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ABSTRACT14

We introduce MedMNIST v2, a large-scale MNIST-like dataset collection of standardized biomedical images, including 12
datasets for 2D and 6 datasets for 3D. All images are pre-processed into a small size of 28×28 (2D) or 28×28×28 (3D) with the
corresponding classification labels so that no background knowledge is required for users. Covering primary data modalities in
biomedical images, MedMNIST v2 is designed to perform classification on lightweight 2D and 3D images with various dataset
scales (from 100 to 100,000) and diverse tasks (binary/multi-class, ordinal regression, and multi-label). The resulting dataset,
consisting of 708,069 2D images and 9,998 3D images in total, could support numerous research / educational purposes in
biomedical image analysis, computer vision, and machine learning. We benchmark several baseline methods on MedMNIST
v2, including 2D / 3D neural networks and open-source / commercial AutoML tools. The data and code are publicly available at
https://medmnist.com/.

15

Background & Summary16

Deep learning based biomedical image analysis plays an important role in the intersection of artificial intelligence and17

healthcare1–3. Is deep learning a panacea in this area? Because of the inherent complexity in biomedicine, data modalities,18

dataset scales and tasks in biomedical image analysis could be highly diverse. Numerous biomedical imaging modalities are19

designed for specific purposes by adjusting sensors and imaging protocols. The biomedical image dataset scales in biomedical20

image analysis could range from 100 to 100,000. Moreover, even only considering medical image classification, there are21

binary/multi-class classification, multi-label classification, and ordinal regression. As a result, it needs large amounts of22

engineering effort to tune the deep learning models in real practice. On the other hand, it is not easy to identify whether a23

specific model design could be generalizable if it is only evaluated on a few datasets. Large and diverse datasets are urged by24

the research communities to fairly evaluate generalization performance of models.25

Benchmarking data-driven approaches on various domains has been addressed by researchers. Visual Domain Decathlon26

(VDD)4 develops an evaluation protocol on 10 existing natural image datasets to assess the model generalizability on different27

domains. In medical imaging area, Medical Segmentation Decathlon (MSD)5 introduces 10 3D medical image segmentation28

datasets to evaluate end-to-end segmentation performance: from whole 3D volumes to targets. It is particularly important29

to understand the end-to-end performance of the current state of the art with MSD. However, the contribution of each part30

in the end-to-end systems could be particularly hard to analyze. As reported in the winning solutions6, 7, hyperparameter31

tuning, pre/post-processing, model ensemble strategies and training/test-time augmentation could be more important than32

the machine learning part (e.g., model architectures, learning scheme). Therefore, a large but simple dataset focusing on the33

machine learning part like VDD, rather than the end-to-end system like MSD, will serve as a better benchmark to evaluate the34

generalization performance of the machine learning algorithms on the medical image analysis tasks.35

In this study, we aim at a new “decathlon” dataset for biomedical image analysis, named MedMNIST v2. As illustrated in36

Figure 1, MedMNIST v2 is a large-scale benchmark for 2D and 3D biomedical image classification, covering 12 2D datasets37

with 708,069 images and 6 3D datasets with 9,998 images. It is designed to be:38

1

ar
X

iv
:s

ub
m

it/
45

10
98

9 
 [

cs
.C

V
] 

 2
5 

Se
p 

20
22

https://medmnist.com/


PathMNIST ChestMNIST DermaMNIST OCTMNIST PneumoniaMNIST RetinaMNIST
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OrganMNIST3D AdrenalMNIST3D VesselMNIST3D SynapseMNIST3DNoduleMNIST3D FractureMNIST3D

Figure 1. An overview of MedMNIST v2. MedMNIST is a large-scale MNIST-like collection of standardized 2D and 3D
biomedical images with classification labels. It is designed to be diverse, standardized, educational, and lightweight, which
could support numerous research / educational purposes.

• Diverse: It covers diverse data modalities, dataset scales (from 100 to 100,000), and tasks (binary/multi-class, multi-label,39

and ordinal regression). It is as diverse as the VDD4 and MSD5 to fairly evaluate the generalizable performance of40

machine learning algorithms in different settings, but both 2D and 3D biomedical images are provided.41

• Standardized: Each sub-dataset is pre-processed into the same format (see details in Methods), which requires no42

background knowledge for users. As an MNIST-like8 dataset collection to perform classification tasks on small images,43

it primarily focuses on the machine learning part rather than the end-to-end system. Furthermore, we provide standard44

train-validation-test splits for all datasets in MedMNIST v2, therefore algorithms could be easily compared.45

• Lightweight: The small size of 28×28 (2D) or 28×28×28 (3D) is friendly to evaluate machine learning algorithms.46

