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Abstract

Existing leading methods for spectral reconstruction
(SR) focus on designing deeper or wider convolutional neu-
ral networks (CNNs) to learn the end-to-end mapping from
the RGB image to its hyperspectral image (HSI). These
CNN-based methods achieve impressive restoration perfor-
mance while showing limitations in capturing the long-
range dependencies and self-similarity prior. To cope
with this problem, we propose a novel Transformer-based
method, Multi-stage Spectral-wise Transformer (MST++),
for efficient spectral reconstruction. In particular, we em-
ploy Spectral-wise Multi-head Self-attention (S-MSA) that
is based on the HSI spatially sparse while spectrally self-
similar nature to compose the basic unit, Spectral-wise
Attention Block (SAB). Then SABs build up Single-stage
Spectral-wise Transformer (SST) that exploits a U-shaped
structure to extract multi-resolution contextual information.
Finally, our MST++, cascaded by several SSTs, progres-
sively improves the reconstruction quality from coarse to
fine. Comprehensive experiments show that our MST++
significantly outperforms other state-of-the-art methods. In
the NTIRE 2022 Spectral Reconstruction Challenge, our
approach won the First place. Code and pre-trained mod-
els are publicly available at https://github.com/
caiyuanhao1998/MST-plus-plus.

1. Introduction
Hyperspectral imaging records the real-world scene

spectra in narrow bands, where each band captures the in-
formation at a specific spectral wavelength. Compared to
normal RGB images, HSIs have more spectral bands to
store richer information and delineate more details of the
captured scenes. Because of this advantage, HSIs have wide
applications such as medical image processing [8, 51, 57],
remote sensing [10, 54, 82], object tracking [35, 61], and so
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Figure 1. PSNR-Params-FLOPS comparisons with other spec-
tral reconstruction algorithms. The horizontal axis is FLOPS
(computational complexity), the vertical axis is PSNR ( perfor-
mance), and the circle radius is Params (memory cost). Our Multi-
stage Spectral-wise Transformer (MST++) surpasses other meth-
ods while requiring significantly cheaper FLOPS and Params.

on. Nonetheless, such HSIs with plentiful spectral informa-
tion is time-consuming that spectrometers are used to scan
the scenes along the spatial or spectral dimension. This lim-
itation impedes the application scope of HSIs, especially in
dynamic or real-time scenes.

One way to solve this problem is to develop snapshot
compressive imaging (SCI) systems and computational re-
construction algorithms [9, 12, 13, 29, 33, 47, 48, 52, 55, 56,
58, 59, 73, 74, 80] from 2D measurement to 3D HSI cube.
Nevertheless, these methods rely on expensive hardware
devices. To reduce costs, spectral reconstruction (SR) al-
gorithms are proposed to reconstruct the HSI from a given
RGB image, which can be easily obtained by RGB cameras.

Conventional SR methods are mainly based on sparse
coding or relatively shallow learning models. Nonetheless,
these model-based methods suffer from limited represent-



ing capacity and poor generalization ability. Recently, with
the development of deep learning, SR has witnessed signifi-
cant progress. Deep convolutional neural networks (CNNs)
have been applied to learn the end-to-end mapping function
from RGB images to HSI cubes. Although impressive per-
formance have been achieved, these CNN-based methods
show limitations in capturing long-range dependencies and
inter-spectra self-similarity.

In recent years, the natural language processing (NLP)
model, Transformer [70], has been applied in computer
vision and achieved great success. The multi-head self-
attention (MSA) mechanism in Transformer does better
in modeling long-range dependencies and non-local self-
similarity than CNN, which can alleviate the limitations of
CNN-based SR algorithms. However, directly using stan-
dard Transformer [25, 49] for SR will encounter two main
issues. (i) Global [25] and local [49] Transformer cap-
tures inter-actions of spatial regions. Yet, the HSI repre-
sentations are spatially sparse while spectrally highly self-
similar. Thus, modeling spatial inter-dependencies may-
be less cost-effective than capturing inter-spectra correla-
tions. (ii) On the one hand, the computational complexity
of standard global MSA is quadratic to the spatial dimen-
sion, which is a huge burden that may be unaffordable. On
the other hand, local window-based MSA suffers from lim-
ited receptive fields within position-specific windows.

