, or it can be defined as a response to the
opponent’s previous play. For example, a common strategy
referred to as Tit-For-Tat (TFT) prescribes play as always
taking the same action that the opponent did in the previous
round: If the opponent previously cooperated, the agent will
cooperate, but if the opponent defected, the agent will, in
turn, defect. Basing the current move on the actions taken in
the previous n rounds is referred to as a memory-n strategy.

Taking into account memory-n strategies has been shown
to be important due to the fact that these strategies can
yield both a higher likelihood of cooperation from their
opponent and also be more robust to factors such as error
in game play [9], [1]. However, the added complexity leads
to exponential growth of the strategy space, making exact
game-theoretic modeling and classical analysis impossi-
ble [10]. One commonly applied method is to use computer
simulation and sampling [2]. However, previous empirical
models for memory-n strategies have been hindered by
computational demands of large state space, population size,
and duration of the simulations. Currently, the most common
models use memory-one strategies [9] [11]. In light of recent
experimental evidence that humans in fact use strategies with
longer memories [8], it is important to develop methods for
simulating more complex strategies.

Modeling the impact of history on the evolution of
cooperation through an evolving population of interacting
agents presents a strong computational challenge. Not only
does the problem space increase drastically with the number
of strategies and population size, the strategies held by the



agents themselves are constantly changing over the course
of generations, resulting in a constantly shifting population
definition. The strategy space is adequately sampled by al-
lowing agents to adapt new strategies either through learning
or random mutations. The increase in size of the strategy
space correlates to a subsequent increase in the number
of generations simulated. To enable proper interaction, an
updated view of the full population at each time step
must be maintained on a per-node-basis leading to a strong
interdependence and subsequent communication across the
population after any mutation, potentially leading to a large
communication overhead.

In this work, we developed a large-scale parallel simula-
tion method for investigating strategies with up to memory-
six game play in a large population of agents. We show that
memory-six is the highest-level strategy that can be mod-
eled on current supercomputing platforms due to memory
restrictions. It is important to both reduce the overall time
to solution for these population models as well as enable the
simulation of much larger pools of strategies. To this end,
we define our metric of success to be both the strong and
weak scaling efficiency of the code.

Our simulations can provide new insights into the emer-
gence of cooperative behavior and play a key role in
assessing the importance of factors such as history of
previous game play. The main contribution of our work
is the development of a highly efficient parallel frame-
work enabling large-scale modeling of up to memory-six
behavioral strategies in populations consisting of up to 10!
agents. Secondly, the abstraction of Strategy Sets enables a
hybrid implementation to exploit two levels of parallelism:
the subset of agents divided by groups of strategies, and
concurrent game play of agents within each strategy group
through a flat MPI/OpenMP model. This structure enables
optimized communication patterns and memory usage by
handling individual data locally and population changes
globally. Our tuned code exhibits near perfect weak and
strong scaling up to 16,384 MPI ranks on the IBM Blue
Gene/Q supercomputer. We have further demonstrated the
ability to perform at larger scale by demonstrating 99%
efficient weak scaling up to 262,144 processors on the IBM
Blue Gene/P supercomputer and 82% strong scaling parallel
efficiency up to 262,144 processors.

II. RELATED WORK

Game theory simulations form the basis of research in a
variety of fields (c.f. [12], [13], [14], [15]). Axelrod and
Hammond laid groundwork for the use of computational
models when they studied social dynamics with a simple
evolutionary model [16]. Larger-scale models for studies
in social dynamics have since been developed by Macal
et al. [17] and in a variety of fields ranging from urban
planning [18], to facility evacuation models [19], to trade
networks under varying market conditions [20] [21], to tissue

formulation [22]. All of these methods use at most memory-
one strategies.

There have been a few attempts to handle the complexity
that arises from larger memory strategies. One method is to
search profiles for strategy exploration in empirical games.
By establishing a search algorithm to intelligently focus on
strategies that are more likely to be strong, the problem space
can be limited [23] [2]. Other studies have limited the strat-
egy space by focusing on smaller populations. For example,
Golbeck examined the traits of memory-three strategies by
focusing on 20 strategies at a time and analyzing common
traits [1]. Brunauer et al. [10] studied strategies up to
memory-six for a population of fifty agents and analyzed
twenty games. They demonstrated that taking into account
more memory steps would likely lead to more cooperative
strategies. By leveraging large-scale parallel computing we
build on this work to produce a method that enables both the
simulation of a large number of agents and up to memory-six
strategies.

III. BACKGROUND

In this section we summarize the key components of
evolutionary game dynamics relevant to the development of
our framework.

