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1. Dataset visualization
Our relfectance field is learned from a light-stage dataset

containing 350 identities, captured from 8 camera viewpoints
and illuminated by 150 point light sources one at a time (see
Fig. 1). The dataset was originally proposed in Weynrich et
al. [5], with just 149 identities. The dataset we use, however,
contains 201 additional identities. Throughout our work we
use 300 identities for training, 10 for validation and the rest
for test.

2. Network details
Please refer to Tables.1 and 2 for detailed architectures of

the geometry and reflectance networks.

3. Video results
We provide a compiled video in the project page1 consist-

ing of following results.

3.1. Relighting with densely sampled OLATs

Even though our reflectance model is trained using only
150 point light sources, we can sample any arbitrary number
of OLATs using the light direction input. In the video, we
sample results for 1024 point light sources. Here, we move
the light source from top to bottom in a spiral manner. We
show result for 18 identities shot in-the-wild.

3.2. View dependent effects

Please watch the video, which demonstrates view depen-
dent effects. Here, we keep the light source fixed and only
change the camera pose. Note how the specular component
around the nose region changes as the camera moves. Results
also show changes in sub surface component as the camera
pose changes (e.g. change in soft shadows).

1project page: http://gvv.mpi- inf.mpg.de/projects/
FaceReflectanceFields/

3.3. Relighting with environment maps

Please watch the video, where we relight several identities
with environment map. Here we also change the viewing
angle, which shows the view dependent capablities of our
method. We also relight dynamic video of the faces, which
shows the generalization capablity of our method for different
expressions.

4. Ablative Study: VGG-based imageNet and
light feature Loss

We assess the impact of the feature losses used in our
reflectance learning. One of the feature losses (!I) is based
on a VGG network trained on ImageNet [1]. The other
feature loss LL is based on a VGG network trained to predict
lighting direction of OLATs [2]. We evaluate the OLAT
reconstructions error using Si-MSE on the same test dataset
used in Table. 1 in the main paper. We report results for
renderings with same and different input head pose. Tab. 2
shows that the best performance is obtained when both losses
are used. This is especially case when rendering with a head
pose different from the input.

5. OLAT comparison:
We project the OLAT lights to the spherical harmonic

space and perform a comparison of relighting results. Fig. 2
shows that our method can capture physically correct self-
shadows and other global effects to synthesize photo realistic
image.

6. High-Fidelity Facial Reflectance and Geom-
etry Inference From an Unconstrained Im-
age

The approach of Yamaguchi et al. [6] regresses diffuse
and specular albedo maps of a face from an image. The
ground truth during training is obtained using a light stage
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Figure 1. Our reflectance field is learned from a light stage dataset containing 350 identities (a) recorded from 8 different camera viewpoints
(b) and illuminated by 150 point light sources (c).
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Layers Output
Image (512,512,3) MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 11x11x96, stride 4) + ReLU unnamed
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 5x5x256, stride 1) + ReLU unnamed
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 3x3x384, stride 1) + ReLU lowFeatures
↑ Conv2D (kernel 3x3x384, stride 2) + ReLU unnamed
↑ Conv2D (kernel 3x3x256, stride 2) + ReLU mediumFeatures
mediumFeatures Conv2D (kernel 3x3x384, stride 1) + ReLU unnamed
↑ Conv2D (kernel 3x3x256, stride 1) + ReLU unnamed
↑ Fully Connected (kernel x1000) + ReLU unnamed
↑ Fully Connected (kernel x1000) + ReLU unnamed
↑ Fully Connected (kernel x(64+64)) shapeParam
lowFeatures Conv2D (kernel 3x3x384, stride 1) + ReLU intermediate
lowFeatures, intermediate Concat unnamed
↑ Conv2D (kernel 3x3x768, stride 1) + ReLU unnamed
↑ Conv2D (kernel 3x3x384, stride 1) + ReLU unnamed
↑ Conv2D (kernel 3x3x256, stride 1) + ReLU unnamed
↑ MaxPool(kernel 3x3, stride 2) unnamed
↑ Fully Connected (kernel x2048) + ReLU unnamed
↑ Fully Connected (kernel x(6+64) ) pose, expressionParam

Table 1. Geometry network details.

Figure 2. We use spherical harmonic approximation of point light
source to synthesize comparitive method. Observe that our method
captures physically correct shadows and other global illumination
effects photo realistically.

dataset. Since only the diffuse and specular components
are modeled, other higher view-dependent effects is ignored.
Since this approach cannot predict the environment light from
the image, it is difficult to compare directly using a reference
image for lighting. Each approach uses a different coordinate
system for representing meshes and the light, making it
difficult to render the results of both methods under the same
lighting. For a qualitative comparison, we manually change
the lights in the scene in order to get visually similar results.

