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Figure 1: Bistable structures generated by our system. Optimized and simulated structure with two forms – duck and
teddy. The red bars represent the forms of the structure, while the yellow and green lines represent the springs. The
corresponding fabricated results are shown with black bars and metallic springs.

ABSTRACT
Extreme deformation can drasticallymorph a structure from

one structural form into another. Programming such deforma-
tion properties into the structure is often challenging and in
many cases an impossible task. The morphed forms do not
hold and usually relapse to the original form, where the struc-
ture is in its lowest energy state. For example, a stick, when
bent, resists its bent form and tends to go back to its initial
straight form, where it holds the least amount of potential
energy.
In this project, we present a computational design method
which can create fabricable planar structure that can morph
into two different bistable forms. Once the user provides the
initial desired forms, the method automatically creates support
structures (internal springs), such that, the structure can not
only morph, but also hold the respective forms under external
force application. We achieve this through an iterative nonlin-
ear optimization strategy for shaping the potential energy of
the structure in the two forms simultaneously. Our approach
guarantees first and second-order stability with respect to the
potential energy of the bistable structure.
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1 INTRODUCTION
Controlling the morphing and stability properties of a struc-

ture under varied force application has been an active area of
research in continuum mechanics, robotics and graphics com-
munities. While in continuum mechanics, these deformations
are often used to to create functional and compliant objects,

in robotics, morphed forms are used to create mechanisms,
including soft-robots for safer human interaction applications.
These morphed forms often have small deformations as com-
pared to size of the initial form structure and do not have the
stability guarantee when morphed. In computer graphics the
emphasis is to create artist tools for extreme virtual deforma-
tions. While these methods work fluently for animators, they
can not be employed for bistable morphable structures once
fabricated. Other methods are limited to creating structures
with a single stable form under external force applications e.g.
gravitational forces.

Thus, an interesting question arises: Are there methods for
creating two statically stable, morphable, and fabricable struc-
tural forms? One way to achieve extremely different forms for
a single structure is deform it until it buckles and drastically
changes its form. This notion of buckling of metallic beams
has existed in the field of continuum mechanics for several
decades, where the emphasis had been to avoid buckling of
metallic structures. At this point of buckling the structure
would permanently deforms or damages. [3] showed the use
of the buckling principle for extreme structural deformation
of elastic structures. While there are research works where
extreme deformation is exploited to create functional objects
such as [66],[45], however, there are no computational meth-
ods for creating example-based morphable bistable structures
under external forces.

The goal of this work is to create a structure with two
different statically stable forms, we call these structuresMeta-
morphs, due to their morphable properties. A simple hinged
linkage structures with embedded springs is introduced. This
hybrid hard-and-soft springy-linkage can undergo extreme
deformations to morph into different forms. We achieve the
stability guarantees by optimizing for first and second order
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Figure 2: Overview: (a) The input curves of the proposed structures (b) Equivalent planar linkage structures, (c) iter-
ative nonlinear optimization, (d) optimized bistable structure

stability of the structure’s potential energy, as explained in
Section 2.

The proposed method can not only be used to create struc-
ture with varied forms, but also in the field of soft robotics
for creating safe grippers, that can grip objects with various
non-convex shapes, while not being specifically programmed
for any particular shape. Other applications include creating
bistable wing configuration of aeroplanes [58]. Such plane’s
wings can adapt to various turbulence conditions with in-
creased efficiency or use different wing structural forms while
take-off, landing and cruising. Finally, similar to satellite wings,
that are packed according to origami principles [39], Meta-
morphs can be used in applications where a different packed
and unpacked stable forms are needed.
Metamorphs also find use in animatroics. Artists create pup-
pets and articulated character where a deforming structure
can be used to express the variousmoods of a character, and in
story-telling mediums such as pop-up books [31] by creating
collapsible structure structures. Lastly, such amethodmay also
be used to create shape shifting furniture and human-computer
interaction devices [67]. A single piece of Metamorph furni-
ture can be configured to take different functional forms, or
folded into a space-saving form. For example, a structure can
be used as a table or morphed into stool or morphed into a
compact form.

2 OVERVIEW
This sections introduces the notion of stability and provides

a general overview of our approach. Figure 2 summarizes the
same.

Structure and kinematics. The input to the method are two
input curves used to create the forms that a linkage structure
must morph into.We define our structures as rigid bars that are
connected at designated end-points via hinge-joints. All forms
of a structure share the same bar count and connectivity and
are geometrically equivalent. Details on how the linkage-based
shapes are created from input curves can be found Section

4.1. The user can also fix certain linkages as fixed if desired.
Between the various bars, springs are added, these spring are
used for to create stability for the two forms of the structure.
For the purposes of this work, all the bars and springs are
planar while having a certain z-depth, hence the problem
essentially simplifies to 2D. This simplification is done in-
order to create a fabricable structure. Adding springs that lie
on different planes in 3D would lead to self-intersections, and
unfit for fabrication.

Energy-based Stability. Consider two bars connected at a
hinge. Let the upper bar be fixed at the outer end. Next, we
add a spring connecting the outer ends of the two bars. For a
fixed rest-length of the spring, the springy linkage can take a
particular kinematic form as shown in Figure 3 (a). The figure
on the far right shows the plot of change in spring’s rest-length
vs. the potential energy gained by the structure as a result of
change in the spring’s length. When the spring is stretched the
most, form (b), the springy linkage has the largest potential
energy. At this stage (i.e. the point of bifurcation) the system
can morph back into form (a) and with an equal probability
morph into form (c), the second state at that the structure has
the lowest potential energy. This phenomenon is also called
bistability. The point of inflection in form (b) is also called
point of bifurcation or buckling.

