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Abstract

Deep learning algorithms for connectomics rely upon localized classification, rather than
overall morphology. This leads to a high incidence of erroneously merged objects. Humans,
by contrast, can easily detect such errors by acquiring intuition for the correct morphology
of objects. Biological neurons have complicated and variable shapes, which are challenging
to learn, and merge errors take a multitude of different forms. We present an algorithm,
MergeNet, that shows 3D ConvNets can, in fact, detect merge errors from high-level neu-
ronal morphology. MergeNet follows unsupervised training and operates across datasets. We
demonstrate the performance of MergeNet both on a variety of connectomics data and on a
dataset created from merged MNIST images.

1 Introduction

The neural network of the brain remains a mystery, even as engineers have succeeded in building
artificial neural networks that can solve a wide variety of problems. Understanding the brain
at a deeper level could significantly impact both biology and artificial intelligence [3, 8, 19, 23,
35]. Perhaps appropriately, artificial neural networks are now being used to map biological neural
networks. However, humans still outperform computer vision algorithms in segmenting brain tissue.
Deep learning has not yet attained the intuition that allows humans to recognize and trace the fine,
intermingled branches of neurons.

The field of connectomics aims to reconstruct three-dimensional networks of biological neurons
from high-resolution microscope images. Automated segmentation is a necessity due to the quan-
tities of data involved. In one recent study [9], the brain of a larval zebrafish was annotated by
hand, requiring more than a year of human labor. It is estimated that mapping a single human
brain would require a zettabyte (one billion terabytes) of image data [17], clearly more than can be
manually segmented.

State-of-the-art algorithms apply a convolutional neural network (ConvNet) to predict, for each
voxel of an image, whether it is on the boundary (cell membrane) of a neuron. The predicted mem-
branes are then filled in by subsequent algorithms [10]. Such methods are prone both to split errors,
in which true objects are subdivided, and to merge errors, in which objects are fused together. The
latter pose a particular challenge. Neurons are highly variable, unpredictably sprouting thousands
of branches, so their correct shapes cannot be catalogued. Erroneously merged neurons are obvious
to trained humans because they simply don’t look right, but it has hitherto been impossible to
make such determinations automatically.

∗Correspondence should be addressed to: drolnick@mit.edu.

1

ar
X

iv
:1

70
5.

10
88

2v
1 

 [
cs

.C
V

] 
 3

0 
M

ay
 2

01
7



Figure 1: A probability map localizing merge
errors, as predicted by MergeNet, for an ob-
ject within the ECS dataset. Orange indicates
a high probability of merge error, blue the ab-
sence of error. Location (A) illustrates a merge
between two neurons running in parallel, (B)
a merge between three neurons simultaneously
(the two parallel neurons, plus a third perpen-
dicular to them), and (C) a merge between a
large neuron segment and a small branch from
another neuron. MergeNet is able to learn that
all of these diverse morphologies (and others not
illustrated in this example) represent merge er-
rors, but that locations such as (D) and (E) are
normally occurring branch points within a sin-
gle neuron.

Figure 2: A single, relatively simple merge error
detected and localized by MergeNet. This ob-
ject, within the Kasthuri dataset [12], occurred
within the training data of the algorithm, but
was not labeled as a merge error. MergeNet
was nonetheless able to correct the label. This
capability allows MergeNet to be trained on an
uncertain segmentation, then used to correct er-
rors within the same segmentation, without re-
quiring any manual annotation.

We introduce a deep learning approach for detecting merge errors that leverages the morpho-
logical intuition of human annotators. Instead of relying upon voxelwise membrane predictions
or microscope images, we zoom out and capture as much context as possible. Using only three-
dimensional binary masks, our algorithm is able to learn to distinguish the shapes of plausible
neurons from those that have been erroneously fused together.

We test our network, MergeNet, both on connectomics datasets and on an illustrative dataset
derived from MNIST [15]. The key contributions of this approach include:

• Localization of merge errors. MergeNet is able to detect merge errors with high accuracy
within a three-dimensional segmentation and to pinpoint their locations for correction (see
Figures 1 and 2).