A. Prisoner’s Dilemma

A fundamental question in game theory is: When will two
interacting agents cooperate? To provide an intuition, let us
first focus on the most basic scenario: Two agents interacting
once with no previous history (i.e., memory-zero). This is
referred to as the Prisoner’s Dilemma (PD) and is the leading
model for the evolution of altruistic behavior in populations
of selfish agents [4], [9], introduced by Flood and Dresher’s
work at the RAND Corporation in the 1950’s and formulated
by Tucker [24] [10]. In this paper, we focus on the two-
person PD. The two agents can choose to either cooperate
(C) or defect (D). The four potential outcomes and their
corresponding payoff are shown in Table I:

Opponent

Agent C D
C RR | ST
D TS PP

Table 1
THE PRISONER’S DILEMMA PAYOFF MATRIX.

The payoff labels stand for Reward R, Sucker S, Tempta-
tion T, and Punishment P. In this work we use the following
payoff or fitness values: f[R,S,T,P] = [3,0,4,1]. If both
agents cooperate (C), they each receive a reward (3). If
both agents defect (D), both will get punished (P) with a
lower fitness (1). If one of them defects (D), the other is
the sucker (S) with the lowest payoff (0), while the defector
is rewarded (T) with the highest fitness (4). Herein lies the



problem: While it is collectively better for the players to
each cooperate, defection becomes an unbeatable strategy if
F(T) > f(R) > £(P) > f(5) [25].

The study of moves that result in cooperation where one
individual incurs a cost in order to benefit its opponent
has been a topic of particular focus in evolutionary game
theory [4]. It might be expected that natural selection would
slowly weed out cooperators in favor of defection since
it becomes the best play in a Prisoner’s Dilemma game.
However, cooperation is shown to exist throughout nature
and forms the basis of human society as has been shown in
many behavioral experiments ([26]). Numerous explanations
have been suggested to resolve this apparent contradiction
[27]. A possible solution begins to become apparent as we
look at the much more compelling problem of the repeated
Prisoner’s Dilemma or Iterated Prisoner’s Dilemma (IPD).

B. Iterated Prisoner’s Dilemma

It has been suggested that cooperative behaviors may be
exhibited because in real-life situations opponents have an
expectation of playing an opponent again in the future [3].
In such a repeated game, the two agents face each other in
many different rounds. Summing the fitness achieved in each
round of game-play assesses each agents fitness. The goal of
each agent is to accumulate the highest fitness possible. Each
agent can use historical information to determine their best
move and to maximize their fitness. The rules that determine
an agent’s next move are referred to as a strategy.

A simple strategy known as Tit-For-Tat (TFT) is based
on the opponent’s previous move. TFT introduces the idea
of direct reciprocity [28]: When interactions are repeated,
cooperation can be favored by natural selection. An agent
following TFT begins by cooperating, and then subsequently
copies the behavior of the opponent in the previous round.
This can lead to the emergence of sustained cooperation
from both agents. Axelrod [29] hosted multiple competitions
in which researchers would submit computer games to play
a game of repeated Prisoner’s Dilemma in a round robin
tournament. Each program would play five games against
all other players and at the end the scores would be tallied.
TFT kept emerging as the winner (e.g. obtained the highest
overall fitness) [25].

C. Population Model

It should be stressed that in a pairwise interaction with
any agent with any given strategy, an agent exhibiting the
TFT strategy will not do better than its opponent. TFT
can, however, elicit cooperation from agents who would
otherwise defect [11]. To study the evolutionary role a
strategy can have, one can either simulate whether or not
a homogenous population of a given strategy will resist
invasion by mutant strategies over time or start with a
heterogeneous population and subject the agents to methods
of selection and mutation. In this work, we will focus on

the latter in an effort to establish a framework for teasing
out strategies from a wide array of possibilities. As will be
discussed in the following sections, the number of potential
strategies for the IPD is so large that brute force modeling
of all interactions of all potential strategies is not feasible.
To this end, we adapt a heterogeneous population model
with high rates of selection and mutation rates to sample
the strategy space.

D. Strategy Types

There are two types of strategies used in game theoretical
models to describe an agent’s action plan: Pure and mixed.
Pure strategies are those in which the chosen move is taken
100% of the time in response to a specific state. Mixed
strategies are those in which moves are chosen with a
certain probability. For example, for a memory-one TFT
strategy, the agent following a pure strategy would always
cooperate in a round following mutual cooperation. A mixed
strategy, however, would define the move by saying that 90%
of the time the agent should cooperate following a round of
mutual cooperation, but 10% of the time that agent should
defect. By enabling probabilistic strategies such as this, we
widen the strategy space even further.

E. Strategy Space Size

Here we are defining a state as the different game situa-
tions given by the binary decisions (C or D) of the players in
the past n-rounds. The memory steps of the model define the
size of the state space. For example, in strategies like TFT
only the opponent’s previous move is taken into account. In
this instance, each player would decide the next move based
on this one bit of information with 2> = 4 potential states
shown in Table II:

State | Agent | Opponent
1 C C
2 C D
3 D C
4 D D
Table II

POTENTIAL GAME STATES FOR A MEMORY-ONE TFT STRATEGY.