• Educational: As an interdisciplinary research area, biomedical image analysis is difficult to hand on for researchers47

from other communities, as it requires background knowledge from computer vision, machine learning, biomedical48

imaging, and clinical science. Our data with the Creative Commons (CC) License is easy to use for educational purposes.49

MedMNIST v2 is extended from our preliminary version, MedMNIST v19, with 10 2D datasets for medical image50

classification. As MedMNIST v1 is more medical-oriented, we additionally provide 2 2D bioimage datasets. Considering the51

popularity of 3D imaging in biomedical area, we carefully develop 6 3D datasets following the same design principle as 2D ones.52

A comparison of the “decathlon” datasets could be found in Table 1. We benchmark several standard deep learning methods53

and AutoML tools with MedMNIST v2 on both 2D and 3D datasets, including ResNets10 with early-stopping strategies on54

validation set, open-source AutoML tools (auto-sklearn11 and AutoKeras12) and a commercial AutoML tool, Google AutoML55

Vision (for 2D only). All benchmark experiments are repeated at least 3 times for more stable results than in MedMNIST v1.56

Besides, the code for MedMNIST has been refactored to make it more friendly to use.57

As a large-scale benchmark in biomedical image analysis, MedMNIST has been particularly useful for machine learning and58

computer vision research13–15, e.g., AutoML, trustworthy machine learning, domain adaptive learning. Moreover, considering59

the scarcity of 3D image classification datasets, the MedMNIST3D in MedMNIST v2 from diverse backgrounds could benefit60

research in 3D computer vision.61
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Table 1. A comparison of MedMNIST v2 and other “decathlon” datasets.

Visual Domain Decathlon4 Medical Segmentation Decathlon5 MedMNIST v19 MedMNIST v2

Domain Natural Medical Medical Medical
Task Classification Segmentation Classification Classification
Datasets 10 10 10 18
2D / 3D 2D 3D 2D 2D & 3D
Image Size Variable (≈ 722) Variable (≈ (30−300)3) Fixed (282) Fixed (282 & 283)

Methods62

Design Principles63

The MedMNIST v2 dataset consists of 12 2D and 6 3D standardized datasets from carefully selected sources covering primary64

data modalities (e.g., X-ray, OCT, ultrasound, CT, electron microscope), diverse classification tasks (binary/multi-class, ordinal65

regression, and multi-label) and dataset scales (from 100 to 100,000). We illustrate the landscape of MedMNIST v2 in Figure 2.66

As it is hard to categorize the data modalities, we use the imaging resolution instead to represent the modality. The diverse67

dataset design could lead to diverse task difficulty, which is desirable as a biomedical image classification benchmark.68

Although it is fair to compare performance on the test set only, it could be expensive to compare the impact of the69

train-validation split. Therefore, we provide an official train-validation-test split for each subset. We use the official data split70

from source dataset (if provided) to avoid data leakage. If the source dataset has only a split of training and validation set, we71

use the official validation set as test set and split the official training set with a ratio of 9:1 into training-validation. For the72

dataset without an official split, we split the dataset randomly at the patient level with a ratio of 7:1:2 into training-validation-test.73

All images are pre-processed into a MNIST-like format, i.e., 28×28 (2D) or 28×28×28 (3D), with cubic spline interpolation74

operation for image resizing. The MedMNIST uses the classification labels from the source datasets directly in most cases, but75

the labels could be simplified (merged or deleted classes) if the classification tasks on the small images are too difficult. All76

source datasets are either associated with the Creative Commons (CC) Licenses or developed by us, which allows us to develop77

derivative datasets based on them. Some datasets are under CC-BY-NC license; we have contacted the authors and obtained the78

permission to re-distribute the datasets.79

We list the details of all datasets in Table 2. For simplicity, we call the collection of all 2D datasets as MedMNIST2D, and80

that of 3D as MedMNIST3D. In the next sections, we will describe how each dataset is created.81

Table 2. Data summary of MedMNIST v2 dataset, including data source, data modality, type of the classification task
together with the number of classes for multi-class or that of labels for multi-label, number of samples in total and in each data
split (training/validation/test). Upper: MedMNIST2D, 12 datasets of 2D images. Lower: MedMNIST3D, 6 datasets of 3D
images. MC: Multi-Class. BC: Binary-Class. ML: Multi-Label. OR: Ordinal Regression.