• Unsupervised training. The algorithm can be trained using any reasonably accurate seg-
mentation, without the need for any additional annotation. It is even able to correct errors
within its own training data.

• Generalizability and scalability across datasets. MergeNet can be applied irrespective
of the segmentation algorithm or imaging method. It can be trained on one dataset and run
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on another with high performance. By downsampling volumetric data, our ConvNet is able
to process three million voxels a second, faster than most membrane prediction systems.

2 Related work

There have been numerous recent advances in using neural networks to recognize general three-
dimensional objects. Methods include taking 2D projections of the input [32], combined 2D-3D
approaches [6, 16], and purely 3D networks [20, 36]. Accelerated implementation techniques for 3D
networks have been introduced by Budden, et al. [4] and Zlateski, Lee, and Seung [38].

Within the field of connectomics, Maitin-Shepard et al. [18] describe CELIS, a neural network
approach for optimizing local features of a segmented image. Januszewski et al. [11] and Meirovitch
et al. [22] present approaches for directly segmenting individual neurons from microscope images,
without recourse to membrane prediction and agglomeration algorithms. Deep learning techniques
have likewise been used to detect synapses between neurons [29, 31] and to localize voltage mea-
surements in neural circuits [2] (progress towards a functional connectome). New forms of data are
also being leveraged for connectomics [27, 34], thanks to advances in biochemical engineering.

Many authors cite the frequent problems posed by merge errors (see e.g. [26]); however, almost
no approaches have been proposed for detecting them automatically. Meirovitch et al. [22] suggest a
hard-coded heuristic to find “X-junctions”, one variety of merge error, by analyzing graph theoretical
representations of neurons as skeletons (see also [37]). Recent work including [13, 24] has considered
the problem of deep learning on graphs, and Farhoodi, Ramkumar, and Kording [7] use Generative
Adversarial Networks (GANs) to generate neuron skeletons. However, such methods have not to
date been brought to bear on connectomic reconstruction of neural circuits.

3 Methods

Our algorithm, MergeNet, operates on an image segmentation to correct errors within it. Given an
object within the proposed segmentation, MergeNet determines whether points chosen within the
object are the location of erroneous merges. If no such points exist, then the object is determined
to be free from merge errors.

Input and architecture.
The input to our network is a three-dimensional window of the object in question, representing a
51× 51× 51 section of the object, centered at the chosen point. (These dimensions are chosen as a
tradeoff between enhancing speed and capturing more information, as we discuss further in sections
§4 and 5.) Crucially, the window is given as a binary mask : that is, each voxel is 0 or 1 depending on
whether it is assigned to the object. MergeNet is not given data from the original image, inducing
the network to learn general morphological features present in the binary mask. The network
follows a simple convolutional architecture, containing six convolutional layers with rectified linear
unit (ReLU) activation, and three max-pooling layers, followed by a densely connected layer and
softmax output. The desired output is a 1-hot vector for the two classes “merge” and “no merge”,
and is trained with cross-entropy loss.

2D MergeNet.
We also constructed a simpler 2D version of MergeNet to illustrate the identification of merge errors
within two-dimensional images. In this case, the input to the network is a square binary mask, which
passes through four convolutional layers and two max-pooling layers. This network was trained to
recognize merges between binarized digits from the MNIST dataset [15]. Random digits were drawn
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from the training dataset and chained together, with merge errors given by pixels at the points of
contact between neighboring digits. Testing was performed on similar merges created from the
testing dataset. The size of the input window to the network was varied to compare accuracy
across a variety of contextual scales.

Downsampling.
To apply MergeNet to connectomics data, we begin by downsampling all objects. Segmentations of
neural data are typically performed at very high resolution, approximately 5 nm. The finest mor-
phological details of neurons, however, are on the order of 100 nm. Commonly, data is anisotropic,
with resolution in the z direction being significantly lower than that in x and y. We tested Mer-
geNet with downsampling ratios of 10 × 10 × 2 and 25 × 25 × 5 to compensate for anisotropy.
Downsampling an object is performed by a max-pooling procedure. That is, every voxel within the
downsampled image represents the intersection of the object with a corresponding subvolume of the
original image with dimensions e.g. 25× 25× 5.