With each memory increase, another full prior round is
taken into account. The number of potential states is 2" = 4"
distinct states for memory-n strategies[10]. In this work, we
introduce a method that allows the simulation of a large
population of agents for up to memory-six strategies, or up
to 4096 states.

As mentioned previously, a strategy defines the move an
agent will take in a given round of a game given the current
state of the game. For example, if we were looking at a
memory-one system, each agent would look at both his
previous move as well as his opponent’s previous move,
determine which state the game is in, and pick the next



move based on the agent’s strategy. All potential strategies
for a memory-one mode are shown in Table III.

Strategy | Statel | State2 | State3 | Stated
1 C C C C
2 D C C C
3 C D C C
4 C C D C
5 C C C D
6 D D C C
7 D C D C
8 D C C D
9 C D D C
10 C D C D
11 C C D D
12 D D D C
13 D C D D
14 D D C D
15 C D D D
16 D D D D
Table III

ALL POTENTIAL MEMORY-ONE STRATEGIES.

For each given state, there are two possible moves that
can be defined by the strategy. This means that the number
of potential pure strategies for numStates number of states
is 2mumStates and numsStates = 22MMSIPS. As we increase
the number of memory steps in the model, the number of
potential pure strategies increases dramatically as shown in
Table IV.

Memory Steps | Number of Strategies
1 2%
2 216
3 264
4 91024
5 92048
6 24096
Table IV

NUMBER OF PURE STRATEGIES FOR DIFFERENT MEMORY STEPS

FE. Errors

The applicability of these strategies in a real world sce-
nario becomes much more complex due to the presence of
errors in moves. An error occurs with a certain probability,
and leads a player to make the opposite move than the one
defined by its strategy. This would be fatal for the TFT
strategy, as any accidental play of defection would shift the
pair into a continuously repeated play of defection from both
sides.

The more complicated strategy of Win-Stay Lose-Shift
(WSLS) has been shown to outperform TFT in the presence
of errors [9]. WSLS is a memory-one strategy. It considers
both the player’s own move in the previous round as
well as the opponent’s move and is essentially defined as
“cooperate on the first move, and on subsequent moves

switch strategies if you were punished on the previous move”
[3]. Exploration of strategies that look further into the past,
however, have been limited by the size of the strategy space
(i.e. number of possible strategies) and the corresponding
number of generations required to adequately sample the
strategy space that could be analyzed. As the strategy space
increases, the discrete number of generations required to
show emergent behavior increases drastically. Our multi-
tiered parallel method minimized the time necessary to
simulate each generation and subsequently enabled us to
model strategies such as WSLS for up to 107 generations in
a matter of minutes.

IV. ALGORITHM

Our approach considers three major entities: Agents,
Strategy Sets (SSets), and a Nature Agent. In this paper,
we introduce the idea of distinct SSets. We define SSets as
groups of agents that are assigned the same strategy. As will
be discussed in the following sections, this enables a tiered
parallel scheme whose hierarchy is depicted in Figure 1.

We separated the algorithm into two main components:
The interactions of the Agents within each SSet define the
two-player game dynamics, while the interactions between
the Nature Agent and the SSets define the population
dynamics.

A. Game Dynamics

Agents that play the same game strategy are grouped into
SSets. The fitness score for an SSet is defined as the sum of
the fitness scores of all agents in the set. One game iteration,
or a generation, involves several rounds (in our case 200) of
all agents in an SSet engaging in a pure or mixed strategy of
two-player Iterated Prisoner’s Dilemma. The collection of all
agents in all SSets is called the population. Throughout each
generation, the overall population size remains constant.

All agents in an SSet are assigned the same strategy.
Naively, the setup would entail all agents enacting games
against all other strategies held in the population. In this
work, we take advantage of the fact that for deterministic
strategies this would lead to redundant work within the
strategy set. We can reduce the number of games played by
each agent within the SSet by assigning a subset of SSets
to play against. For example, assume there are s different
SSets and a agents per SSet. In each generation, each agent
is assigned ; opposing SSets to play against. Note that
each SSet can handle the computation completed in a single
generation locally. For mixed strategies, a similar method
can be employed, however, longer generation counts may
be required to ensure proper coverage.