As can be see in Fig. 3, our results are more natural with
better sub-surface scattering and soft shadows (nose, eyes,
chin). The visualization requires an expensive rendering
step which computes the interactions between the lighting
and albedo. Our results, on the other hand, already take the
lighting into account. This offers several advantages. First,
our rendering is much faster than Yamaguchi et al. Second,
our final rendering is differentiable, which can be used as a
component in any other learning task. The rendering step is
not differentiable for Yamaguchi et al.

7. Additional comparisons
We compare to the single image relighting approach

of Zhou et al. [8]. Since this approach uses a spherical
approximation to represent the lights, our relighting results
are more natural and reflect the target lighting better, see
Fig 4. In addition, image relighting approaches do not model
view-dependent effects and thus, cannot change the head
pose.

We also compare the quality of our geometry reconstruc-
tions with MoFA [4] in Tab. 3. MoFA was trained on our
training dataset. The errors are computed on the BU-3DFE
dataset [7]. We use the same metric as used in Tewari et
al. [3], where a dense correspondence map between the re-

3



Layers Output
Src Texture(512x512x3), Src Normal (512x512x3) Concat unnamed
↑ Conv2D (kernel 3x3x32, stride 1) + ReLU skip1
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 3x3x64, stride 1) + ReLU skip2
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 3x3x64, stride 1) + ReLU skip3
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 3x3x128, stride 1) + ReLU skip4
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 3x3x128, stride 1) + ReLU skip5
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 3x3x256, stride 1) + ReLU skip6
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 3x3x256, stride 1) + ReLU skip7
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑ Conv2D (kernel 3x3x512, stride 1) + ReLU skip8
↑ MaxPool (kernel 3x3, stride 2) unnamed
↑, target light (1x3) Concat unnamed
↑ Conv2D (kernel 3x3x512, stride 1) + ReLU unnamed
↑ UpSampling (kernel 2x2) unnamed
↑, skip8 Concat unnamed
↑ Conv2D (kernel 3x3x256, stride 1) + ReLU unnamed
↑ UpSampling (kernel 2x2) unnamed
↑, skip7 Concat unnamed
↑ Conv2D (kernel 3x3x256, stride 1) + ReLU unnamed
↑ UpSampling (kernel 2x2) unnamed
↑, skip6 Concat unnamed
↑ Conv2D (kernel 3x3x128, stride 1) + ReLU unnamed
↑ UpSampling (kernel 2x2) unnamed
↑, skip5 Concat unnamed
↑ Conv2D (kernel 3x3x128, stride 1) + ReLU unnamed
↑ UpSampling (kernel 2x2) unnamed
↑, skip4 Concat unnamed
↑ Conv2D (kernel 3x3x64, stride 1) + ReLU unnamed
↑ UpSampling (kernel 2x2) unnamed
↑, skip3 Concat unnamed
↑ Conv2D (kernel 3x3x64, stride 1) + ReLU unnamed
↑ UpSampling (kernel 2x2) unnamed
↑, skip2 Concat unnamed
↑ Conv2D (kernel 3x3x32, stride 1) + ReLU unnamed
↑ UpSampling (kernel 2x2) unnamed
↑, skip1 Concat unnamed
↑, Target Normal (512x512x3) Concat unnamed
↑ Conv2D (kernel 3x3x32, stride 1) + ReLU unnamed
↑ Conv2D (kernel 3x3x32, stride 1) + ReLU unnamed
↑ Conv2D (kernel 3x3x32, stride 1) + ReLU unnamed
↑ Conv2D (kernel 3x3x32, stride 1) + ReLU unnamed
↑ Conv2D (kernel 3x3x32, stride 1) + ReLU unnamed
↑ Conv2D (kernel 3x3x3, stride 1) + ReLU Target Texture

Table 2. Reflectance network details.
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W/o LI, W/o LL W/o LI, W LL W LI, W/o LL W LI, W LL
Same pose (Si-MSE) 0.0012 (f=0.0009) 0.0008 (f=0.0006) 0.0007 (f=0.0006) 0.0007 (f=0.0006)
Different pose (Si-MSE) 0.0013 (f=0.0011) 0.0009 (f=0.0010) 0.0009 (f=0.0009) 0.0008 (f=0.0009)

Figure 3. Comparison of our approach with the method of Yamaguchi et al. [6]. We obtain more natural results, since our reflectance is not
limited to just the diffuse and specular components. Note that the results have been rendered under similar lights in order to be visually
similar.

MoFA Ours
3D error 1.93(f=0.39) 2.01(f=0.38)

Table 3. Geometric reconstruction error (in mm) on the BU-3DFE
dataset [7].

constructed and ground-truth mesh templates is precomputed
for evaluation. The translation, scale, and orientation of the
reconstructed and ground-truth meshes are aligned before
computing the errors. While MoFA achieves slightly better
numbers, its reflectance quality is limited as demonstrated in
the main paper.
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Figure 4. Comparison of our approach with the single image relighting method of Zhou et al. [8]. Our relighting results better capture the
light in the reference image. Zhou et al. do not capture view-dependent effects and can thus not change the head pose.
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