To address the aforementioned limitations, we pro-
pose the first Transformer-based framework, Multi-stage
Spectral-wise Transformer (MST++) for efficient spectral
reconstruction from RGB images. Notely, our MST++ is
based on the prior work MST [13], which is customized for
spectral compressive imaging restoration. Firstly, we note
that HSI signals are spatially sparse while spectrally self-
similar. Based on this nature, we adopt the Spectral-wise
Multi-head Self-Attention (S-MSA) to compose the basic
unit, Spectral-wise Attention Block (SAB). S-MSA treats
each spectral feature map as a token to calculate the self-
attention along the spectral dimension. Secondly, our SABs
build up our proposed Single-stage Spectral-wise Trans-
former (SST) that exploits a U-shaped structure to extract
multi-resolution spectral contextural information which is
critical for HSI restoration. Finally, our MST++, cascaded
by several SSTs, develops a multi-stage learning scheme
to progressively improve the reconstruction quality from
coarse to fine, which significantly boosts the performance.

The main contributions of this work are listed as follow.

• We propose a novel framework, MST++, for SR. To
the best of our knowledge, it is the first attempt to ex-
plore the potential of Transformer in this task.

• We validate a series of natural image restoration mod-
els on this SR task. Toward them, we propose a Top-
K multi-model ensemble strategy to improve the SR

performance. Codes and pre-trained models of these
methods are made publicly available to serve as a base-
line and toolbox for further research in this topic.

• Quantitative and qualitative experiments demonstrate
that our MST++ dramatically outperforms SOTA
methods while requiring much cheaper Params and
FLOPS. Surprisingly, our MST++ won the First place
in NTIRE 2022 Spectral Reconstruction Challenge [5].

2. Related Work
2.1. Hyperspectral Image Aquisition

Traditional imaging systems for collecting HSIs often
adopt spectrometers to scan the scene along the spatial or
spectral dimensions. Three main types of scanners includ-
ing whiskbroom scanner, pushroom scanner, and band se-
quential scanner are often used to capture HSIs. These
scanners have been widely used in detecting, remote sens-
ing, medical imaging, and environmental monitoring for
decades. For example, pushbroom scanner and whiskbroom
scanner have been used in satellite sensors [11,64] for pho-
togrammetric and remote sensing. However, the scanning
procedure usually requires a long time, which makes it un-
suitable for measuring dynamic scenes. Besides, the imag-
ing devices are usually too large physically to be plugged
in portable platforms. To address these limitations, re-
searchers have developed SCI systems [18, 26, 50, 71, 72]
to capture HSIs, where the 3D HSI cube is compressed into
a single 2D measurement [81]. Among these SCI systems,
coded aperture snapshot spectral imaging (CASSI) [56, 71]
stands out and forms one promising research direction.
Nonetheless, the SCI systems remain prohibitively expen-
sive to date for consumer grade use. Even ”low-cost” SCI
systems are often in the $ 10K - $ 100K. Therefore, the SR
topic has significant research and practical value.

2.2. Spectral Reconstruction from RGB

Conventional SR methods [1, 2, 34, 62, 66] are mainly
based on hand-crafted hyperspectral priors. For instance,
Paramar et al. [62] propose a data sparsity expending
method for HSI reconstruction. Arad et al. [2] propose a
sparse coding method that create a dictionary of HSI sig-
nals and their RGB projections. Aeschbacher et al. [1] sug-
gest using relatively shallow learning models from a spe-
cific spectral prior to fulfill spectral super-resolution. How-
ever, these model-based methods suffer from limited repre-
senting capacities and poor generalization ability.