First-Order Energy Stability. Similar to the First-order nec-
essary conditions for optimality, [63], first-order stability of
potential energy V(x) is the state of the structure where the
gradient of the energy potential is zero, i.e. ∇xV(x) = 0. At
this point, the rate of change of the energy in any direction
(locally) is zero. Since rate of change of the potential represents
the forces acting on the system, the first-order stability intu-
itively means that forces acting on the system balance out and
total forces acting on the system are zero. For example, in the
case above, at all three forms (a), (b) and (c) the forces balance
out. However, in form (b), the system is not truly stable, as
even a infinitesimal push will lead to the structure morphing
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Figure 3: Left: Springy linkage in various stable forms.
Right: Corresponding plot of spring’s length vs. struc-
ture’s potential energy

into forms (a) or (c). This morph depends on the direction
of the push (force or torque). Hence, first-order stability is a
necessary, but not sufficient condition for establishing stability.

Second-Order Energy Stability. If we want a truly stable
structure, the it has to be a second-order stable structure. Sim-
ilar to the Second-Order Optimality Conditions used in con-
vex optimization, this condition suggests that second-order
derivative of the energy should be greater than zero. For a
n-dimensional structure, this suggests that the Hessian H
of the energy potential should be positive definite. That is,
H(x) = ∇2

xV(x) ⪰ 0 where x ∈ Rn . In the example shown
in Figure 3, while (a) and (c) satisfy the second-order stabil-
ity condition, (b) does not. Thus by optimizing for first and
second-order stability simultaneously, we can create a mor-
phable structures with two stable forms.

To summarize, we start with a kinematically feasible ini-
tial structure (Section 4.1). That is, the linkage structures can
morph into the two desired forms, while they may not achieve
stability or retain these forms. These initial forms can be
chains, or branched, or loopy structures. An example of the
initial design is shown in Figure 4.

In order to model the physical energy of the of linkage struc-
ture and joints, we then introduce in Section 4.2 a rigid-body
framework. Since our problem is modeling static stability, we
derive the system equations, Euler-Lagrange equations [24],
such that the velocity terms are zero, that simplifies our for-
mulation. We also introduce an iterative springs addition al-
gorithm (Algorithm 5.1) to create statically stable structural
forms. In Section 5, the notion of energy shaping for creating
stable structures is detailed. The method guarantees second-
order stability w.r.t energy potential, there by making sure
that the structural forms are stable, and robust against gravity
and user employed forces.

Section 6 discusses the results.We fabricated some examples
for validation, and show complex examples virtually. We also
show examples with real world functional applications, for
example, shape shifting wings. Finally, Section 7 presents the
conclusion and a discussion of the limitations, and opportuni-
ties for future work. To summarize, our computational design
method introduces the notion of second-order static stability
for bistable structures with the following major contributions:

(1) Novel computation design tool for morphable struc-
tures.

(2) Novel optimization formulation for creating bistable
structure forms via energy shaping.

(3) Novel spring assembly process for Hook’s springs.

3 RELATED-WORKS
Creating controllable deformation has been an active area

of research among various interdisciplinary areas. We now
discuss some of the state-of-the-art techniques that exist.

Geometric and kinematic design: As the name suggests, meth-
ods defined in this category use the geometric shape and kine-
matics (motion) to define the numerical simulation of the
design problem. Here, the physical energy of the system is not
modeled, but the shape and motion are defined through com-
plex mathematical functions and optimization. For example, in
linkage design problems, [16] define the movement of the link-
age by a constraint optimization of the connections; however,
they do not model or optimize for the physical energy of the
linkage structure. Some methods in this category aim to bring
virtual characters to the real world. It is now possible to create
3D printable representations of virtual linkage-based charac-
ters with joints [8], and mechanical toys capable of interesting
non-walking motions [9, 59, 68]. Origami inspired geometric
design also falls in this categories, where rigid origami [20, 43],
and pop-design [31] are used to create kinematics of a design.
[38] show the use of strip patterns to assemble 3D models.
Other researchers like [52], create complex structures by creat-
ing user interfaces for interlocking elements by understanding
the geometry of the atomic-elements, while [26] create puzzles
by using planar slits abstracted from 3D shapes. [64] create
3D puzzles by automatically disintegrating 3D models into
interlocking elements.

Physical energy-based design. In these works, the aim is to
optimize the material and shape properties, where cost func-
tions model the efficiency of functionality through physically-
based numerical simulation. Such works use principles from
continuum mechanics (finite element method, boundary ele-
ment methods, etc), fluid mechanics, and physics-based wave
propagation (optics) to model the material deformation and
response and rigid body dynamics to model the energy dy-
namics and ground contacts. Various problems that have been
worked on include:

Appearance-based material distribution for subsurface scat-
tering [19, 25], caustics [47] or reflectivity [36, 61], material
and physical [7] behavior of fabricable shapes. [50] and [41]
optimize shape via material carving to control the moment-
of-inertia property of the rigid shapes, and as a result control
static stability, given that the shape rests on a surface or on
water. [30] optimize for the sound spectrum through voxel
filters that act much like selective damping filters, while [35]
use fluid-dynamics principles to model the uplift and drag for
3D flying designs. Creating controllable deformation has been
an active area of research among various interdisciplinary
areas. [53], [51], [2] and [48] optimize for shape deformation
properties to create articulate characters and shapes. [11] cre-
ated jumping robots with precise upright landing capabilities,
by modeling the dynamics of robots. Finally, [10] abstract
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previous methods by goal, parameter reduction scheme, op-
timization method, and simulation algorithm and provide a
structured way to define computational design problems.

Below we discuss related works in several interdisciplinary
areas including works from computer graphics and animation,
robotics, and continuum mechanics communities.

Virtual Deformation Design: Creating user-controllable de-
formation to create an articulate virtual character has seen
many wonderful research contributions lately. Here, the devel-
oped methods are user-assisted, and semi-automatic for phys-
ically plausible articulation. [34] and the references within
create virtual example-based material deformations, where
the user-provided shape forms are replicated under force ap-
plication. These method are created for physical plausibility,
and cannot be applied for fabrication. Along similar lines, [15]
present a method for creating virtual deformable characters
with toon-like articulation, where the secondary animations
are automatically created. While [65] create deformation mod-
els for elasticity of continuum’s material, and recently [27]
provide a method for controlling the damping behavior for ma-
terials undergoing deformation. Such works are differentiated
from the task of rigging-based (skinning) deformation [6], [1],
where the deformation is based on non-physical deformation
energy.