Training.
The network was trained on artificially induced merge errors between objects within segmentations
of neural tissue. Merges consisted of identifying immediately adjacent objects and designating
points of overlap as the locations of merge errors. Negative examples consisted of windows centered
at random points of objects within the segmentation. Artificial merge errors are used owing to
the impracticality of manually annotating data over large enough volumes to determine sufficient
merge errors for training. As we demonstrate, such training suffices for effective detection of real
merge errors and has numerous other advantages (detailed in section §5). Training was performed
on various segmentations of the Kasthuri dataset [12], and the algorithm was evaluated both on
this dataset and on segmented objects of the ECS dataset, a 20× 20× 20 micron cube of rat cortex
data to which we were given access.

Output.
To run a trained instance of MergeNet on objects within a segmentation, it is not necessary to apply
the network to every voxel since the predictions at nearby points may be interpolated. Sample points
are therefore taken within each downsampled object, and MergeNet is run on windows centered at
these points. The real-valued predictions at sample points are then interpolated over the entire
object to give a heatmap of probabilities for merge errors. As the distribution of training examples
is balanced between positive and negative examples, which is not true when the network is applied
in practice, the output must be normalized or thresholded after the softmax layer. We find it
effective to classify as a merge error any voxel at which the prediction exceeds 0.9.

4 Results

We first consider the illustrative example of the merged MNIST dataset. After training on five
million examples within this dataset, we obtained a maximum pixelwise accuracy of 96.8 percent
on a test set constructed from held out digits and equally distributed between positive and negative
examples. This corresponds to almost perfect identification of individual merge error regions, as
shown in Figure 3. (Ambiguous pixels on the edges of merge error regions were the most likely
pixels to be misclassified.)

Accuracy increases with morphological information.
In Figure 4, we show the dependence of accuracy on the window size used. Intuitively, a larger
window gives the network more morphological context to work from, and plateaus in this case at
approximately the dimensions of a pair of fused MNIST digits (40-50 pixels across), which represents
the maximum scale at which morphology is useful to the network. Figure 3 provides a qualitative
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Figure 3: Predictions of MergeNet on merged MNIST digits, shown on a sample of the test set.
The top image shows predictions of the network with 12×12 input windows, with predicted merges
shown in yellow. The middle image shows predictions with 24× 24 input windows. The final image
shows the actual merges, in red. Note that both networks are quite accurate, but that for 12× 12
input, the algorithm makes several erroneous predictions of merge errors (shown with blue arrows),
which are not made for 24× 24 input. This illustrates how greater morphological context leads to
qualitatively better predictions. A quantitative assessment is shown in Figure 4.

comparison of performance between a smaller and a larger window size. The smaller window
size erroneously predicts merges within digits, while the large window size allows the network to
recognize the shapes of these digits and identify only merge errors between digits.

There is, of course, a tradeoff between accuracy and the time required to train and run the net-
work. Slowdown resulting from larger window size is considerable for three-dimensional ConvNets.
We have attempted to choose the parameters of MergeNet with this tradeoff in mind.

MergeNet detects merge errors across datasets.
We trained MergeNet on two segmentations of the Kasthuri dataset [21] and tested performance
on artificially merged objects omitted from the training set. Segmentation A was relatively poor,
and training on it yielded performance of only 77.3 percent. Segmentation B was more accurate,
yielding performance of 90.0 percent. Training on both segmentations together yielded the best
performance on both test sets, showing that MergeNet is able to leverage contextual information
from one segmentation to improve performance on another. We also note that after training on
the low-quality Segmentation A, MergeNet was able to detect errors within its own training set, as
shown in Figure 2.