Traditionally, the strategies being represented in a popu-
lation would be assigned to an individual agent. This agent
would simulate the interaction with all other strategies in the
population in a serial manner and then handle the mutation
and selections steps at the end of each round. The algorithm



(a) Diagram of Layout

Figure 1.
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(b) Communication Layout

Figure 1(a) shows the relationship between the agents and SSets per processor. In this example, there are two SSets per processor. Within

each SSet, there is a set of agents split across separate threads. All of these threads update a local array containing the relative fitness of each SSet on
the processor. Figure 1(b) depicts the communication breakdown over time. A grey arrow shows each agents trajectory over the course of the generations.
At random generations, the agents are all interrupted by the Nature Agent’s random global broadcast of SSets for pairwise comparison (PC) or mutation.
This is followed by point-to-point communication with processors containing selected SSets and finally a broadcast to update all agent’s of the updated

population state, resulting in a non-trivial communication pattern.

would be parallelized by having each processor handle a
separate agent, thus maxing out the number of processors
used at the number of agents in the population. The intro-
duction of the SSets expands the parallelism another level
by assigning many agents to one strategy and enabling the
more fine-grained game-level parallelism.

B. Population Dynamics

The population is evolved through both pairwise learning
and mutation [30]. The learning phase involves the pairwise
comparison (PC) of two SSet strategies that were selected
at random by the Nature Agent. One SSet is designated the
"teacher’ and the other is the ’learner’. If upon comparing
their associated fitness scores the teacher has a greater fitness
than the learner, the learner (and all agents in the SSet)
will adopt the teacher’s strategy in the next generation with
probability p [13]. If the two SSets have different strategies,
we use the Fermi function from statistical physics to define
p similar to previous work (c.f. [13] [14] [31] [32]), shown
in Eqn. 1.

1

= e Bl M

p

The payoffs are denoted by the variables 77 and 77, for
the teacher and learner, respectively, while B is the intensity
of selection. A small  leads to almost random strategy
selection, while large values of P the rate of selecting
the strategy with the higher relative fitness increases. As

B approaches infinity, the better strategy will always be
adopted.

To introduce potentially new strategies into the popu-
lation, there is also a mutation phase. A new strategy is
randomly generated and assigned to a random SSet at a rate
of u. After each generation, if any of the SSets strategies
changed due to pairwise comparison or mutation, the SSets
update their strategy sets, which only requires minimal
communication.

C. Agents

The basic building block of the model is an ensemble of
autonomous selfish agents. Each agent is given a strategy
that it will use in an Iterated Prisoner’s Dilemma game
against a finite set of other agents. For each memory-n model
there are a finite number of potential states that are defined
by the global array srates. Each state is given a unique
ID. This is shown in Table V for the example of a WSLS
memory-one strategy. The strategy is described as the set of
moves for all potential current states, making the full column
correspond to the strategy of WSLS.

State of Previous Round | Current State | Strategy
0 00 0
1 01 1
2 11 0
3 10 1

Table V
POTENTIAL WSLS STATES FOR MEMORY-ONE GAMES.



Each state defines the potential combinations of plays
made by the two players in the previous round. If in the
previous round both the agent and opponent cooperated
(played a 0), the current state would be defined as state
0 and the agent would proceed by cooperating (i.e., playing
a 0). The agents receive payoffs as defined in Table 1. Each
agent engages in the following game play:

FUNCTION IPD(myStrat, oppStrat)

global states;

play0=1

playl=1

for (i < nMemSteps)
current_view [i][0]
current_view [i][1]

end

while (r < maxRounds)
current_state=find_state (curr_view ,0)
play0 = myStrat[current_state ]
current_state=find_state (curr_view ,1)
playl = oppStrat[state]
current_view [nMemSteps] = 1
calc_fitness (play0 ,playl)

return fitness

nn
(=]

Each game is a two-player Iterated Prisoner’s Dilemma in
which play0 indicates the agent’s play in that round and play!1
refers to the opponents play. The first play of each agent is
arbitrarily set to 0. For instances in which multiple memory
steps are being modeled, each agent needs to maintain a
current_view, which is the agent’s perspective of the state of
the game. In a memory-one game, current_view would be set to
the previous plays made by each agent. During each round,
the agent determines the current state by searching the list
of defined potential states for a match to the current_view
. For each playing pair, each agent’s current_view will be
the opposite of its opponent. Given the current state, the
agent uses its assigned strategy to determine the next play.
After each round, the agent calculates its fitness by adding
the fitness score received in that round to the total fitness
achieved for that IPD game. At the end of the game, the
total fitness score is returned to the SSet.