Name Source Data Modality Task (# Classes / Labels) # Samples # Training / Validation / Test

MedMNIST2D
PathMNIST Kather et al.16, 17 Colon Pathology MC (9) 107,180 89,996 / 10,004 / 7,180
ChestMNIST Wang et al.18 Chest X-Ray ML (14) BC (2) 112,120 78,468 / 11,219 / 22,433
DermaMNIST Tschandl et al.19, 20, Codella et al.21 Dermatoscope MC (7) 10,015 7,007 / 1,003 / 2,005
OCTMNIST Kermany et al.22, 23 Retinal OCT MC (4) 109,309 97,477 / 10,832 / 1,000
PneumoniaMNIST Kermany et al.22, 23 Chest X-Ray BC (2) 5,856 4,708 / 524 / 624
RetinaMNIST DeepDRiD Team24 Fundus Camera OR (5) 1,600 1,080 / 120 / 400
BreastMNIST Al-Dhabyani et al.25 Breast Ultrasound BC (2) 780 546 / 78 / 156
BloodMNIST Acevedo et al.26, 27 Blood Cell Microscope MC (8) 17,092 11,959 / 1,712 / 3,421
TissueMNIST Ljosa et al.28 Kidney Cortex Microscope MC (8) 236,386 165,466 / 23,640 / 47,280
OrganAMNIST Bilic et al.29, Xu et al.30 Abdominal CT MC (11) 58,850 34,581 / 6,491 / 17,778
OrganCMNIST Bilic et al.29, Xu et al.30 Abdominal CT MC (11) 23,660 13,000 / 2,392 / 8,268
OrganSMNIST Bilic et al.29, Xu et al.30 Abdominal CT MC (11) 25,221 13,940 / 2,452 / 8,829

MedMNIST3D
OrganMNIST3D Bilic et al.29, Xu et al.30 Abdominal CT MC (11) 1,743 972 / 161 / 610
NoduleMNIST3D Armato et al.31 Chest CT BC (2) 1,633 1,158 / 165 / 310
AdrenalMNIST3D New Shape from Abdominal CT BC (2) 1,584 1,188 / 98 / 298
FractureMNIST3D Jin et al.32 Chest CT MC (3) 1,370 1,027 / 103 / 240
VesselMNIST3D Yang et al.33 Shape from Brain MRA BC (2) 1,909 1,335 / 192 / 382
SynapseMNIST3D New Electron Microscope BC (2) 1,759 1,230 / 177 / 352

3/11



SynapseMNIST3D BloodMNIST

PathMNIST TissueMNIST

RetinaMNIST OCTMNIST

DermaMNIST

ChestMNIST
PneumoniaMNIST

NoduleMNIST3D

BreastMNIST

OrganAMNIST
MedMNIST3D

MedMNIST2D

Multi-Class

Binary-Class

Multi-Label

Ordinal-Regression

103 104 105

10−2

10−3

10−4

10−5

10−6

10−7

10−8

Dataset Scale

Im
a

g
in

g
 R

es
o

lu
ti

o
n

 /
 m

Figure 2. The landscape of MedMNIST v2. The horizontal axis denotes the base-10 logarithm of the dataset scale, and the
vertical axis denotes base-10 logarithm of imaging resolution. The upward and downward triangles are used to distinguish
between 2D datasets and 3D datasets, and the 4 different colors represent different tasks.

Details for MedMNIST2D82

PathMNIST83

The PathMNIST is based on a prior study16, 17 for predicting survival from colorectal cancer histology slides, providing a dataset84

(NCT-CRC-HE-100K) of 100,000 non-overlapping image patches from hematoxylin & eosin stained histological images, and85

a test dataset (CRC-VAL-HE-7K) of 7,180 image patches from a different clinical center. The dataset is comprised of 9 types86

of tissues, resulting in a multi-class classification task. We resize the source images of 3×224×224 into 3×28×28, and split87

NCT-CRC-HE-100K into training and validation set with a ratio of 9 : 1. The CRC-VAL-HE-7K is treated as the test set.88

ChestMNIST89

The ChestMNIST is based on the NIH-ChestXray14 dataset18, a dataset comprising 112,120 frontal-view X-Ray images90

of 30,805 unique patients with the text-mined 14 disease labels, which could be formulized as a multi-label binary-class91

classification task. We use the official data split, and resize the source images of 1×1,024×1,024 into 1×28×28.92