Extreme Mechanics: Extreme mechanics is a sub-field of
continuummechanics, where large deformations of elastic ma-
terials and shapes are explored for controllable deformation.
[3] create negative Poisson-ratio structures (which expand
when compressed) by using the buckling principle of defor-
mation. [66] take this further and create movements such as
rotation, extension, etc for pneumatically actuated soft-robots.
These methods however, do not provide a design tool for cre-
ating example-based extreme deformations and are limited
to the premeditated deformation types. Greater emphasis has
been laid on understanding the real life properties of these
deformations: for example, [33] use vision-based data-driven
methods to create soft gripper, where system equations are
learnt for predictable deformations. Complete understanding
of extremely soft and complaint deformable materials is still
a research question and hence using soft materials with non-
linear deformation behaviors can prove tedious and unpre-
dictable especially for large deformations. This led us to the
use Hook’s springs for extreme deformation.

Mechanism Design: [17] developed an algorithm for design
of target curve-based linkage character, while we extend these
to create walkabale and statically stable robots. [70] use scissor
linkages for creating shape-shifting characters. They do not
optimize for static stability; however, the optimized linkage-
based shapes can be packed and unpacked without collisions.
[23] similarly create characters connected by elastic wires.
[18] create a simple shape shifter, where the emphasis is on
the design of the mechanism for bistable shapes. [44] create
pneumatically actuated shape shifters. In these works, the
amount of deformation remains small, and the overall forms
of the shape remain the same. [28] use a bistable mechanics

primitive to create programmable logic gates such as AND, OR,
XOR, and show how these simple physical computing logics
can be exploited.

Stability Optimization: Most computational design meth-
ods strive to create controllable shapes. The notation of static
stability is to create an object that is true to its shape un-
der external forces and perturbations. The notion of stability
comes up in many forms over an array of research works.
[12] optimize material properties for creating fabricable sta-
ble structures that have been optimized to hold a single shape
under gravity or preset forces. [22] create wire-mesh designs,
with the notion of a stable shape under gravity; similarly, [69]
and [37] create intricate object designs such that objects can
hold their forms for a single form. Moreover, there is no no-
tion of bistable structures or morphing. [46] create deformable
structures that deform under constant external force loads
(other than gravity) to create different shapes. The deforma-
tions are small and not statically stable without the constant
external force loads.

4 PROBLEM FORMULATION
4.1 Structure from input curves

Input to the method are two 2D curves, such as bézier
curves, these curves define the two forms for the proposed
bistable structure. There are no restriction on convexity or
continuity of curves. Both the curves are spatially normalized
and translate so the center of mass lies at the origin. Each form
is defined usingm rigid bars. For each curve corresponding
m points on the curve are defined which serve as the corre-
spondence points for an end of them bars, with a prescribed
bar length. Alternatively, the form curves are sampled into
m-points which serve as corresponding input bar ends. Let
us call the input form curves as Ci and the linkage structure
forms as Fi for the ith form. It it also assumed that each bar of
Fi is connected to its immediate neighbor by a hinge connec-
tion (Section 4.2). We now define an optimization algorithm
that is used to create form Fi which is as-close-as-possible to
Ci , while keeping the rigid bar assumption.

Rigid Deformation. A natural disposition is to form an de-
formation energy as described by [57]. However, this method
does not guarantee rigid-deformation, but only an approxima-
tion. Hence, we propose the following method.
The input structure form Fi is be deformed to match Ci while
maintaining rigidity and hinge connectivity. That is, the de-
grees of freedom of deformation are the rotations of the bars of
Fi . One way to formulate this rigid-deformation energy is as
follows. Let vFi

j be the jth bar end on Fi and vCi
j correspond-

ing sample on Ci , as shown in Figure 4. We want to minimize
the distance between these two points while making sure the
the neighboring linkages (due to the hinges), {vFi

j+1, v
Fi
j−1} are
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Figure 4: Left: The input curve, Ci . Right: The calculated
planar structural form, Fi (in red) as explained in Sec-
tion 4.1

at a prescribed distance. This can be formulated as the follow-
ing optimization:

arg min
{vFi

j }

1
2
|vFi
j − vCi

j |22 (1)

s .t . |vFi
j − vFi

j−1 |
2
2 = c (2)

|vFi
j − vFi

j+1 |
2
2 = c (3)

∀j ∈ {1, 2, ...,m}

Here | . |22 represents the squared L2-norm. The vertex con-
straints given by equations 2 and 3 can be written in the matrix
view as well. The above is a quadratic cost with quadratic con-
straints and can solved via a quadratic programming solver
with quadratic constraints. We repeat this procedure for both
forms of a Metamorph structure, such that each curve is sam-
pled intom samples, and hence all forms have the same geom-
etry and kinematics.

4.2 Physical Modeling
The numerical simulation of the linkage structures is mod-

eled via rigid-body dynamics equations (Appendix 8.1). Two
types of constraints used for modeling linkage structures are:

(1) Hinge/Pin Joints: Constraints the position and two
orthogonal rotational degrees of freedom at local points
on two rigid-bodies such that the third rotation degree
of freedom becomes the hinge-axis along which the
bodies can rotate.

(2) Fixed Joints: All positional and rotational degrees of
freedom are fixed at a certain point on both bodies. The
bodies are essentially locked and held fixed at prede-
fined local points.

Constraint Jacobian. As derived in the Appendix 8.1 and
[14], let C(q) = 0 be the satisfied, that is, let us assume that
the kinematic constraints of the structure are always satis-
fied. Accumulation of all the constraints is represented by
the constraint Jacobian J matrix for the complete rigid-body
assembly.