Training on Seg. A Training on Seg. B Training on both
Testing on Seg. A 77.3% 82.6% 84.5%
Testing on Seg. B 70.7% 90.0% 91.9%

MergeNet generalizes broadly across datasets as well as segmentations of the same dataset, and
applies to both artificial and natural merge errors, though the latter are harder to quantify owing
to the paucity of large-scale annotation. After training on the Kasthuri dataset, MergeNet was able
to detect naturally occurring merge errors within segmentations of the ECS dataset, obtained from
a state-of-the-art U-Net segmentation algorithm [30]. Example output is shown in Figures 1 and 5.
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Figure 4: Performance of MergeNet on merged MNIST digits, shown as a function of input window
width (with example windows shown). Note that increasing window size increases performance,
but only up to a size of 40-50 pixels. We see that performance plateaus at the point at which
morphological context captures all of the information about the neighboring digits. For the case of
neurons, which are larger and more complicated, morphological context does not plateau; however,
there is a tradeoff between more context and greater speed, since the time required to run the 3D
ConvNet depends strongly upon input size.

5 Discussion

We will now consider the capabilities of the MergeNet algorithm and discuss opportunities that it
offers within the field of connectomics.

Detection and localization of merge errors.
MergeNet is a powerful tool for detecting and pinpointing merge errors. Once a merge location
has been flagged with high spatial precision, other algorithms can be used to create a more ac-
curate local segmentation, thereby correcting any errors that occured. Flood-filling networks [11]
and MaskExtend [22] are two examples of algorithms that have high accuracy, but are extremely
time-consuming to run over large volumes, making them ideally suited to segment at the merge
locations flagged by MergeNet. Alternatively, the agglomeration algorithm NeuroProof [25], used
in transforming membrane probabilities to segmentations, can be tuned to be more or less sensitive
to merge errors. A more merge-sensitive setting could be applied at those locations flagged by our
algorithm.

If the thresholding step is omitted, then the output of MergeNet may be thought of as a prob-
ability distribution of merge errors over objects within a segmentation. This distribution may be
treated as a Bayesian prior and updated if other information is available; multiple proofreading al-
gorithms can work together. Thus, for example, synapse detection algorithms [29, 31] may provide
additional evidence for a merge error if synapses of two kinds are found on the same segmented
object, but are normally found on different types of neurons. In such a scenario, the probability at
the relevant location would be increased from its value computed by MergeNet, according to the
confidence of the synapse detection algorithm. We envision MergeNet being the first step towards
fully automated proofreading of connectomics data, which will become increasingly necessary as
such data is processed at ever greater scale.
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Unsupervised training.
MergeNet is trained on merge errors created by fusing adjacent objects within a segmentation.
This allows training to proceed without any direct human annotation. In testing MergeNet, we
performed training on several automatically generated segmentations of EM data and obtained
good results, even though the training data was not free of merge errors and other mistakes. It
is highly advantageous to eliminate the need for further data annotation, since this is the step
in connectomics that has traditionally consumed by far the most human effort. The ability to
run on any (reasonably accurate) segmentation also means that MergeNet can be trained on far
larger datasets than those for which manual annotation could reasonably be obtained. Automated
segmentations already exist for volumes of neural tissue as large as 232,000 cubic microns [28].

Comparison of segmentations.
Automatic detection of merge errors allows us to compare the performance of alternative segmen-
tation algorithms in the absence of ground truth annotation. We ran MergeNet with the same
parameter settings on two segmentations within the ECS dataset, after training on other data.
These alternative segmentations were produced by two different versions of a state-of-the-art U-
Net segmentation algorithm [30]. For the simpler algorithm, 33 of the 300 largest objects within
the segmentation (those most likely to have merge errors) were flagged as unlikely, while, for the
more advanced algorithm, only 15 of the largest 300 objects were flagged. This indicates that the
latter pipeline produces more plausible objects, making fewer merge errors. The size of the objects
was comparable in each case, so there is no indication that this improvement came with a greater
propensity for erroneous splits within single objects. Thus, MergeNet was able to perform a fully
automatic comparison of two segmentation algorithms and confirm that one outperforms the other.

Correction of the training set.
We have already observed that MergeNet can be trained on any reasonably correct segmentation.
In fact, it is possible to leverage artificial merge errors within the training set to detect real merge
errors that may occur there (as shown in Figure 2). This is remarkable, since the predictions
MergeNet makes in this case should conflict with the labels it was itself trained on - namely, when
objects from the training set that have not been artificially merged are nonetheless the result of
real merge errors. Our observations align with results showing that neural networks are capable of
learning from data even when the labels given are unreliable [33].