DermaMNIST93

The DermaMNIST is based on the HAM1000019–21, a large collection of multi-source dermatoscopic images of common94

pigmented skin lesions. The dataset consists of 10,015 dermatoscopic images categorized as 7 different diseases, formulized as95

a multi-class classification task. We split the images into training, validation and test set with a ratio of 7 : 1 : 2. The source96

images of 3×600×450 are resized into 3×28×28.97

OCTMNIST98

The OCTMNIST is based on a prior dataset22, 23 of 109,309 valid optical coherence tomography (OCT) images for retinal99

diseases. The dataset is comprised of 4 diagnosis categories, leading to a multi-class classification task. We split the source100

training set with a ratio of 9 : 1 into training and validation set, and use its source validation set as the test set. The source101

images are gray-scale, and their sizes are (384− 1,536)× (277− 512). We center-crop the images with a window size of102

length of the short edge and resize them into 1×28×28.103
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PneumoniaMNIST104

The PneumoniaMNIST is based on a prior dataset22, 23 of 5,856 pediatric chest X-Ray images. The task is binary-class105

classification of pneumonia against normal. We split the source training set with a ratio of 9 : 1 into training and validation set,106

and use its source validation set as the test set. The source images are gray-scale, and their sizes are (384−2,916)× (127−107

2,713). We center-crop the images with a window size of length of the short edge and resize them into 1×28×28.108

RetinaMNIST109

The RetinaMNIST is based on the DeepDRiD24 challenge, which provides a dataset of 1,600 retina fundus images. The task110

is ordinal regression for 5-level grading of diabetic retinopathy severity. We split the source training set with a ratio of 9 : 1111

into training and validation set, and use the source validation set as the test set. The source images of 3×1,736×1,824 are112

center-cropped with a window size of length of the short edge and resized into 3×28×28.113

BreastMNIST114

The BreastMNIST is based on a dataset25 of 780 breast ultrasound images. It is categorized into 3 classes: normal, benign, and115

malignant. As we use low-resolution images, we simplify the task into binary classification by combining normal and benign as116

positive and classifying them against malignant as negative. We split the source dataset with a ratio of 7 : 1 : 2 into training,117

validation and test set. The source images of 1×500×500 are resized into 1×28×28.118

BloodMNIST119

The BloodMNIST is based on a dataset26, 27 of individual normal cells, captured from individuals without infection, hematologic120

or oncologic disease and free of any pharmacologic treatment at the moment of blood collection. It contains a total of 17,092121

images and is organized into 8 classes. We split the source dataset with a ratio of 7 : 1 : 2 into training, validation and test122

set. The source images with resolution 3× 360× 363 pixels are center-cropped into 3× 200× 200, and then resized into123

3×28×28.124

TissueMNIST125

We use the BBBC05134, available from the Broad Bioimage Benchmark Collection28. The dataset contains 236,386 human126

kidney cortex cells, segmented from 3 reference tissue specimens and organized into 8 categories. We split the source dataset127

with a ratio of 7 : 1 : 2 into training, validation and test set. Each gray-scale image is 32×32×7 pixels, where 7 denotes 7128

slices. We obtain 2D maximum projections by taking the maximum pixel value along the axial-axis of each pixel, and resize129

them into 28×28 gray-scale images.130

Organ{A,C,S}MNIST131

The Organ{A,C,S}MNIST is based on 3D computed tomography (CT) images from Liver Tumor Segmentation Benchmark132

(LiTS)29. They are renamed from OrganMNIST_{Axial,Coronal,Sagittal} (in MedMNIST v19) for simplicity. We use bounding-133

box annotations of 11 body organs from another study30 to obtain the organ labels. Hounsfield-Unit (HU) of the 3D images are134

transformed into gray-scale with an abdominal window. We crop 2D images from the center slices of the 3D bounding boxes in135

axial / coronal / sagittal views (planes). The only differences of Organ{A,C,S}MNIST are the views. The images are resized136

into 1×28×28 to perform multi-class classification of 11 body organs. 115 and 16 CT scans from the source training set are137

used as training and validation set, respectively. The 70 CT scans from the source test set are treated as the test set.138

Details for MedMNIST3D139

OrganMNIST3D140

The source of the OrganMNIST3D is the same as that of the Organ{A,C,S}MNIST. Instead of 2D images, we directly use141

the 3D bounding boxes and process the images into 28×28×28 to perform multi-class classification of 11 body organs. The142

same 115 and 16 CT scans as the Organ{A,C,S}MNIST from the source training set are used as training and validation set,143

respectively, and the same 70 CT scans as the Organ{A,C,S}MNIST from the source test set are treated as the test set.144

NoduleMNIST3D145

The NoduleMNIST3D is based on the LIDC-IDRI31, a large public lung nodule dataset, containing images from thoracic CT146

scans. The dataset is designed for both lung nodule segmentation and 5-level malignancy classification task. To perform binary147

classification, we categorize cases with malignancy level 1/2 into negative class and 4/5 into positive class, ignoring the cases148

with malignancy level 3. We split the source dataset with a ratio of 7 : 1 : 2 into training, validation and test set, and center-crop149

the spatially normalized images (with a spacing of 1mm×1mm×1mm) into 28×28×28.150
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AdrenalMNIST3D151