Spring model for a springy linkage. Given a rigid-body Bi ,
the world position uwi of local point uli is given by uwi (pi , ai ) =
Ri (ai )uli + pi . Here, qi = [pi ai ]T represent the kinematic
degree of freedom of rigid-body Bi . pi is the translational and
ai is the axis-angle, the rotational degree-of-freedom of the
rigid-body. Then, the spring potential between a local points

Algorithm 1 Iterative static stability optimization

Calculate {Fi } forms from {Ci } using Rigid Deformation ▷
Section 4.1

▷ Let {F ∗
i } be the structure with optimal springs and

static stability

while (converged == false) do
bj = ModalAnalysis({Fi }) ▷ Calculate most deformed

bar (Section 5.7)

AddMinEnergySpring({Fi },bj ) ▷ Add spring on bj to
all forms (Section 5.8)

converged = StaticStabilityOptimization({Fi },
{F ∗

i })
▷ Run static-stability optimization (Section 5.6)

end while
{F ∗

i } = FabricationReform({F ∗
i }) ▷ Spring fabrication

reformulation (Section 5.9)

ul1, u
l
2 on B1,B2 respectively is given by:

V(xkin ) =
1
2
k(l −

√
f (xkin ) )2 (4)

where xkin = {p1, a1, p2, a2} (5)

and f (x) = д(x)T д(x) (6)

д(x) = [R1(a1)ul1 + p1 − R2(a2)ul2 − p2] (7)

Here xdesiдn = {k, l} is the spring stiffness and spring rest-
lengths respectively for a spring. The gradients of these quan-
tities with respect to the kinematic degrees of freedom, used
to calculate the forces and torques are described in-detail in
Appendix 8.2.

5 OPTIMIZATION
5.1 Iterative spring addition

We propose the following iterative algorithm for adding
springs to create the Metamorphs with stable forms. Starting
with the initial forms (without springs), the algorithm auto-
matically calculates where the next spring should be added.
The algorithm stops as soon as static stability is achieved for
both forms of the structure. As a result the algorithm adds an
optimal number of springs to the structure which achieves
bistability. While the details of each step of the algorithm
are described in subsequent sections, Algorithm 1 details the
outline.

5.2 Reduction
Starting from first principles with the force-acceleration

rigid-body dynamics equations along with the added springs
forces gives us the following equation:

JT λ + fext − ∇xkinV (xkin , xdesiдn ) = 0 (8)
s .t . C(q) = 0 (assumed to be true)

Here fext are external forces such as gravity, while
−∇xkinV (xkin , xdesiдn ) represents external forces due to spring
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Figure 5: Two morphable forms Duck (left) and Teddy
(right)

potential V . Here, JT λ is due to principle of virtual-work.
Equation 8 above has three kinds of degrees of freedom, namely,

(1) Lagrange multipliers λ.
(2) xkin which are the position and orientation of rigid

bodies.
(3) xdesiдn which are spring stiffnesses (material parame-

ters) and rest lengths.
In our formulation xkin are held fixed, by solving the problem
in the null-space N JT of the constraint Jacobian, we further
reduces the complexity of the optimization. The updated for-
mulation is shown below:

N JT (JT λ + fext − ∇xkinV (xkin , xdesiдn )) = 0 (9)
N JT (fext − ∇xkinV (xkin , xdesiдn )) = 0 (10)

Equation 9, leads to Equation 10 as N JT J
T = 0. As a result

there is a reduction in the degrees-of-freedom of |λ |, which is
equal to the number of constraints rows added by a hinge/pin
and fixed joints.

5.3 First-Order Stability Condition
For a statically stable system the primary requirement is

first-order stability given by equation 10 above. Thus, we want
to satisfy equation 10 for all forms Fi simultaneous. This
equates to the following energy minimization problem:

arg min
xdesiдn

1
2
|N JT (fext − ∇xkinV (xkin , xdesiдn ))|22

Fi (11)

∀i ∈ {1, 2}

Thus, we want to reduce forces (gradient of the energy) acting
in the two different forms, which is equivalent to first-order
stability for constraint rigid body systems.

5.4 Second-Order Stability Condition
Not only do we want the forces acting on the structure

in the two forms Fi to balance out (equation 10), but also
the structure must guarantee second order stability, such that
under local perturbations, the structure returns to its stable
forms Fi . This is guaranteed when the hessian of the energy
potential is positive-definite as explained in Section 2. The po-
tential of the spring structure is given byV (xkin , xdesiдn ). In-
order to guarantee second-order stability, we want the Hessian
H(xdesiдn ) = ∇2

xkinV (xkin , xdesiдn ) to be positive-definite.
Ones again we reduce the above to by projectingH in the null-
space of the constraint-Jacobian, given byHN J = NT

JT
HN JT .

In-order to guarantee that HN J (xdesiдn ) be positive-definite,
we add non-linear constraints of the form Ej (HN J ) > 0. Here,
Ej (HN J ) is the jth eigenvalue of the null projected energy
hessian. Thus, for ith form we get constraints of the form:

Ej (HN J (xdesiдn ))Fi > 0 (12)

5.5 Minimal Potential Regularizer
We want to guide the optimization towards a lower energy

potentials P as high energy structures will wound too tight
and bound to eventually snap. In case of springs a high poten-
tial configuration is the one in which the springs are stretched
or compressed much beyond the rest lengths. Although the
optimization can balance out the forces and torques caused
by such springs, the springed structure can eventually snap.
To alleviate this, we add the following regularizer to the opti-
mization energy defined by equation 11:

w(V Fi ) (13)

Herew ∈ R1 is the potential regularizer.