D. Strategy Sets (SSets)

A Strategy Set consists of a group of agents that are all
playing the same strategy. All the agents in a SSet keep
the same strategy throughout the simulation, even after all
mutations and evolutionary learning processes. The agents
are responsible for playing the iterated two-player game.
The opponents are selected so that within each SSet, the
agents have played all potential games against all the other
strategies in the population. Each SSet follows these steps:
Set up global states
Receive SSet _strat
Determine opponents to play based on MPI rank
while t < max_generations

for all opponents

Call IPD(SSet_Strat, Opp_strat)
collect relative_fitness for ranks in SSet

receive PC_comparison

if (mySSet == PC_comparison[0])
return relative_fitness

if (mySSet == PC_comparison[1])

return relative_fitness

receive SSet_strat

During the initialization stage, the potential states are
globally defined based on the number memory steps being
modeled. Each SSet then receives an array of SSet_strat defin-
ing the strategy IDs assigned to all SSets in the population.
Each agent in the SSet in turn determines both its assigned
strategy and which opposing strategies it will handle. Within
each SSet, the two-player IPD games between all strategies
assigned to SSets must be played. Based on the number
of agents assigned to each SSet, opponent strategies are
assigned to each agent. The simulation proceeds until the
maximum number of generations has been reached. Within
each generation, agents call IPD() for each assigned opponent.
The relative_fitness of a given strategy is computed by
summing the relative fitness of all agents in the SSet. This
is the value used for the pairwise comparison process by the
Nature Agent. Each SSet is alerted to the randomly selected
SSets for pairwise comparison and, if selected, return their

relative_fitness to the Nature Agent. When the Nature Agent
finishes the learning and the mutation process, the SSets
receive an updated SSet_strat .

E. Nature Agent

The Nature Agent not only acts as a master, keeping track
of the strategy assigned to each SSet and associated fitness
and alerting all SSets to any alteration, but also controls the
rate of mutation and determines which agents are impacted
both by mutations and pairwise comparisons. The algorithm
followed by the Nature Agent is presented below:

Split agents into SSets
Initialize strat_space[SSet]
while t < max_generations
if (rand < PC_rate)
SSets_for_pc[0] = rand
SSets_for_pc[1l] = rand
send SSets_for_pc to all
receive fitness from selected SSets
if (fitness_teacher > fitness_learner)
if (rand > p)
stratl=strat (SSets_for_pc[0])
strat2=strat (SSets_for_pc[1])
SSet[stratl] = SSet[strat2 ];
end
end
if (rand > mu)
SSet[stratl ] = gen_new_strat();
end
update all SSets

The Nature Agent splits all agents into SSets and ini-
tializes all SSets with a global view of the strategy space
strat_space . At random generations until a maximum number



of generations are reached, the Nature Agent determines
when the evolutionary processes will occur. It initiates
pairwise comparison learning at a set rate PC_rate. The fitness
scores are retrieved for two randomly selected SSets. One is
designated as the teacher and the other the learner. For a set
probability, the learner will adopt the strategy of the teacher
if the teacher’s fitness score is higher with a probability p
as defined in Equation 1. For certain generations, an entirely
new strategy will be assigned to a randomly selected SSet.
This is controlled by the rate mu and enables the strategy
space to be expanded to explore a larger domain. The Nature
Agent then propagates any strategy changes to all SSets.

V. IMPLEMENTATION

The algorithm is mapped to the Blue Gene architecture
such that one processor is assigned as the Nature Agent and
all other processors are assigned to SSets. Depending on
the population size, each node can handle multiple agents
from multiple SSets. Within each generation, each node
will iterate over all SSets and agents it is assigned and
execute the game play for each. All game play is handled
locally and relative fitness of each SSet is maintained on
each node. The Nature Agent communicates with all nodes
and initiates both the evolutionary pairwise learning process
and random mutations. The Nature Agent also handles all
file I/O to record the global variables across generations.
Memory is used mainly to store the local view of the
strategy space at each SSet. It is minimized by having
the Nature Agent act as the records keeper maintaining
a record of strategies assigned to SSets throughout the
generations as well as global fitness data. On the individual
agent level, only strategies currently held by other SSets
at the given generation are kept in memory. Furthermore,
as each node can access global state information, we are
able to leverage the system size and processor rank data
to allow each node to calculate its position within an SSet
and its subsequent opponent strategies individually. This
reduces communication overhead by removing the need for
the Nature Agent to broadcast specific strategy assignments
to each individual agent.

A. Local Interaction: Game Dynamics

Each agent within an SSet is responsible for engaging in
the Iterated Prisoner’s Dilemma game with a set of oppo-
nents representing strategies from other SSets. Within each
SSet, the fitness of the assigned strategy must be measured
against the fitness of the strategies of all other SSets, or
in other words, all possible opponent strategies must be
modeled. Each agent determines the subset of opponents to
play based on its relative rank in its SSet. These agent-agent
games are handled locally with no communication to other
agents through the duration of the individual game, making
them ideal for thread-level parallelism. A hybrid-model,

OpenMP/MPI, is used to allow the code to exploit the on-
node hardware support for shared memory. The computation
for each SSet is further split across all threads in a processor
as shown in the following adaptation to the non-Nature
Agent processor’s pseudo code:

Set up global states

Receive SSet_strat
Determine opponents to play based on MPI rank

while t < max_generations
for all SSets for this processor
myfit=0
#pragma omp parallel for shared(myStrat)
private (Opp, myfit)
for all opponents
myfit += Call IPD(myStrat, Opp)

#pragma omp atomic
fit[SSet] += myfit

receive PC_comparison

if (mySSet == PC_comparison[0])
return relative_fitness

if (mySSet == PC_comparison[1])

return relative_fitness

receive SSet_strat

This allows the agent-agent games within the SSet to
be played out in parallel by the individual threads on the
processor. The relative fitness is calculated and stored locally
to the agent for every SSet handled by that processor.
Further optimization is obtained by handling the mutation
and learning global calls only once per processor instead of
once per SSet.

B. Global interaction: Population Dynamics

The population evolution consists of two main phases,
the pairwise learning phase and the mutation phase. The
pairwise learning phase involves the selection of two random
SSets and comparing their associated fitness values. The
node acting as the Nature Agent determines the generation
that this occurs and randomly selects the two agents. We
use global communication across the collective network to
broadcast this pair selection to all agents. For actual data
transfer we employ an MPI_Bcast call. Global communication
over the collectives network is used anytime the Nature
Agent needs to communicate with all SSets. This means
that global broadcasting is used during the initial setup phase
and all subsequent alerts of the SSets selected for pairwise
comparison, alerts of selected agents for random mutations,
and global strategy updates. The amount of communication
varies based on the mutation and pairwise comparison rates.
In this paper, the rates result in population updates every
few generations in which all processors must synchronize.

Once the Nature Node has broadcast the selected SSet,
processors containing agents then determine if they hold
agents assigned to the selected SSet. If so, the agent’s fitness
is returned to the Nature Agent so that it can handle the



pairwise comparison and subsequent learning process. Non-
blocking point-to-point messages along the torus network
are used to return the fitness levels to the Nature Agent,
while further collective communication is used to broadcast
information such as the resulting global strategy update.
The amount of global synchronization for the mutations and
comparisons leads to a non-embarrassingly parallel problem.
There is strong interaction within the SSets via non-blocking
Send and Receives, but the larger barrier to overcome is the
regular need for global communication whenever there is a
mutation. Global communication required is on the order of
microseconds and so, if not implemented correctly, would
not permit scaling. An example is demonstrated in Figure
1(b).

All nodes need to maintain an up to date view of the
strategies assigned to all other SSets in order to determine
all opponents strategies during game play.

When the Nature Agent determines the generation for
a random mutation, a new strategy is randomly generated
and assigned to a random SSet in the global view of SSet
strategies maintained by the Nature Agent. This strategy
along with the SSet identifier is then transmitted to all agents
via an MPI_Bcast call.

C. Simulation Parameters

In our experiments, we used the following standard payoff
matrix for the Iterated Prisoner’s Dilemma at the agent level:

C D
C 33 40
D 04 1,1

The maximum number of rounds for a generation of Iter-
ated Prisoner’s Dilemma was set to 200, similar to Smith and
Price’s mathematical model [33]. Strategy evolution across
the population was controlled by a pairwise comparison rate
of 10%. Random mutation of the strategy associated with
a SSet was set to u = 0.05. The population size, number
of SSets, and number of generations were varied to span
several problem sizes. We successfully modeled memory-
one through memory-six strategies. This was the largest
memory step model that could fit into memory on both the
IBM Blue Gene/Q platform.

VI. RESULTS

We conducted both a series of validation and small-scaling
analysis as well as a large-scaling study using predominantly
the IBM Blue Gene/Q platform. Each node consists of 16
cores with 4 potential threads per core and a 204.8 GFlop/s
peak performance per node. Memory per node is expanded
to 16Gb [34]. For point-to-point communication, 5D torus
is introduced to handle point-to-point communication at 32
GB/s [35]. The compiler used in these studies is the IBM
XL/C. These studies are discussed in the following sections.

A. Validation Studies

To validate our framework, we modeled a population of
5,000 SSets and 20,000 agents for 107 generations looking
only at memory-one strategies. We set up this simulation to
mimic the work conducted in the original WSLS study by
Nowak et al. [9]. We used pure strategies and monitored the
strategies assigned to each SSet over time. The results are
shown in Figure 2.

CC CD DD DC cc CD DD DC
—
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(a) Population strategies at gen- (b) Population strategies at final
eration 0. generation.

Figure 2. View of strategies represented in the population.