The AdrenalMNIST3D is a new 3D shape classification dataset, consisting of shape masks from 1,584 left and right adrenal152

glands (i.e., 792 patients). Collected from Zhongshan Hospital Affiliated to Fudan University, each 3D shape of adrenal gland153

is annotated by an expert endocrinologist using abdominal computed tomography (CT), together with a binary classification154

label of normal adrenal gland or adrenal mass. Considering patient privacy, we do not provide the source CT scans, but the real155

3D shapes of adrenal glands and their classification labels. We calculate the center of adrenal and resize the center-cropped156

64mm×64mm×64mm volume into 28×28×28. The dataset is randomly split into training / validation / test set of 1,188 / 98157

/ 298 on a patient level.158

FractureMNIST3D159

The FractureMNIST3D is based on the RibFrac Dataset32, containing around 5,000 rib fractures from 660 computed tomography160

(CT) scans. The dataset organizes detected rib fractures into 4 clinical categories (i.e., buckle, nondisplaced, displaced, and161

segmental rib fractures). As we use low-resolution images, we disregard segmental rib fractures and classify 3 types of rib162

fractures (i.e., buckle, nondisplaced, and displaced). For each annotated fracture area, we calculate its center and resize the163

center-cropped 64mm×64mm×64mm image into 28×28×28. The official split of training, validation and test set is used.164

VesselMNIST3D165

The VesselMNIST3D is based on an open-access 3D intracranial aneurysm dataset, IntrA33, containing 103 3D models (meshes)166

of entire brain vessels collected by reconstructing MRA images. 1,694 healthy vessel segments and 215 aneurysm segments167

are generated automatically from the complete models. We fix the non-watertight mesh with PyMeshFix35 and voxelize the168

watertight mesh with trimesh36 into 28× 28× 28 voxels. We split the source dataset with a ratio of 7 : 1 : 2 into training,169

validation and test set.170

SynapseMNIST3D171

The SynapseMNIST3D is a new 3D volume dataset to classify whether a synapse is excitatory or inhibitory. It uses a 3D172

image volume of an adult rat acquired by a multi-beam scanning electron microscope. The original data is of the size173

100×100×100um3 and the resolution 8×8×30nm3, where a (30um)3 sub-volume was used in the MitoEM dataset37 with174

dense 3D mitochondria instance segmentation labels. Three neuroscience experts segment a pyramidal neuron within the whole175

volume and proofread all the synapses on this neuron with excitatory / inhibitory labels. For each labeled synaptic location, we176

crop a 3D volume of 1024×1024×1024nm3 and resize it into 28×28×28 voxels. Finally, the dataset is randomly split with177

a ratio of 7 : 1 : 2 into training, validation and test set.178

Data Records179

The data files of MedMNIST v2 dataset can be accessed at Zenodo38. It contains 12 pre-processed 2D datasets (MedMNIST2D)180

and 6 pre-processed 3D datasets (MedMNIST3D). Each subset is saved in NumPy39 npz format, named as <data>mnist.npz181

for MedMNIST2D and <data>mnist3d.npz for MedMNIST3D, and is comprised of 6 keys (“train_images”, “train_labels”,182

“val_images”, “val_labels”, “test_images”, “test_labels”). The data type of the dataset is uint8.183

• “{train,val,test}_images”: an array containing images, with a shape of N × 28× 28 for 2D gray-scale datasets, of184

N ×28×28×3 for 2D RGB datasets, of N ×28×28×28 for 3D datasets. N denotes the number of samples in training185

/ validation / test set.186

• “{train,val,test}_labels”: an array containing ground-truth labels, with a shape of N ×1 for multi-class / binary-class /187

ordinal regression datasets, of N ×L for multi-lable binary-class datasets. N denotes the number of samples in training /188

validation / test set and L denotes the number of task labels in the multi-label dataset (i.e., 14 for the ChestMNIST).189

Technical Validation190

Baseline Methods191

For MedMNIST2D, we first implement ResNets10 with a simple early-stopping strategy on validation set as baseline methods.192

The ResNet model contains 4 residual layers and each layer has several blocks, which is a stack of convolutional layers, batch193

normalization and ReLU activation. The input channel is always 3 since we convert gray-scale images into RGB images. To194

fairly compare with other methods, the input resolutions are 28 or 224 (resized from 28) for the ResNet-18 and ResNet-50.195