Recently, inspired by the great success of deep learning
in natural image restoration [12,24,30,31,38–40,46,63,92],
CNNs have been exploited to learn the underlying mapping
function from RGB to HSI [28,67,68,78,87]. For instance,
Xiong et al. [78] propose a unified HSCNN framework for
HSI reconstruction from both RGB images and compressive
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Figure 2. The overall pipeline of the proposed solution MST++. (a) Multi-stage Spectral-wise Transformer. (b) Single-stage Spectral-wise
Transformer. (c) Spectral-wise Attention Block. (d) Feed Forward Network. (e) Spectral-wise Multi-head Self-Attention.

measurements. Shi et al. [67] use adapted residual blocks
to build up a deep residual network HSCNN-R for SR.
Zhang et al. [87] customize a pixel-aware deep function-
mixture network consisting to model the RGB-to-HSI map-
ping. However, these CNN-based SR methods achieve im-
pressive results but show limitations in capturing non-local
self-similarity and long-range inter-dependencies.

2.3. Vision Transformer

The NLP model Transformer [70] is proposed for machine
translation. In recent years, it has been introduced into com-
puter vision and gained much popularity due to its advan-
tage in capturing long-range correlations between spatial re-
gions. In high-level vision, Transformer has been widely
applied in image classification [7, 19, 25, 27, 49, 65], object
detection [6, 22, 23, 60, 86, 93], semantic segmentation [16,
69,76,77,90,91], human pose estimation [14,15,32,37,42,
43, 53, 79, 89], etc. In addition, vision Transformer has also
been used in low-level vision [13,17,20,24,44,46,47]. For
instance, Cai et al. [13] propose the first Transformer-based
end-to-end framework MST for HSI reconstruction from
compressive measurements. Lin et al. [47] embed the HSI
sparsity into Transformer to establish a coarse-to-fine learn-
ing scheme for spectral comrpessive imaging. The prior
work Uformer [75] adopts a U-shaped structure built up by
Swin Transformer [49] blocks for natural image restoration.
Nonetheless, to the best of our knowledge, the potential of
Transformer in spectral super-resolution has not been ex-
plored. This work aims to fill this research gap.

3. Method

3.1. Network Architecture

As shown in Fig. 2, (a) depicts the proposed Multi-stage
Spectral-wise Transformer (MST++), which is cascaded by
Ns Single-stage Spectral-wise Transformers (SSTs). Our
MST++ takes a RGB image as the input and reconstructs
its HSI counterpart. A long identity mapping is exploited to
ease the training procedure. Fig. 2 (b) shows the U-shaped
SST consisting of an encoder, a bottleneck, and a decoder.
The embedding and mapping block are single conv3×3 lay-
ers. The feature maps in the encoder sequentially undergo
a downsampling operation (a strided conv4×4 layer), N1

Spectral-wise Attention Blocks (SABs), a downsampling
operation, and N2 SABs. The bottleneck is composed of N3

SABs. The decoder employs a symmetrical architecture.
The upsampling operation is a strided deconv2×2 layer. To
avoid the information loss in the downsampling, skip con-
nections are used between the encoder and decoder. Fig. 2
(c) illustrates the components of SAB, i.e., a Feed Forward
Network (FFN as shown in Fig. 2 (d) ), a Spectral-wise
Multi-head Self-Attention (S-MSA), and two layer normal-
ization. Details of S-MSA are given in Fig. 2 (e).

3.2. Spectral-wise Multi-head Self-Attention

Suppose Xin ∈ RH×W×C as the input of S-MSA,
which is reshaped into tokens X ∈ RHW×C . Then X
is linearly projected into query Q ∈ RHW×C , key K ∈
RHW×C , and value V ∈ RHW×C :



Q = XWQ,K = XWK,V = XWV, (1)

where WQ, WK, and WV ∈ RC×C are learnable pa-
rameters; biases are omitted for simplification. Subse-
quently, we respectively split Q, K, and V into N heads
along the spectral channel dimension: Q = [Q1, . . . ,QN ],
K = [K1, . . . ,KN ], and V = [V1, . . . ,VN ]. The dimen-
sion of each head is dh = C