Independence from lower-order errors.
Since MergeNet makes use of the global morphology of neurons, it is not reliant on earlier stages
of the connectomics pipeline, such as microscope images or membrane predictions. Thus, it is
able to correct errors that arise at early stages of the pipeline, including those at the experimental
stage. EM images are prone to various catastrophic errors; most notably, individual tissue slices
can tear before imaging, leading to distortion or gaps in the predicted membranes. Algorithms that
stitch together adjacent microscope images also sometimes fail, leading to pieces of neurons in one
image being erroneously aligned with pieces from the neighboring image. Typically, such errors
are propagated or magnified by later stages of the connectomics pipeline, since algorithms such as
watershed and NeuroProof [25] assume that their input is mostly true. By contrast, MergeNet can
look at the broader picture and use “common sense” as would a human proofreader.

The output of a membrane-detection algorithm also can induce errors in object morphology.
Common sources of error at this stage are ambiguously stained tissue slices and intracellular mem-
branes, such as those from mitochondria, which can be confused with the external cell membrane.
Figure 5 shows an error in predictions from the U-Net algorithm, where a large gap in the predicted
membrane has allowed two objects to be fused together into one (shown in blue). By utilizing the
overall 3D context, MergeNet is able to detect and localize the error (shown in red).
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Figure 5: The output of MergeNet at a merge
error, superimposed over the erroneously pre-
dicted membranes that led to the merge er-
ror. MergeNet output at individual pixels has
been thresholded above 0.9, with red denoting
predicted merge error and blue the absence of
error. Observe that the predicted membranes
have a wide gap at the region MergeNet has
flagged; this gap is incorrect and the membrane
should extend between the two objects, separat-
ing them. Note that MergeNet used only three-
dimensional morphological information to de-
tect this error, and did not make use of the (er-
roneous) membrane predictions that are shown,
or the underlying microscope images.

Figure 6: Glial cell, flagged as a merge error by
MergeNet. While glia are not merge errors, they
are also not neurons and did not occur in the
training set for MergeNet. As the algorithm rec-
ognizes, the morphology of glia is markedly dif-
ferent from that of neurons. Specifically train-
ing MergeNet to recognize glia could be useful in
segmenting these cells, which occur along with
neurons in brain tissue.

Generalizability to different datasets.
One of the challenges of traditional connectomics algorithms is that there are numerous different
imaging techniques, which can each be applied to the nervous systems of various organisms, and
in some cases also to structurally distinct regions of the nervous system within a single organism.
For networks used in connectomics for image segmentation, it is often necessary to obtain ground
truth annotations on each new dataset, which consumes considerable time and effort.

MergeNet, by contrast, is highly transferrable between datasets. Not only can the algorithm be
trained on an unverified segmentation and can correct it, but it can also be trained on one dataset
and then run on a segmentation of a different dataset, without any retraining. Figures 1 and 5
show images obtained by training on a segmentation of the Kasthuri dataset [12] and then running
on the ECS dataset.

Applicability to anisotropic data.
The microscope data underlying connectomics segmentation is often anisotropic, where the partic-
ular dimensions in the x, y, z directions depend upon the particular imaging procedure used. For
example, the Kasthuri dataset has resolution of 6 × 6 × 30 nanometers, while our ECS dataset is
even more anisotropic, with resolution of 4 × 4 × 30 nanometers. Some imaging technologies do
yield isotropic data, such as expansion microscopy (ExM) [5] and focused ion beam scanning elec-
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tron microscopy (FIB-SEM) [14]. Various techniques have been proposed to work with anisotropic
data, including 2D ConvNets feeding into 3D ConvNets [16] and a combination of convolutional
and recurrent networks [6].

MergeNet cancels the effect of anisotropy, as necessary, by downsampling differentially along
the x, y, z directions. Thus, the network is able to transform any segmentation into one in which
morphology is approximately isotropic, making learning much easier. We also anticipate that it may
be possible to train on data from one imaging modality, then to apply a different downsampling
ratio to run on data with different anisotropy. For example, MergeNet could be trained on an EM
segmentation, then run on an ExM segmentation.