5.6 Two forms optimization
With all the ingredients defined in previous sections, we

are now ready to describe the overall optimization strategy
for the two forms optimization simultaneously. By combining
equations 11, 12 and 13, we define the following nonlinear
optimization problem:

arg min
xdesiдn

1
2
|N JT (fext − ∇xkinV (xkin , xdesiдn ))|22

Fi

+w(V (xdesiдn )Fi ) (14)

s.t. Ej (HN J (xdesiдn ))Fi > 0 (15)
lb ≤ xdesiдn ≤ ub (16)

∀j ∈ {1, ...,m}
∀i ∈ {1, 2}

Where there arem eigenvalues per form. Thus, all the eigen-
value constraints are stacked together. All the design variables
also have box-constraints over them which are needed for
modeling physically correct ranges for spring parameters. In
our case, we allow the spring rest-lengths to vary between
50% of the initial rest-length of the spring.w is set to 0.001 for
all examples described in the results section (Section 6).
The above is a nonlinear optimization problem with nonlinear
and box-constraints. We employ the Augmented Lagrangian
method (ALM), [63] to solve the same. A good refresher for
the ALM method is also available in [42]. We use the stan-
dard ALM method and BFGS line search strategy in the inner
loop. The above optimization also requires gradients of the
energy and the Jacobian of the nonlinear constraints. We use
finite-difference method for calculating these quantities.

5.7 New spring addition – modal analysis
Given a structure with a given spring configuration, modal

analysis ([29], [5]) is a tool which can help calculate the de-
formation modes (via Eigenvalue analysis) of the structure.
These modes (deformations) are the most likely changes in
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the structure as a result of excitation. A mode with the small-
est non-positive eigenvalue given by equation 12 is the most
likely to deform. If we were to run a forward simulation for a
given shape with given spring configuration and rigid-body
constraints, we would visually see such a deformation. Based
of this observations we propose the following spring addition
strategy.

Method. For all forms we perform eigenvalue decomposi-
tion to calculate eigenvalues Ej (HN J (xdesiдn ))Fi and corre-
sponding eigenvalues ej (HN J (xdesiдn ))Fi . Then the largest
non-positive eigenvalue/vector pair is selected. Intuitively, the
eigenvector represents the velocities (linear and angular) in
the null-space of the constraint Jacobian. Therefore, we back-
project eFij by the following operation Ej × (N JT eFij ) to cal-

culate the velocities. Here, the unprojected velocity N JT eFij
is multiplied with the corresponding Ej to factor the intensity
of negativity of the selected eigenmode.
Using these velocities the rigid-body system is forward simu-
lated by a single time-step (using Symplectic Euler) to calculate
the positional and rotational deformations of the rigid-bodies.
Finally, we calculate the deformation of the various vertices on
the structure and select the corresponding rigid bodies (those
vertices which deform the most) as candidate bars. These bars
are then used to add a spring according the formulation pro-
posed below.

5.8 Minimal Energy Springs
A spring which has the same rest length on both forms will

not increase the system potential, as a spring at rest-length
does not add extra energy to the system. On form Fi , a point
on one of the bars is given by: p = tp1 + (1 − t)p2, where t
is the linear interpolation operator and {p1,p2} are ends of
the bar. Similarly, candidate point on another bar is given by
pc = spc1 + (1 − s)pc2. A distance metric between the two
points fj ∈ Fi is d1 = |pc −p1 |22 . Then for fj on {Fi }, we want
to minimize the following energy:

arg min
{s,t }

1
2
(di − dk )2 (17)

s.t. 0 ≤ s ≤ 1 (18)
0 ≤ t ≤ 1 (19)
i,k ∈ {1, 2}

Here same {s, t} ∈ R1 are used for both forms. By controlling
the limits s, t we can avoid adding duplicates for contiguous
bars onhi . Thus by adding box-constraints in equations 18 and
19, which are greater than zero and less than one, consistent
springs positions can be calculated. We employ BFGS with
box-constraints to the solve the above optimization.

5.9 Fabrication reformulation – z-depth
arrangement

In the current rigid body formulation and optimization, self-
intersection is not modeled, as a result, the springs are added
in the same plane (assuming that all spring and bars are in the
x −y plane, with z = 0). This method works for simulation and

Figure 6: Higher Complexity: Turtle (Left) and Elephant
(Right) are used to create complex forms for a structure.

optimization, but will lead to sever self-intersections in the
fabricated design. To avoid this situation much like [4, 16], we
add z-depth to each bar and spring such that, all each bar and
spring has an unique z-depth. As a result, self-intersections are
avoided and springs and bars of a structure can move freely
and switch forms.

6 FABRICATION AND RESULTS
This section discusses the various metamorphs we opti-

mized and fabricated. In-order to fabricate the spring model
used for the numerical simulation, we created a spring assem-
bly process. The fabricated springs match the deformation
behavior and potential energy properties used in numerical
simulation. We first discuss the details for the spring assembly
and then present optimized results with virtual and fabricated
validation, timings, and implementation details.

6.1 Fabrication and Calibration
Fabricationmethodology. The basic requirements of a spring

are that the compression and elongation of the spring should
happen in a straight line (in 3D). If we have a simple steel-wire
spring eventually it will bend without internal support. How-
ever, the internal support should not lead to change in spring’s
stiffness or rest length properties. With these requirements in
mind, we create an assembly process shown in Figure 7a to
create a spring. Each spring consist of: a steel wire spring, an
internal support (3D printed support with a hollow cylinder),
and an internal support cylinder made of carbon-fiber. The
cylinders are light weight and have very low coefficient of fric-
tion, as a results can slide very easily into the internal support
and more importantly do not increases or decrease the spring’s
stiffness. Finally, all parts are put together, and the ends of the
spring are super-glued to the ends of the internal supports
as shown in Figure 7a (right). This assembly process leads to
springs which move in a straight line in any 3D orientation.

Spring calibration. Our spring have two properties, stiff-
ness (k) and rest length. In-order to have simple near lin-
ear spring stiffness, we choose McMaster-Carr’s Corrosion-
Resistant Compression Spring Stock with 0.25" OD, 0.216" ID.
This spring has a near linear spring stiffness. We then use the
setup shown in Figure 7b to measure the actual spring stiffness.
As shown, a stand is created to hold the spring vertically in
place, and various weights are rested on top of the spring or
hung from it. Then vernier calipers are used to measure the

7



(a) The diagram on the left shows the parts used to assemble and
create a fabricated spring shown in the figure on the right

(b) (a) Compression, and (b) elongation measurement setup. Vari-
ous weights are either rested on top or hung-on to measure com-
pression and elongation, respectively of the spring.