N . Please note that Fig. 2 (e)
depicts the situation with N = 1 and some details are omit-
ted for simplification. Different from original MSAs, our
S-MSA treats each spectral representation as a token and
calculates self-attention for headj :

Aj = softmax(σjK
T
jQj), headj = VjAj , (2)

where KT
j denotes the transposed matrix of Kj . Because

the spectral density varies significantly with respect to the
wavelengths, we use a learnable parameter σj ∈ R1 to adapt
the self-attention Aj by re-weighting the matrix multiplica-
tion KT

jQj inside headj . Subsequently, the outputs of N
heads are concatenated to undergo a linear projection and
then is added with a position embedding:

S-MSA(X) =
( N

Concat
j=1

(headj)
)
W + fp(V), (3)

where W ∈ RC×C are learnable parameters, fp(·) is the
function to generate position embedding. It consists of two
depth-wise conv3×3 layers, a GELU activation, and re-
shape operations. The HSIs are sorted by the wavelength
along the spectral dimension. Therefore, we exploit this
embedding to encode the position information of different
spectral channels. Finally, we reshape the result of Eq. (3)
to obtain the output feature maps Xout ∈ RH×W×C .

3.3. Discussion with Original Transformers

In this section, we introduce the general paradigm of
MSA in Transformer and then we analyze the compu-
tational complexity of the spatial-wise MSAs in original
Transformers and the adopted S-MSA.

3.3.1 General Paradigm of MSA

We denote the input token as X ∈ Rn×C , where n is to be
determined. In spatial-wise MSAs, n denotes the number of
tokens. In S-MSA, n represents the dimension of the token.
X is firstly linearly projected into query Q ∈ Rn×C , key
K ∈ Rn×C , and value V ∈ Rn×C :

Q = XWQ,K = XWK,V = XWV, (4)

where WQ,WK, and WV ∈ RC×C are learnable pa-
rameters; biases are omitted for simplification. Subse-
quently, we respectively split Q, K, and V into N heads
along the spectral channel dimension: Q = [Q1, . . . ,QN ],

MSA Scheme Global MSA Local W-MSA S-MSA

Receptive Field Global Local Global
Complexity to HW Quadratic Linear Linear
Calculating Wise Spatial Spatial Spectral

Table 1. Comparisons of the properties of different MSAs.

K = [K1, . . . ,KN ], and V = [V1, . . . ,VN ]. The dimen-
sion of each head is dh = C

N . Then MSA calculates the
self-attention for each headj :

headj = MSA(Qj ,Kj ,Vj). (5)

Subsequently, the outputs of N heads are concatenated
along the spectral dimension and undergo a linear projec-
tion to generate the output feature map Xout ∈ Rn×C :

Xout =
( N

Concat
j=1

(headj)
)
W, (6)

where W ∈ RC×C are learnable parameters. Please note
that some other contents such as the position embedding are
omitted for simplification. Because we only compare the
main difference between original spatial-wise MSAs and S-
MSA, i.e., the specific formulation of Eq. (5).

3.3.2 Spatial-wise MSA

The spatial-wise MSA treats a pixel vector along the spec-
tral dimension as a token and then calculates the self-
attention for each headj . Thus, Eq. (5) can be specified
as

headj = AjVj , Aj = softmax(
QjK

T
j√

dh
). (7)

Eq. (7) neads to be calculated for N times. Therefore, the
computational complexity of spatial-wise MSA is

O(Spatial-MSA) = N(n2dh + n2dh) = 2n2C. (8)

The spatial-wise MSA is mainly divided into two cat-
egories: global MSA [25] and local window-based
MSA [49]. Now we analyze these two kinds of MSAs.
Global MSA. As shown in Fig. 3 (a), global MSA samples
all the tokens as key and query elements, and then calcu-
lates the self-attention. Thus, the number of tokens n (key
or query elements) is equal to HW . Then, according to
Eq. (8), the computational complexity of global MSA is