Scalability.
The MergeNet algorithm is designed to be scalable, so that it can be used to proofread segmentations
of extremely large datasets. The network is applied only once objects have been downsampled by a
large factor in each dimension, and is applied then only to sampled points within the downsampled
object. These two reductions in cost allow the 3D ConvNet to be run at scale, even though 3D
kernels are slower to implement than 2D kernels.

We tested the speed of MergeNet on an object with 36,874,153 original voxels, downsampled
to 18,777 voxels, from which we sampled 1,024, allowing us to generate a dense probability map
across the entire object. The ConvNet ran in 11.3 seconds on an Nvidia Tesla K20m GPU. This
corresponds to a speed of over three million voxels per second within the original image. Thus, the
network could be applied to a volume of 1 billion voxels in a minute using five GPUs. By comparison,
the fastest membrane-prediction algorithm can process 1 billion voxels within 2 minutes on a 72-
core machine [21], demonstrating that our algorithm can be integrated into a scalable connectomics
pipeline. Note that our experiments were performed using TensorFlow [1]; we have not attempted
to optimize time for training or running the network, though recent work indicates that significant
further speedup may be possible [4, 38].

Detection of non-neuronal objects.
While MergeNet is trained only on merge errors, it also seems to be able to detect non-neuronal
objects, as a byproduct of learning plausible shapes for neurons. In particular, we observe that
MergeNet often detects glia (nonneuronal cells that occur in neural tissue), the morphologies of
which are distinctively different from those of neurons. Figure 6 shows an example of a glial object
from the ECS dataset; notice that MergeNet finds the morphology implausible, even though it has
been trained on neither positive nor negative examples of glia. Quantifying the accuracy of glia
detection is challenging, however, since little ground truth has been annotated for this task, and
most connectomics algorithms are unable to distinguish glia.

Finally, let us consider when (and why) MergeNet succeeds and fails on different inputs. The
algorithm does not simply label all branch points within a neuron as merge errors, or else it would
be effectively useless. However, the network can be confused by examples such as two branches that
diverge from a main segment at approximately the same point, resembling the cross of two distinct
objects. MergeNet also misses some merge errors. For example, when two neuronal segments run
closely in parallel, there may at some points along the boundary be no morphological clues that
two objects are present. It is worth noting, however, that parallel neuronal segments can in fact be
detected by MergeNet, as shown at point (A) of Figure 1.

6 Conclusion

Though merge errors occur universally in automated segmentations of neural tissue, they have never
been addressed in generality, as they are difficult to detect using existing connectomics methods.
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We have shown that a 3D ConvNet can proofread a segmented image for merge errors by “zooming
out”, ignoring the image itself, and instead leveraging the general morphological characteristics
of neurons. We have demonstrated that our algorithm, MergeNet, is able to generalize without
retraining to detect errors within a range of segmentations and across a range of datasets. Relying
solely upon unsupervised training, it can nonetheless detect errors within its own training set. Our
algorithm enables automatic comparison of segmentation methods, and can be integrated at scale
into existing pipelines without the requirement of additional annotation, opening up the possibility
of fully automated error detection and correction within neural circuits.

While MergeNet can detect and localize merge errors, it cannot, by itself, correct them. One
could conceive a variation on the MergeNet algorithm that is used to mark the exact boundary of a
merge error, allowing a cut to be made automatically along the boundary so as to correct the merge
without additional effort. However, in practice this is a much more challenging task. Often it is
impossible to determine the exact division of objects at a merge error purely from morphology. For
instance, when two largely parallel objects touch, it may not be evident which is the continuation
of which past the point of contact, even if the erroneous merge itself is obvious. Likewise, some
merge errors consist of three or more objects that have been confused in some complex way, e.g. by
virtue of poor image quality at that location. In such cases, any merge-correction algorithm must
have recourse to the underlying microscope images or membrane probabilities, rather than relying
purely upon morphological cues.

Deep learning approaches leveraging morphology have the potential to transform biological image
analysis. It may, for instance, become possible to classify types of neurons automatically, or to
identify anomalies such as cancer cells. We anticipate a growth in such algorithms as the scale of
biological data grows and as progress in connectomics leads to a deeper understanding of the brain.
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