Figure 2 shows the overall state of the population, where
each row represents a strategy by a SSet, and each column
represents a memory step. Yellow indicates a cooperative
move (C), and blue indicates the decision to defect (D). Fig-
ure 2(a) shows the initial status of the population of SSets.
The strategies are randomly assigned to all SSets at the start
of the simulation. Figure 2(b) shows the strategy distribution
after 107 generations. The data has been clustered using
Lloyd k-means clustering [36], allowing strategies that are
more prevalent to be more easily identified. The results show
that at the completion of the simulation, 85% of all SSets
have adopted the strategy of [0101], which is WSLS. This
is consistent with the results by Nowak et al. [9].

B. Small-scale Studies

The two limiting factors to previous computational models
have been the memory step size and population sizes. To
gain a better understanding of the role these factors play
on parallel scalability and runtime, we undertook a series
of small scaling studies using 16-128 nodes, or up to 2,048
processors, of the IBM Blue Gene/Q supercomputer.

1) Optimization: In order to assess the true impact of
these two factors on the performance of the code, we first
ensured that we were using a fully optimized version of
the code. For this study, 4096 SSets were modeled memory
step one, 100 maximum generations, 200 rounds per game,
and all on 256 processors. Figure 3 shows the impact



each optimization level had on the runtime as measured in
wall clock seconds as well as the average time spent in
communication.

The first level of optimization shows the impact of
switching to non-blocking communication when the Nature
Agent receives the relative fitness scores from processors
containing SSets involved in the pairwise learning process.
This change only reduces the average communication time
by a small factor as the bulk of the communication is spent
in global broadcasts.

Finally, we were able to fine-tune the performance by
adding intrinsics instructions such as the fused multiply-add.
The bulk of the time is spent in the game-play between the
individual agents, and while much of this code depends on
if-statements, the fitness calculation was hand-coded to use
the built-in fpadd instruction.

Throughout all of the optimizations, the average com-
munication time is minimized. This is due to the fact that
the reduction in the game play time is helping reduce the
communication imbalance imposed by having only a few
nodes involved in each pairwise comparison decision, but
all nodes involved in the global updates.
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Figure 3. Optimization levels and their subsequent impact on the overall

runtime.

2) Population Size: We next studied the role population
plays on our method’s scalability as a function of population
size. The number of SSets greatly increases the overall
runtime. This is mainly due to the fact that the number of
games that need to be modeled grows with the square of the
number of SSets as the agents belonging to each SSet must
model the interaction with all strategies assigned to all other
SSets.

The results of the strong scaling study are shown in Figure
4, demonstrating the impact that population size, dictated by
the number of SSets, has on the parallel efficiency. When
each processor handles fewer than 4,096 SSets, the compu-
tation per processor starts to be less than the communication
overhead involved in the population dynamics component.

This leads to a decrease in the overall parallel efficiency.
As the population size grows, the impact of increasing the
number of processors for the simulation increases.
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Figure 4. Strong scaling as the number of SSets is increased.

3) Ratio of SSet to Processor Count: We also investigated
the number of SSets per processor that is ideal. As shown
previously, for Blue Gene/P work we optimized for SSets
per processor maxing out the processor count by running
the partitions in virtual node mode. In the strong scaling
results from Figure 4, the parallel efficiency notably drops
off. This occurs when the SSet per processor drops below 1
as shown in Table VI. This becomes more important as we
analyze the large-scaling studies in the following section.

R 05| 1.0 | 20 3.0 4.0 5.0 6.0 70 | 8.0

PE. | 50 | 55 | 99.7 | 99.7 | 99.9 | 99.9 | 99.9 | 100 | 100

Table VI
SSET PER PROCESSOR. AS THE NUMBER OF SSETS HANDLED BY EACH
PROCESSOR LOWERS, THE PARALLEL EFFICIENCY DECREASES. R IS
DEFINED AS THE RATIO OF SSETS TO PROCESSORS.

4) Memory Step Size: We then looked at the impact
that increasing the number of memory-steps had on strong
scaling and overall runtime. We found that increase in
memory step size had a significant impact on the overall
runtime of the simulation but had little effect (< 2%) on
the parallel efficiency as long as the processors were fully
saturated with SSets. We are defining parallel efficiency as
the percent of ideal speedup achieved for each processor
count. Figure 5 shows the breakdown of the runtime in
seconds for time spent in computation and communication
at varying memory step sizes. These were for simulations
of 2048 SSets for 20 generations with a PC rate of .1 and
were completed on 2048 processors of Blue Gene/P. As the
number of memory steps are increased, the overall runtime
starts to increase dramatically. The fact that higher memory
steps such as memory-six causes the number of potential
strategies to increase exponentially does not mean that the
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runtime will increase similarly. Agents are able to determine
their strategy and next move simply via a lookup based on
the current state. The increase in runtime actually comes
from identifying this state. During each round, each agent
must determine the current state of the game by comparing
it with its current view. As the number of memory steps
increases, the size of the state description and subsequently
the current view also increase, leading to larger single node
run times.