For all model training, we use cross entropy-loss and set the batch size as 128. We utilize an Adam optimizer40 with an initial196

learning rate of 0.001 and train the model for 100 epochs, delaying the learning rate by 0.1 after 50 and 75 epochs.197

For MedMNIST3D, we implement ResNet-18 / ResNet-5010 with 2.5D / 3D / ACS41 convolutions with a simple early-198

stopping strategy on validation set as baseline methods, using the one-line 2D neural network converters provided in the official199
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ACS code repository (https://github.com/M3DV/ACSConv). When loading the datasets, we copy the single channel200

into 3 channels to make it compatible. For all model training, we use cross-entropy loss and set the batch size as 32. We utilize201

an Adam optimizer40 with an initial learning rate of 0.001 and train the model for 100 epochs, delaying the learning rate by202

0.1 after 50 and 75 epochs. Additionally, as a regularization for the two datasets of shape modality (i.e., AdrenalMNIST3D /203

VesselMNIST3D), we multiply the training set by a random value in [0,1] during training and multiply the images by a fixed204

coefficient of 0.5 during evaluation.205

The details of model implementation and training scheme can be found in our code.206

AutoML Methods207

We have also selected several AutoML methods: auto-sklearn11 as the representative of open-source AutoML tools for statistical208

machine learning, AutoKeras12 as the representative of open-source AutoML tools for deep learning, and Google AutoML209

Vision as the representative of commercial black-box AutoML tools, with deep learning empowered. We run auto-sklearn11
210

and AutoKeras12 on both MedMNIST2D and MedMNIST3D, and Google AutoML Vision on MedMNIST2D only.211

auto-sklearn11 automatically searches the algorithms and hyper-parameters in scikit-learn42 package. We set time limit for212

search of appropriate models according to the dataset scale. The time limit is 2 hours for 2D datasets with scale < 10,000, 4213

hours for those of [10,000,50,000], and 6 hours for those > 50,000. For 3D datasets, we set time limit as 4 hours. We flatten214

the images into one dimension, and provide reshaped one-dimensional data with the corresponding labels for auto-sklearn to fit.215

AutoKeras12 based on Keras package43 searches deep neural networks and hyper-parameters. For each dataset, we set216

number of max_trials as 20 and number of epochs as 20. It tries 20 different Keras models and trains each model for 20 epochs.217

We choose the best model based on the highest AUC score on validation set.218

Google AutoML Vision (https://cloud.google.com/vision/automl/docs, experimented in July, 2021) is219

a commercial AutoML tool offered as a service from Google Cloud. We train Edge exportable models of MedMNIST2D220

on Google AutoML Vision and export trained quantized models into TensorFlow Lite format to do offline inference. We set221

number of node hours of each dataset according to the data scale. We allocate 1 node hour for dataset with scale around 1,000,222

2 node hours for scale around 10,000, 3 node hours for scale around 100,000, and 4 node hours for scale around 200,000.223

Evaluation224

Area under ROC curve (AUC)44 and Accuracy (ACC) are used as the evaluation metrics. AUC is a threshold-free metric to225

evaluate the continuous prediction scores, while ACC evaluates the discrete prediction labels given threshold (or argmax).226

AUC is less sensitive to class imbalance than ACC. Since there is no severe class imbalance on our datasets, ACC could also227

serve as a good metric. Although there are many other metrics, we simply select AUC and ACC for the sake of simplicity and228

standardization of evaluation. We report the AUC and ACC for each dataset. Data users are also encouraged to analyze the229

average performance over the 12 2D datasets and 6 3D datasets to benchmark their methods. Thereby, we report average AUC230

and ACC score over MedMNIST2D and MedMNIST3D respectively to easily compare the performance of different methods.231

Benchmark on Each Dataset232

The performance on each dataset of MedMNIST2D and MedMNIST3D is reported in Table 3 and Table 4, respectively. We233

calculate the mean value of at least 3 trials for each method on each dataset.234

For 2D datasets, Google AutoML Vision is well-performing in general, however it could not always win, even compared235

with the baseline ResNet-18 and ResNet-50. Auto-sklearn performs poorly on most datasets, indicating that the typical statistical236

machine learning algorithms do not work well on our 2D medical image datasets. AutoKeras performs well on datasets with237

large scales, however relatively worse on datasets with small scale. With the same depth of ResNet backbone, datasets of238

resolution 224 outperform resolution 28 in general. For datasets of resolution 28, ResNet-18 wins higher scores than ResNet-50239

on most datasets.240

For 3D datasets, AutoKeras does not work well, while auto-sklearn performs better than on MedMNIST2D. Auto-sklearn is241

superior to ResNet-18+2.5D and ResNet-50+2.5D in general, and even outperforms all the other methods in ACC score on242