Figure 7: (a) Spring assembly, and (b) Spring calibration

compression/elongation in the spring for the said weight. We
use Hook’s spring formula F = kX , where X is the amount by
which the free end of the spring gets displaced from its rest
length, F =mд is the force acting on the spring,m is the mass
of the weight and д is the acceleration due to gravity. For each
spring and for each weight, we measure three times for X , and
then use the average X (over all measurements). The correct
k for the spring (for a given weight) is calculated accordingly.
Since our springs are linear, we get the nearly the same k for
each weight for compression and elongation.

6.2 Results
Generic metamorphs. Figure 1 shows an example of struc-

ture that can morph from a duck-like into teddy-like structural
form. This structure consists of four bars that are connected by
hinge connections (purple) and held at end-points (white). The
iterative scheme optimizes for gravitational external forces
so that both forms of the structure are statically stable. The
optimized forms are then fabricated using the methodology
described above and is shown in the corresponding figure with
black bars. We also create a more complex form of the duck
and teddy example as shown in Figure 5, this example shows
that the we can scale-up in complexity for a given Metamorph.
Figure 6 shows our most complex example, where two drasti-
cally different input curves, turtle and elephant are optimized
for bistability. For all the above examples we provide virtual
validation by running a forward rigid body dynamics simula-
tion for both optimized stable forms. While for Figure 1 we
show fabricated validation results. The convergence timings
and complexity for each example are shown in Table 1.

Functional metamorphs. A natural consequence of bistabil-
ity is that the same structure can change form. As a result it
becomes useful for multiple use scenarios. For example, [12]
shows an example of a cloth hanger and a phone holder, where
a single form is optimized for. We show a use case inspired
from recent work in the field of robotics for bistable wings
[32], where a linkage-based structure was used for a change in

the wing orientation. Our method is flexible enough that we
can not only change the orientation of the wing, but also its
form. Figure 8 show the concept of a functional wing that can
take two different forms and change the amount of air-drag
acting on the wing. Such a bistable wing is useful in different
scenarios such as, plane landing, perching, or cruising. By
combining our approach with [60] we can create two wing
designs for a single plane!

Posable metamorphs. Creating virtual character with de-
formable articulate forms is now possible [34]. There has been
a push to achieve the same for fabriable characters such as [54].
In such works although deformations are quite pronounced,
the deformed forms are not stable in the second-order sense
(Section 2) and need constant external forces to hold the forms.

We create a example-based poseable hand (Figure 9) that
does not have these limitations. This can not only be used as
a gripper, but also with puppets and paper mache characters.
The example shown consists of two finger and a thumb, where
each finger is designed to have different stable forms. Such a
setup can also be used for holding non-convex shapes, where
the desired grip (finger forms) are input to the optimization
method.

Implementation. The rigid body, spring energy and opti-
mization frameworks were written in C++ and run on Intel
Quadcore CPU, on a single thread. Alglib a C++ library was
used for Augmented Lagrangaian Method and BFGS. [49]’s
method based on QR decomposition was used for Eigen value
decomposition. Matlab’s syms package was used for calculat-
ing and testing against analytically calculated gradient and
Jacobian of spring’s potential energy.

Table 1 shows the complexity – number of bars, and springs,
and optimization convergence timings for each example dis-
cussed above. While the fabricated example shown in Figure
1 took about a day to fabricate and assemble.
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Figure 8: Bistable Wing: Concept plane design with two stable wing forms, and the corresponding spring based struc-
tural forms

Table 1: Space and time complexity of various examples

Metamorph No. Bars No. Springs Timing (mins.)
Duck teddy, low-res. 6 4 0.08
Duck teddy, high-res. 14 21 13.16
Turtle elephant 24 47 21.15
Plane wings 9 14 0.48
Hand finger 4 6 0.02

7 LIMITATIONS AND FUTUREWORK
We propose a novel computational design tool for creating

bistable planar structures with second-order guarantees on the
stability of each form. The iterative optimization uses modal
analysis to first choose a location to add an internal support
spring, then a nonlinear optimization is used to optimize for
first and second-order energy stability. Such structures can
have drastically different forms. While the current method is
promising, there are limitations of the method that can lead
to future research.
Because the input forms (curves) for a structure can be non-
convex, newly added internal support springs may not stay
inside the structure during the optimization. Because the al-
gorithm tries to find a minimal energy springs (Section 5.8),
it can result in springs remaining out of the convex form. In
Figure 5, the springs near the beak of the duck remain outside
the form. Another limitation of the method is that it solves
for planar structures only. Although, switching to 3D springs
would be easy we limit ourselves to planar structures due to
fabrication constraint. That is, each spring must be free to
move in a z-plane and avoid self-intersections. Note that this
also true for all general linkages. We experimented with ball-
and-socket joints, but again due to self-intersections chose to
use planar hinge joints only.
As shown in Section 6, we add about n springs for a n degrees-
of-freedom structural forms. Each spring is about 0.5 cms thick
when fabricated, as a result if one were to fabricate such a
structure, we’d go 0.5n cms deep along the z-axis. This can lead
to extra torques/forces along the z-axis and is aesthetically dis-
pleasing. Hence, newer ways of fabrication are needed that can
lead to thinner internal support springs with reduced z-depth.
And, facilitate with building complex bistable structures.

8 APPENDIX
8.1 Rigid Body Dynamics - Physical

Simulation
Each automata is modeled as a rigid multi-body system.