O(Global MSA) = 2(HW )2C, (9)

which is quadratic to the spatial size of the input feature
map. Global MSA enjoys a very large receptive field but
its computational cost is nontrivial and sometimes unaf-
fordable. Meanwhile, sampling redundant key elements
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Figure 3. Diagram of different MSAs. The dark colored box represents query element and the dashed box denotes key element. (a) Global
MSA samples all the tokens (pixel vectors) as query and key elements. (b) W-MSA calculates the self-attention inside position-specific
windows. (c) The adopted S-MSA treats each spectral channel as a token and calculates the self-attention along the spectral dimension.

may easily lead to over-smooth results [41] and even non-
convergence issue [93]. To cut down the computational
cost, researchers propose local window-based MSA.
Window-based MSA. As depicted in Fig. 3 (b), W-MSA
firstly splits the feature map into non-overlapping windows
at size of M2 and samples all the tokens inside each window
to calculate self-attention. Hence, the number of tokens n
is equal to M2 and W-MSA is conducted HW

M2 times for all
windows. Thus, the computational complexity is

O(W-MSA) =
HW

M2
(2(M2)2C) = 2M2HWC, (10)

which is linear to the spatial size (HW ). W-MSA enjoys
low computational cost but suffers from limited receptive
fields inside position-specific windows. As a result, some
highly related non-local tokens may be neglected.

Original spatial-wise MSAs aim to capture the long-
range dependencies of spatial regions. However, the HSI
representations are spatially sparse while spectrally similar
and correlated. Capturing spatial-wise interactions may be
less cost-effective than modeling the spectral-wise correla-
tions. Based on this HSI characteristic, we adopt S-MSA.

3.3.3 S-MSA

As shown in Fig. 3 (b), S-MSA treats each spectral feature
map as a token and calculates the self-attention along the
spectral dimension. Then Eq. (5) is specified as

Aj = softmax(σjK
T
jQj), headj = VjAj , (11)

where KT
j denotes the transposed matrix of Kj . We note

that the spectral density varies significantly with respect to
the wavelengths. Therefore, we exploit a learnable parame-
ter σj ∈ R1 to adapt the self-attention Aj by re-weighting
the matrix multiplication KT

jQj inside headj . Because S-
MSA treats a whole feature map as a token, the dimension

of each token n is equal to HW . Eq. (11) needs to be cal-
culated N times. Thus, the complexity of S-MSA is

O(S-MSA) = N(d2hn+ d2hn) =
2HWC2

N
. (12)

The computational complexity of W-MSA and S-MSA are
linear to the spatial size (HW ), which is much cheaper than
that of global MSA (quadratic to HW ). Nonetheless, S-
MSA treats each spectral feature as a token. When calcu-
lating the self-attention Aj , S-MSA views the global rep-
resentations and Aj functions as global spatial positions.
Therefore, the receptive fields of S-MSA are global and not
limited to the position-specific windows.

In addition, S-MSA calculates self-attention along the
spectral dimension, which is based on HSI characteristics
and more suitable for HSI reconstruction when compared
to spatial-wise MSAs. Thus, S-MSA is considered to be
more cost-effective than global MSA and W-MSA.

For brevity, we summarize the properties of global MSA,
window-based MSA, and S-MSA in Tab. 1. S-MSA en-
joys global receptive fields, models the spectral-wise self-
similarity, and requires linear computational costs.

3.4. Ensemble Strategy

In NTIRE 2022 Spectral Reconstruction Challenge, we
adopt three ensemble strategies including self-ensemble,
multi-scale ensemble, and Top-K multi-model ensemble to
improve the performance and generality of our MST++.
Now in this part, we describe them in details.

3.4.1 Self-Ensemble

The RGB input is flipped up/down/left/right or rotated
90°/180°/270° to be fed into the network. Subsequently, the
outputs are transformed to the original state to be averaged.



3.4.2 Multi-scale Ensemble

We respectively train our models with patches at size of
256×256, 128×128, and 64×64. Then the outputs (whole
images) are averaged to improve the restoration quality.