AdrenalMNIST3D. 2.5D models have poorer performance compared with 3D and ACS models, while 3D and ACS models are243

comparable to each other. With 3D convolution, ResNet-50 backbone surpasses ResNet-18.244

Average Performance of Each Method245

To compare the performance of various methods, we report the average AUC and average ACC of each method over all246

datasets. The average performance of methods on MedMNIST2D and MedMNIST3D are reported in Table 5 and Table 6,247

respectively. Despite the great gap among the metrics of different sub-datasets, the average AUC and ACC could still manifest248

the performance of each method.249

For MedMNIST2D, Google AutoML Vision outperforms all the other methods in average AUC, however, it is very close250

to the performance of baseline ResNets. The ResNets surpass auto-sklearn and AutoKeras, and outperform Google AutoML251
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Table 3. Benchmark on each dataset of MedMNIST2D in metrics of AUC and ACC.

Methods PathMNIST ChestMNIST DermaMNIST OCTMNIST PneumoniaMNIST RetinaMNIST
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 (28)10 0.983 0.907 0.768 0.947 0.917 0.735 0.943 0.743 0.944 0.854 0.717 0.524
ResNet-18 (224)10 0.989 0.909 0.773 0.947 0.920 0.754 0.958 0.763 0.956 0.864 0.710 0.493
ResNet-50 (28)10 0.990 0.911 0.769 0.947 0.913 0.735 0.952 0.762 0.948 0.854 0.726 0.528
ResNet-50 (224)10 0.989 0.892 0.773 0.948 0.912 0.731 0.958 0.776 0.962 0.884 0.716 0.511
auto-sklearn11 0.934 0.716 0.649 0.779 0.902 0.719 0.887 0.601 0.942 0.855 0.690 0.515
AutoKeras12 0.959 0.834 0.742 0.937 0.915 0.749 0.955 0.763 0.947 0.878 0.719 0.503
Google AutoML Vision 0.944 0.728 0.778 0.948 0.914 0.768 0.963 0.771 0.991 0.946 0.750 0.531

Methods BreastMNIST BloodMNIST TissueMNIST OrganAMNIST OrganCMNIST OrganSMNIST
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-18 (28)10 0.901 0.863 0.998 0.958 0.930 0.676 0.997 0.935 0.992 0.900 0.972 0.782
ResNet-18 (224)10 0.891 0.833 0.998 0.963 0.933 0.681 0.998 0.951 0.994 0.920 0.974 0.778
ResNet-50 (28)10 0.857 0.812 0.997 0.956 0.931 0.680 0.997 0.935 0.992 0.905 0.972 0.770
ResNet-50 (224)10 0.866 0.842 0.997 0.950 0.932 0.680 0.998 0.947 0.993 0.911 0.975 0.785
auto-sklearn11 0.836 0.803 0.984 0.878 0.828 0.532 0.963 0.762 0.976 0.829 0.945 0.672
AutoKeras12 0.871 0.831 0.998 0.961 0.941 0.703 0.994 0.905 0.990 0.879 0.974 0.813
Google AutoML Vision 0.919 0.861 0.998 0.966 0.924 0.673 0.990 0.886 0.988 0.877 0.964 0.749

Table 4. Benchmark on each dataset of MedMNIST3D in metrics of AUC and ACC.

Methods OrganMNIST3D NoduleMNIST3D FractureMNIST3D AdrenalMNIST3D VesselMNIST3D SynapseMNIST3D
AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

ResNet-1810+2.5D 0.977 0.788 0.838 0.835 0.587 0.451 0.718 0.772 0.748 0.846 0.634 0.696
ResNet-1810+3D 0.996 0.907 0.863 0.844 0.712 0.508 0.827 0.721 0.874 0.877 0.820 0.745
ResNet-1810+ACS41 0.994 0.900 0.873 0.847 0.714 0.497 0.839 0.754 0.930 0.928 0.705 0.722
ResNet-5010+2.5D 0.974 0.769 0.835 0.848 0.552 0.397 0.732 0.763 0.751 0.877 0.669 0.735
ResNet-5010+3D 0.994 0.883 0.875 0.847 0.725 0.494 0.828 0.745 0.907 0.918 0.851 0.795
ResNet-5010+ACS41 0.994 0.889 0.886 0.841 0.750 0.517 0.828 0.758 0.912 0.858 0.719 0.709
auto-sklearn11 0.977 0.814 0.914 0.874 0.628 0.453 0.828 0.802 0.910 0.915 0.631 0.730
AutoKeras12 0.979 0.804 0.844 0.834 0.642 0.458 0.804 0.705 0.773 0.894 0.538 0.724

Vision in average ACC. Under the same backbone, the datasets with resolution of 224 win higher AUC and ACC score than252

resolution of 28. While under the same resolution, ResNet-18 is superior to ResNet-50.253

For MedMNIST3D, AutoKeras does not perform well, performing worse than auto-sklearn. Under the same ResNet254

backbone, 2.5D models are inferior to 3D and ACS models and perform worse than auto-sklearn and AutoKeras. Surprisingly,255

the ResNet-50 with standard 3D convolution outperforms all the other methods on average.256

Table 5. Average performance of MedMNIST2D in metrics of average AUC and average ACC over all 2D datasets.