Since the mechanisms we optimize typically exhibit numerous
kinematic loops, we opt for a maximal coordinates dynamics
formulation. Therefore, the state of each rigid body i consists
of position and orientation degrees of freedom qi , and their
linear and angular velocity derivatives Ûqi . The vectors q and
Ûq concatenate the states of all rigid bodies in the system.
We model joints, virtual motors, and frictional contacts

using a set of constraints of the form C(q) = 0, and their
time derivatives ÛC(q) = ÛCd [13]. According to the principle
of virtual work, the constraints give rise to internal forces
fc = JT λ, where J denotes the Jacobian ∂C

∂q , and λ are Lagrange
multipliers that intuitively correspond to the magnitudes of
the generalized forces needed to satisfy each constraint. To
integrate the motion of the mechanisms forward in time, we
must first compute the constraint forces fc . Without loss of
generality, we can express their magnitudes implicitly as:

λ = −kpC(qt+1) − kd ( ÛC(qt+1) − ÛCd ) (20)

where subscript t indicates the time instance, and the coeffi-
cientskp andkd allow us to set the relative stiffness of different
types of constraints. A Taylor-series approximation of the po-
sition constraints allows us to express C(qt+1) as:

C(qt + h Ûqt+1) Û=C(qt ) + hJT Ûqt+1 (21)

where h denotes the time step. Using the chain rule, the time-
derivative of the constraints can be written as ÛC(qt+1) =
JT Ûqt+1. This allows us to approximate Eq. 20 as:

JÛqt+1 = −aλ − akpC(qt ) + kda ÛCd (22)

where a = 1
hkp+kd

. Using the equations of motion of the
multi-body system, the generalized velocities Ûqt+1 are given
by:

Ûqt+1 = Ûqt + hM−1(Fext + JT λ) (23)

where M denotes the system’s mass matrix, and the term Fext
stores the gravitational forces acting on the system. Multiply-
ing Eq. 23 by J, and combining the result with Eq. 22, results
in the following system of equations that is linear in λ:

Aλ = b (24)
9



Figure 9: Posable Hand: Selected key-frames of charac-
ter’s hand are used to create the hand model. Different
fingers have different stable forms. This can be used for
stop-motion character animation and as a gripper.

where A = hJM−1JT + aI and b = kda ÛCd − akpC(qt ) − JÛqt −
hJM−1Fext . Because the constraint forces arising from fric-
tional contacts are subject to inequality constraints, as dis-
cussed shortly, rather than solving Eq. 24 directly, we follow
the work of Smith et al. [55] and compute λ by solving a qua-
dratic program:

min
λ

1
2
(Aλ − b)T (Aλ − b)s .t .Dλ ≥ 0 (25)

where the matrix D stores all the inequality constraints that
need to be enforced. Once the constraint forces are computed,
we use Eq. 23 to compute the generalized velocity term Ûqt+1,
and the positional degrees of freedom qt+1 are integrated
forward in time as described by Witkin [62].

The derivation we provide here is related to methods im-
plemented by some modern rigid body engines, such as the
Open Dynamics Engine [56]. However, rather than being re-
stricted to working with ad-hoc parameters that hold little
physical meaning, such as the Constraint Force Mixing term,
Error Reduction Parameter and the Parameter Fudge Factor,
we control the behavior of our simulations by manipulating
the stiffness and damping parameters, kp and kd , which are
set independently for each constraint type (as detailed below).
In the limit, as kp goes to infinity and kd to 0 (i.e., infinitely
stiff spring), this formulation remains well-defined, and corre-
sponds to solving the constraints exactly. However, from the
point of view of numerical stability, it is often better to treat
the constraints as stiff implicit penalty terms.

Pin joints. that allow a pair of components to rotate rela-
tive to each other about a pre-specified axis are implemented
using two sets of constraints. First, we ensure that the coordi-
nates of the pin coincide in world space using a vector-valued
constraint of the form C(q) = x(qi (t), pi ) − x(qj (t), pj ). Here,
x(qa , p) = ta + Rap corresponds to the world coordinates of
the point p, ta ∈ R3 is defined as the position of center of
mass of rigid body a, and Ra corresponds to its orientation.
The location of the pin joint is defined by specifying the local
coordinates of the pin, pi and pj , in the coordinate frames of
the two rigid bodies i and j that are connected to each other.
To ensure that the two rigid bodies rotate relative to each
other only about the pre-scribed axis, we use an additional
vector-valued constraint, C(q) = Rini − Rjnj , where ni and
nj represent the coordinates of the rotation axis in the local
coordinates of the two rigid bodies, and are set to (0, 0, 1)T

for all our experiments. The kp and kd coefficients for the pin
joint constraints are set to 108 and 104, respectively.

Motor constraints. are used to mimic the effect of physical
actuators. For this purpose, we prescribe the time-varying,
desired relative angle between a select set of rigid body pairs.
In particular, we assume that each limb of the mechanical toys
has an input crank that operates relative to the main body. As
we already employ pin joint constraints between these pairs
of rigid bodies, the motor constraints directly measure the
difference between their relative orientation and the target
motor angle. The target motor angles are specified by phase
profile functions f (α), as described by Coros et al. [16]. The
desired value for the time derivative of the constraint, ÛCd , is
set to Ûf (α), and it intuitively corresponds to the target velocity
of the virtual motor. The kp and kd coefficients for the motor
constraints are set to 108 and 105, respectively.

Frictional contacts. move our automata around their simu-
lated environments, and friction and contact forces must be
bounded to generate physically-plausible results. Each contact
introduces three constraints. Let n denote the contact normal.
The first constraint specifies that the penetration distance, mea-
sured along the normal, should be 0:C(qa ) = nT (x(qa , p)−xp ).
Here, pa corresponds to the coordinates of the contact point in
the frame of rigid body a, and xp is the projection of the con-
tact point onto the environment. For this constraint, kp = 108,
kd = 104, and, importantly, the constraint force magnitude is
constrained to be positive: λn ≥ 0.