3.4.3 Top-K Multi-model Ensemble

We also train MIRNet [84], MPRNet [85], Restormer [83],
HINet [21], and MST [13] families. The Top-K perform-
ers are selected for SR. Then we conduct our Top-K multi-
model ensemble to fuse these reconstructed HSIs as

Yens =

K∑
i=1

αiŶ
t
i , (13)

where Yens ∈ RH×W×Nλ denotes the ensembled HSIs,
Ŷt

i represents the reconstructed HSIs of the i-th model, and
αi represents hyperparameter satisfying

∑K
i=1 αi = 1.

4. Experiment
4.1. Dataset

The dataset provided by NTIRE 2022 Spectral Recon-
struction Challenge contains 1000 RGB-HSI pairs. This
dataset is split into train, valid, and test subsets in
proportional to 18:1:1. Each HSI at size of 482×512 has 31
wavelengths from 400 nm to 700 nm. To generate the corre-
sponding RGB counterpart I ∈ RH×W×3, a transformation
matrix M ∈ RNλ×3 is applied to the ground-truth HSI cube
Y ∈ RH×W×Nλ as

I = Y ×M. (14)

Then the generated RGB images are injected with shot noise
to simulate the real-camera situation.

4.2. Implementation Details

During the training procedure, RGB images are linearly
rescaled to [0, 1], after which 128 × 128 RGB and HSI
sample pairs are cropped from the dataset. The batch size is
set to 20 and the parameter optimization algorithm chooses
Adam modification with β1 = 0.9 and β2 = 0.999. The
learning rate is initialized as 0.0004 and the Cosine Anneal-
ing scheme is adopted for 300 epochs. The training data
is augmented with random rotation and flipping. The pro-
posed MST++ has been implemented on the Pytorch frame-
work and approximately 48 hours are required for training
a network on a single RTX 3090 GPU. MRAE loss function
between the predicted and ground-truth HSI is adopted as
the objective. In the implementation of our MST++, we set
Ns = 3, N1 = N2 = N3 = 1, C = 31.

During the testing phase, the RGB image is also linearly
rescaled to [0, 1] and fed into the network to fulfill the spec-
tral recovery. Our MST++ takes 102.48 ms for per image
(size 482×512×3) reconstruction on an RTX 3090 GPU.

We adopt three evaluation metrics to assess the model
performance. The first metric is mean relative absolute er-
ror (MRAE) that computes the pixel-wise disparity between
all wavelengths of the reconstructed and ground-truth HSIs.
MRAE can be formulated as

MRAE(Y, Ŷ) =
1

N

N∑
i=1

∣∣Y[i]− Ŷ[i]
∣∣

Y[i]
, (15)

where Ŷ ∈ RH×W×Nλ indicates the reconstructed HSI
cube and N = H × W × Nλ denotes the number of all
values on the image. The second metric is the root mean
square error (RMSE) that is defined as

RMSE(Y, Ŷ) =

√√√√ 1

N

N∑
i=1

(
Y[i]− Ŷ[i]

)2
. (16)

Since the deciding metric for the NTIRE 2022 Spectral Re-
construction Challenge is MRAE, we directly set it as the
training objective for our SR models. The last metric is the
Peak Signal-to-Noise Ratio (PSNR).

4.3. Main Results

4.3.1 Quantitative Results on Valid Set

We compare our MST++ with SOTA methods includ-
ing two SCI reconstruction methods (MST [13] and HD-
Net [29]), three SR algorithms (HSCNN+ [67], AWAN [36]
and HRNet [88]), and five natural image restoration
models (MIRNet [84], MPRNet [85], Restormer [83],
HINet [21], EDSR [45]) on the valid set. Please note
that HSCNN+ [67], AWAN [36] and HRNet [88] are the
winners of NTIRE 2018 [3] and 2020 [4] Spectral Recon-
struction Challenges. The results are listed in Tab. 2. Our
MST++ significantly outperforms SOTA methods by a large
margin while requiring the least Params and FLOPS. For
instance, our MST++ achieves 3.10, 7.43, and 7.96 dB im-
provement in PSNR while only requiring 40.10% (1.62 /
4.04), 5.11%, 34.84% Params and 8.52% (23.05 / 270.61),
14.07%, 7.57% FLOPS when compared to AWAN, HRNet,
and HSCNN+.