Methods AVG AUC AVG ACC

ResNet-18 (28)10 0.922 0.819
ResNet-18 (224)10 0.925 0.821
ResNet-50 (28)10 0.920 0.816
ResNet-50 (224)10 0.923 0.821
auto-sklearn11 0.878 0.722
AutoKeras12 0.917 0.813
Google AutoML Vision 0.927 0.809

Difference between Organ{A,C,S}MNIST and OrganMNIST3D257

Organ{A,C,S}MNIST and OrganMNIST3D are generated from the same source dataset, and share the same task and the same258

data split. However, samples in the 2D and 3D datasets are different. Organ{A,C,S}MNIST are sampled slices of 3D bounding259
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Table 6. Average performance of MedMNIST3D in metrics of average AUC and average ACC over all 3D datasets.

Methods AVG AUC AVG ACC

ResNet-1810+2.5D 0.750 0.731
ResNet-1810+3D 0.849 0.767
ResNet-1810+ACS41 0.842 0.775
ResNet-5010+2.5D 0.752 0.732
ResNet-5010+3D 0.863 0.780
ResNet-5010+ACS41 0.848 0.762
auto-sklearn11 0.815 0.765
AutoKeras12 0.763 0.737

boxes of 3D CT images in axial / coronal / sagittal views (planes), respectively. They are sliced before being resized into260

1×28×28. On the other hand, OrganMNIST3D is resized into 28×28×28 directly. Therefore, the Organ{A,C,S}MNIST261

metrics in Table 3 and the OrganMNIST3D metrics in Table 4 should not be compared.262

We perform experiments to clarify the difference between Organ{A,C,S}MNIST and OrganMNIST3D. We slice the263

OrganMNIST3D dataset in the axial / coronal / sagittal views (planes) respectively to generate the central slices. For each264

view, we take the 60% central slices when slicing and discard the other 40% slices. We evaluate the model performance on the265

OrganMNIST3D, with 2D-input ResNet-18 trained with Organ{A,C,S}MNIST and the axial / coronal / sagittal central slices of266

OrganMNIST3D, as well as 3D-input ResNet-18. The results are reported in Table 7. The performance of 3D-input models is267

comparable to that of 2D-input models with axial view in general. In other words, with an appropriate setting, the 2D inputs268

and 3D inputs are comparable on the OrganMNIST3D dataset.269

Table 7. Model performance on OrganMNIST3D test set in various settings, including (upper) 2D-input ResNet-1810

trained with Organ{A,C,S}MNIST and axial / coronal / sagittal central slices of OrganMNIST3D, and (lower) 3D-input
ResNet-18 with 2.5D / 3D / ACS41 convolutions, trained with OrganMNIST3D (same as Table 4).

Methods AUC ACC

2D-Input ResNet-18
Trained with OrganAMNIST 0.995 0.907
Trained with axial central slices of OrganMNIST3D 0.995 0.916
Trained with OrganCMNIST 0.991 0.877
Trained with coronal central slices of OrganMNIST3D 0.992 0.890
Trained with OrganSMNIST 0.959 0.697
Trained with sagittal central slices of OrganMNIST3D 0.963 0.701

3D-Input ResNet-18
2.5D trained with OrganMNIST3D 0.977 0.788
3D trained with OrganMNIST3D 0.996 0.907
ACS trained with OrganMNIST3D 0.994 0.900

Usage Notes270

The MedMNIST can be freely available at https://medmnist.com/. We would be grateful if the users of MedMNIST271

dataset could cite MedMNIST v19 and v2 (this paper), as well as the corresponding source dataset in the publications.272

Please note that this dataset is NOT intended for clinical use, as substantially reducing the resolution of medical images273

might result in images that are insufficient to represent and capture different disease pathologies.274

Code availability275

The data API and evaluation script in Python is available at https://github.com/MedMNIST/MedMNIST. The276

reproducible experiment codebase is available at https://github.com/MedMNIST/experiments.277
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