To model friction, we employ a pyramid approximation to
the friction cone, as is standard in real-time simulation systems.
More precisely, we let t1 and t2 be two orthogonal vectors
that are tangent to the contact plane, and define constraints
similar to the one for the normal direction, but acting along
the tangent vectors. However, friction forces should only act
to reduce the relative velocity at the contact point to 0. For
this reason, we set kp to 0 for these constraints, while kd
is set to 104. To ensure that tangential forces remain within
the friction pyramid, we add inequality constraints of the
form −µλn ≤ λt ≤ µλn for the magnitude of the tangential
forces acting along t1 and t2, where µ represents the friction
coefficient.

8.2 Axis-Angle representation
A circular movement of angle θ around a specified axis v̄

in R3 is given by axis-angle:

v = θ v̄ (26)
θ = | |v| | (27)

v̄ =
v

| |v| | (28)

The rotation-matrix (from the axis-angle) is given by Euler-
Rodrigues’s exponential coordinates ([40], Page 29):

R = I + sin(θ )[v̄]× + (1 − cos(θ ))[v̄]2× (29)
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v̄ is a unit-vector, so,

[v̄]2× = v̄v̄T − I (30)

R = cos(θ ) I + sin(θ )[v̄]× + (1 − cos(θ ))v̄v̄T (31)

Also, [a]× is a skew-symmetric matrix:

[a]× =
©«

0 −a3 a2
a3 0 −a1
−a2 a1 0

ª®¬ ∈ Skew3 (32)

Axis-Angle — Gradient. Let u′ = R(v) u, then we need to
caluclate ∂u′

∂vi
. As u is independent of v. We get the following

(derivation in [21], Appendix E):

∂u′

∂vi
=

∂R(v)
∂vi

u (33)

∂R
∂vi

= cos(θ )v̄i [v̄]× + sin(θ )v̄i [v̄]2× +
sin(θ )
θ

[ei − v̄i v̄]×+

1 − cos(θ )
θ

(ei v̄T − v̄eTi − 2v̄i v̄v̄T ) (34)

Note that, ∂u′
∂vi

is a [3×1] column vector for v = {v1,v2,v3}T .
More compact gradient is given by, for example, [21].

8.3 Spring — Potential, Gradients and
Hessians

Given a rigid-bodies Bi , the world position pi of local point
ui is given by:

pi (ci , vi ) = Ri (vi )ui + ci (35)

Then, the spring potential between local points u1, u2 on
B1,B2 respectively is given by:

V(x) = 1
2
k(l −

√
f (x) )2 (36)

x = {c1, v1, c2, v2} (37)

f (x) = д(x)T д(x) (38)
д(x) = [R1(v1)u1 + c1 − R2(v2)u2 − c2] (39)

For vector-spaces, we have the following property:

d
dx

(r (x) · r (x)) = r ′ (x) · r (x) + r (x) · r ′ (x) (40)

≡ 2 r (x) · r ′ (x) (41)

Spring — Gradient.

∂V(x)
∂xi

= −k
2
(l −

√
f (x) )√

f (x)
∂ f (x)
∂xi

(42)

Using 38 and 41, for j = {1, 2, 3}

∂V(x)
∂xi

=
k

2

(
1 − l√

д(x)T д(x)

)
∂д(x)T д(x)
∂xi

(43)

≡ k

(
1 − l√

д(x)T д(x)

) (
д(x)T ∂д(x)

∂xi

)
(44)

∂V(x)
∂c1j

= k

(
1 − l√

д(x)T д(x)

)
(д(x)T ej ) (45)

∂V(x)
∂c2j

= −k
(
1 − l√

д(x)T д(x)

)
(д(x)T ej ) (46)

Using 34,

∂V(x)
∂v1j

= k

(
1 − l√

д(x)T д(x)

) (
д(x)T ∂R1(v1)u1

∂v1j

)
(47)

∂V(x)
∂v2j

= −k
(
1 − l√

д(x)T д(x)

) (
д(x)T ∂R2(v2)u2

∂v2j

)
(48)

Spring — Hessian. Let h(x)i = д(x)T ∂ д(x)
∂xi

. The hessian is
a 12 × 12 square-matrix, with {x}12×1. Using equation 44, we
get:

∂2

∂x j

V(x)
∂xi

= k
∂

∂x j

((
1 − l√

д(x)T д(x)

) (
д(x)T ∂д(x)

∂xi

))
(49)

= k

(
∂

∂x j

(
д(x)T ∂д(x)

∂xi

)
− l
∂

∂x j

(
д(x)T ∂ д(x)

∂xi√
д(x)T д(x)

))
(50)

= k

(
∂

∂x j
h(x)i − l

∂

∂x j

h(x)i√
д(x)Tд(x)

)
(51)

Using 41,

∂

∂x j
h(x)i =

∂д(x)
∂x j

T ∂д(x)
∂xi

+ д(x)T ∂
2д(x)
∂x j xi

(52)

Using chain-rule:

∂

∂x j

h(x)i√
д(x)Tд(x)

= −
h(x)jh(x)i

2(д(x)Tд(x))
3
2
+

∂
∂x j

h(x)i√
д(x)Tд(x)

(53)

Now, we need to define the ∂2д(x)
∂x j xi

term in equation 52, rest
are defined below:

∂д(x)
∂c1i

= ei (54)

∂д(x)
∂v1i

=
∂R1(v1)
∂v1i

u1 (55)

∂д(x)
∂c2i

= −ei (56)

∂д(x)
∂v2i

= − ∂R2(v2)
∂v2i

u2 (57)
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With l ,k = {1, 2}, all terms of the form ∂2д(x)
∂cl jcki

, ∂2д(x)
∂vl jcki

, and
∂2д(x)
∂vl jvki

, l , k are 0. We now need to define the following:

∂2д(x)
∂v1jv1i

=
∂

∂v1j

∂R1(v1)
∂v1i

u1 (58)

∂2д(x)
∂v2jv2i

=
∂

∂v2j

∂R2(v2)
∂v2i

u2 (59)
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