To intuitively show the superiority of MST++, we pro-
vide PSNR-Params-FLOPS comparisons of different algo-
rithms in Fig. 1. The vertical axis is PSNR (performance),
the horizontal axis is FLOPS (computational cost), and the
circle radius is Params (memory cost). It can be seen that
our MST++ takes up the top-left corner, exhibiting the ex-
treme efficiency advantages of our method.

4.3.2 Quantitative Results on Test Set

Tab. 2 lists the top-12 leaders of NTIRE 2022 Spectral Chal-
lenge (test set), where * indicates using ensembled mod-
els. Impressively, our method won the championship out of
231 participants, suggesting the superiority of our MST++.



NTIRE 2022 HSI Dataset - Valid NTIRE 2022 HSI Dataset - Test

Method Params (M) FLOPS (G) MRAE RMSE PSNR Username MRAE RMSE

HSCNN+ [67] 4.65 304.45 0.3814 0.0588 26.36 pipixia 0.2434 0.0411
HRNet [88] 31.70 163.81 0.3476 0.0550 26.89 uslab 0.2377 0.0391
EDSR [45] 2.42 158.32 0.3277 0.0437 28.29 orange dog 0.2377 0.0376
AWAN [36] 4.04 270.61 0.2500 0.0367 31.22 askldklasfj 0.2345 0.0361
HDNet [29] 2.66 173.81 0.2048 0.0317 32.13 HSHAJii 0.2308 0.0364
HINet [21] 5.21 31.04 0.2032 0.0303 32.51 ptdoge hot 0.2107 0.0365
MIRNet [84] 3.75 42.95 0.1890 0.0274 33.29 test pseudo 0.2036 0.0324
Restormer [83] 15.11 93.77 0.1833 0.0274 33.40 gkdgkd 0.1935 0.0322
MPRNet [85] 3.62 101.59 0.1817 0.0270 33.50 deeppf 0.1767 0.0322
MST-L [13] 2.45 32.07 0.1772 0.0256 33.90 mialgo ls 0.1247 0.0257

MST++ 1.62 23.05 0.1645 0.0248 34.32 MST++* 0.1131 0.0231

Table 2. Comparisons with SOTA methods on NTIRE 2022 HSI datasets (valid and test). * represents using ensembled models.
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Figure 4. Reconstructed HSI comparisons of Scene ARAD 1K 0922 with 4 out of 31 spectral channels. 9 SOTA algorithms and our
MST++ are included. The spectral curves (bottom-left) are corresponding to the selected green box of the RGB image. Please zoom in.

4.3.3 Qualitative Results

Fig. 4 and 5 compares the reconstructed HSIs with 4 out of
31 spectral channels of nine SOTA methods and our MST++
on the valid set. Please zoom in for a better view. The
top-left part depicts the input RGB image. The right part
shows the reconstructed HSI patches of the selected yel-
low boxes in RGB image. It can be observed that previous
methods show limitations in HSI detail restoration. They ei-
ther achieve over-smooth HSIs sacrificing fine-grained con-
tents and structural details, or introduce unpleasing artifacts
and blotchy textures. By contrast, MST++ does better in
producing perceptually-pleasing and sharp-edge HSIs, and
preserving the spatial smoothness of the homogeneous re-
gions. This is mainly because our MST++ excels at model-
ing inter-spectra self-similarity and dependencies. Besides,
the bottom-left part exhibits the spectral density curves cor-
responding to the picked region of the green box in the RGB
image. The highest correlation and coincidence between
our curve and the ground truth verify the spectral-wise con-
sistency restoration effectiveness of MST++.

4.4. Ablation Study

we use the valid subset to conduct ablations. The base-
line model is derived by removing S-MSA from MST++.