C. Large-scale Studies

To assess the performance of our algorithm on large
systems, we supplemented our studies on the IBM Blue
Gene/Q platform with work completed on the 294,912 Blue
Gene/P system. This was due to the limited availability of
larger Blue Gene/Q systems and shows the performance of
the code at large-scales. Based on the results of the small
scaling studies, we used memory-six strategies for all of
these studies to enable at-scale production runs. For Blue
Gene/P, the hybrid OpenMP/MPI implementation produced
the same performance as running in virtual node mode to
produce the maximum distributed MPI ranks, so all runs
were completed with the flat-MPI version. For Blue Gene/Q,
we saw a decrease in runtime when running with 32 tasks
per node and 2 threads per task. The impact of the threads
was minimal (reducing the time 2%), but enables the
hierarchical parallelization that becomes necessary for small
SSet/processor ratios. For all results reported below on Blue
Gene/Q we used the hybrid method with this setup

For the weak scaling tests, the work load was held to 4,096
SSets per processors. This resulted in a maximum population
size of 1,073,741,824 SSets containing O(10'®) agents. The
results of the weak scaling test for up to 294,912 processors
(72 racks of Blue Gene/P) are presented in Figure 6(a).

We obtained near perfect results as the overall runtime
for the simulations fluctuated by at most 1 second as
we scale from 1,024 processors up to the full 294,912
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Figure 6. Scalability results for memory-six models up to 294,912

processors. We demonstrate near perfect weak scaling results at scale for
both BG/P and BG/Q. The code exhibits perfect strong scaling through
16,384 processors on BG/P and BG/Q. A degradation in performance is
seen at 262,144 and above due to the fact that SSets are being split at
suboptimal levels for the extended BG/P run.

processors. This demonstrates the ability of our method
to dramatically increase the potential population size while
keeping the simulation time reasonable. On Blue Gene/Q, we
show equivalent results up to 16,384 processors achieved by
running 512 nodes with 32 tasks per node. We found this to
be the optimal setup for maximal performance of our code
on BG/Q.

The results of a strong scaling study are shown in Fig-
ure 6(b). We achieved near-ideal results with 82% scaling
efficiency exhibited at 262,144 processors. Due to system
availability, this work was conducted with tests on 1,024,
2,048, 8,192, 16,384, and 262,144 processors. Through
16,384 processors, 99% linear scaling is maintained. The
degradation in performance at 262,144 processors comes



from the same issue we saw highlighted in Figure 4.
Populations of the scale used for the 294,912 processor run
of the weak scaling test would exceed the memory limits of
the smaller partitions needed for strong scaling studies. The
strong scaling tests were conducted with 32,768 strategies
as that was the limit we could fit in memory for the small
scale run on 1024 processors of BG/P. This means that for
the 262,144 processor run, SSets are being split up resulting
in one-half an SSet per processor, leading to a dip in parallel
efficiency. For scaling runs on BG/Q, we used the same
number of strategies and achieved perfect speedup to 16,384
Pprocessors.

D. Discussion

In this work, we introduce a method to explore evolution-
ary game dynamics on an unprecedented scale and explore
the impact of application factors like memory steps and
population sizes as well as optimizations such as the use
of SSets and the hybrid programming model on massively
parallel systems. The capability of the evolutionary game
dynamics code is that it allows researchers to study the
impact strategies have on an overall population. Our work
explores novel optimization methods, including a multilevel
decomposition of the SSets and individual agents. Results
show that our strategy is essential for obtaining high perfor-
mance at scale. As domain researchers need to both extend
the number of generations studied as well as the size of
the population, we focused on both the weak and strong
scalability of the code. It is worth noting that while we
were able to take advantage of vectorization in the fitness
calculation, the core kernel is an iterative comparison game,
causing the flop count to have little meaning. For this
application, the contribution gained from the application of
high-performance-computing is the ability to model systems
at an unprecedented scale.

E. Conclusions

We have presented a highly scalable framework for
modeling evolutionary game dynamics and the introduction
of the hierarchical SSet abstraction. Our method enables
domain scientists to study population dynamics at an un-
precedented scale, spanning a larger population size and
greater number memory steps. To evaluate our methodology
at scale, we show results for memory-one through memory-
six strategies for populations of up to 10'® agents, achieving
near perfect weak scaling through 294,912 processors and
strong scaling of 82% efficiency on 262,144 processors. The
excellent weak scaling of our approach enables us to grow
the population size dramatically while keeping simulation
time reasonable. Our hybrid implementation will not only
allow researchers to assess the role memory plays in game
dynamics, but also to determine if there are more complex
strategies that lead to the emergence of cooperation between
agents. This has the potential to widely broaden the scope

of game theory simulation and the fields in which it is used,
particularly for large-scale economic models.
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