4.4.1 Self-Attention Mechanism

We have discussed different self-attention mechanisms in
Sec. 3.3. In this part, we conduct ablation studies to ver-
ify the performance of these MSAs including global MSA
(G-MSA) [25], local window-based MSA (W-MSA) [49],
Swin MSA (SW-MSA) [49], and the adopted S-MSA [13].
The results are reported in Tab. 3a. For fairness, the Params
of models using different MSAs are set to the same value.
Notely, the input feature of G-MSA is downscaled into 1

4
size to avoid out of memory. It can be observed that our
adopted S-MSA achieves the most significant improvement
while requiring the least memory and computational costs.
To be specific, when we respectively apply SW-MSA, W-
MSA, G-MSA, and S-MSA, the performance is improved
by 0.0338, 0.0553, 0.1356, and 0.1532 in MRAE while in-



Method Baseline SW-MSA W-MSA G-MSA S-MSA

MRAE 0.3177 0.2839 0.2624 0.1821 0.1645
RMSE 0.0453 0.0399 0.0375 0.0271 0.0248
Params (M) 1.30 1.60 1.60 1.60 1.62
FLOPS (G) 17.68 24.10 24.10 25.11 23.05

(a) Ablation study of different self-attention mechanisms.

Ns 1 2 3 4

MRAE 0.1761 0.1716 0.1645 0.1711
RMSE 0.0266 0.0269 0.0248 0.0265
Params (M) 0.55 1.08 1.62 2.16
FLOPS (G) 8.10 15.57 23.05 30.52

(b) Ablation study of stage number Ns.

Table 3. Ablations. We train models on the train set and test on the valid set. MRAE, RMSE, Params, and FLOPS are reported.
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 MPRNet, corr: 0.9576
 Restormer, corr: 0.9359
 MST-L, corr: 0.9506
 MST++, corr: 0.9980

Figure 5. Reconstructed HSI comparisons of Scene ARAD 1K 0924 with 4 out of 31 spectral channels. 9 SOTA algorithms and our
MST++ are included. The spectral curves (bottom-left) are corresponding to the selected green box of the RGB image. Please zoom in.

creasing 6.42, 6.42, 7.43, and 5.37 GFLOPS. As analyzed
in Sec. 3.3, these results mainly stem from the HSI spatially
sparse while spectrally self-similar nature. Thus, capturing
inter-spectra dependencies is more cost-effective than mod-
eling correlations of spatial regions.

4.4.2 Stage Number

We change the stage number Ns of MST++ to investigate
its effect. The results are shown in Tab. 3b. When Ns =
3, the performance achieves its peak. Therefore, we finally
adopt 3-stage MST++ as our SR model.

4.4.3 Ensemble Strategy

In Sec. 3.4, we adopt three ensemble strategies for NTIRE
2022 Spectral Reconstruction Challenge. In this part, we
perform ablations to study their effects. On the valid set,
self-ensemble, multi-scale ensemble, and Top-K (K is set
to 5) multi-model ensemble respectively achieve improve-
ments by 0.015, 0.033, and 0.045 in terms of MRAE.

5. Future Work
Until now, there has not been a low-cost high-accuracy

open-source baseline for SR research. Our MST++ aims
to fill this gap. Moreover, all the source code and pre-
trained models in Tab. 2 (valid) including 11 SOTA

methods are made publicly available. Our goal is to pro-
vide a model zoo and toolbox to benefit the community.

6. Conclusion

In this paper, we propose the first Transformer-based
framework, MST++, for spectral reconstruction from RGB.
Based on the HSI spatially sparse while spectrally self-
similar nature, we adopt S-MSA that treats each spectral
feature map as a token for self-attention calculation to com-
pose the basic unit SAB. Then SABs build up SST. Even-
tually, our MST++ is cascaded by several SSTs. Enjoy-
ing a multi-stage learning scheme, MST++ progressively
improves the reconstruction quality from coarse to fine.
Quantitative and qualitative experiments demonstrate that
our MST++ dramatically surpasses SOTA methods while
requiring cheaper memory and computational costs. Im-
pressively, our MST++ won the First place in the NTIRE
2022 Challenge on Spectral Reconstruction from RGB.
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