Supplementary Material for
ProtoGraph: A Non-Expert Toolkit for Creating Animated Graphs

Malchiel Rodrigues
Harvard University

Joel Dapello
Harvard University

1 INTRODUCTION

Our evaluation approach focuses on evaluating the learnability, us-
ability, and expressiveness of ProtoGraph in a user study. In this
Supplementary Material we provide details on our user study (Sec. 2)
and study results (Sec. 3).

2 STUDY DESCRIPTION

The rationale for our study design is given by the fact that a compar-
ative study to current state-of-the-art systems would not be justified.
No other tool focuses on the main feature of ProtoGraph, that is,
the creation of animated graphs for people with little or no pro-
gramming experience. The DOT language, for example, does not
support animations and is also not well suited for the workflow of
non-programmers. DOT’s mental model of how a graph is defined
is fundamentally different to ProtoGraph and requires users to have
the complete graph in mind before they start programming. In Pro-
toGraph, users can adjust and refine a graph at any point in their
program, similarly to instructing a listener who is drawing the graph
bit by bit. Users can add extra nodes at any time, without having to
go back and adjust their previously written code. The DOT language,
its frontend Graphviz, and the JavaScript extension viz-js also do not
offer integrated training and teaching for novices, making it difficult
to learn for non-programmers.

On the other end of the spectrum of available tools are manual
painting tools that do not require programming. However, these tools
require a very manual and tedious process for any small change in
the graph. For example, to change a graph’s layout, a user would
have to manually select and move all nodes, all edges, and all labels,
making it less than ideal for iterative refinement.

Therefore, in our study, we focus on evaluating the core features
of ProtoGraph. To that end, we conducted a crowdsourced user study
with 41 participants to evaluate how ProtoGraph can be used by
people of varying programming experience. We evaluate the tool’s
learnability by measuring users’ ability to write and read ProtoGraph
code after an initial training session. We further use participants’
feedback to analyze the tool’s usability. The expressiveness of
ProtoGraph is evaluated implicitly by the ability to create animated
graphs and the wide variety of reading and writing tasks in the study.

2.1 Procedure

We conducted our study with users at all levels of coding experience
and asked participants to report their familiarity with coding and
graph visualizations. We recruited 41 participants on Prolific, a
research-focused crowdsourcing platform. All participants viewed
and agreed to an IRB-approved consent form. The estimated dura-
tion was set by the completion time of pilot experiments. The study
consisted of five phases: Passive Training, Active Training, Trials,
Study, and Demographics and Feedback. The full study can be

*e-mail: cnobre @cs.toronto.edu
e-mail: jbeyer@g.harvard.edu
° indicates equal contribution

Priyan Vaithilingam
Harvard University

Carolina Nobre® *
University of Toronto

Johanna Beyer® f
Harvard University

viewed at http://protograph.projectalg.com/tool/study.
Passive training consisted of an introduction to graph visualization
and a high-level overview of the ProtoGraph interface through a
2-minute video. Participants had to watch the video before being
allowed to continue. Active Training introduced participants to
each part of the interface and taught them basics of the ProtoGraph
language in small activities. Participants also had to explore the
internal documentation panel to learn parts of the language on their
own. In the Trial, participants had to use ProtoGraph to recreate
a visualization that we provided as an image accompanied with a
task checklist. All the knowledge required to pass the trial was pro-
vided in the Active Training, this was to verify the participant was
attentive. The Study itself, included three parts: writing with the
ProtoGraph language, reading the ProtoGraph language, and a final
free explore task. In the writing portion of the study, the participants
were given the image of a visualization or frames of a short visual-
ization animation and asked to recreate the visualization with the
ProtoGraph language. In the reading portion, the participants were
given an excerpt of code in the ProtoGraph language presented in a
read-only version of the ProtoGraph internal code editor and asked
to sketch the visualization with the provided digital whiteboard tool.
In the final free explore tool, we asked participants to show off their
learned knowledge of the ProtoGraph language and to create their
own visualization. To conclude the study, participants filled out a
Demographic and Feedback form.

2.2 Measures

We collected both quantitative and qualitative measures. We cap-
tured the start and end times for each task, section, as well as comple-
tion time for the entire study session. We also collected the code or
sketch submission for each task. We recorded interactions with the
internal documentation to assess how often participants were using
the documentation to solve the tasks. Finally, we recorded partici-
pants’ interaction with the tool and study through the open-source
“record and replay” JavaScript library rrweb [1], which allowed us to
replay each participant’s actions. In the Feedback form, participants
submitted feedback through 7-point Likert scales and free-response
questions on the training material, the ProtoGraph language’s learn-
ability, the ProtoGraph language’s readability, and the ProtoGraph
interface’s usability.

When calculating correctness, we segmented each task into the
separate sub-tasks needed to perform it and assigned partial credit
accordingly. For example, for Task 1 (see Fig. 1a) we graded each
of the following components independently: topology, layout, color,
and labels. This scoring approach allowed us to analyze which
aspects of the language participants struggled with the most. Af-
ter defining the grading rubric, we scored all participants by two
separate graders to ensure the fairness of the scores.

2.3 Tasks

We designed the study tasks to evaluate participant’s ability to (1)
use the ProtoGraph interface efficiently, (2) write ProtoGraph code
to generate static graphs, (3) write ProtoGraph to generate graph
animations, and (4) understand the syntax of existing ProtoGraph
code. We exemplify a few of these tasks below.

http://protograph.projectalg.com/tool/study

n2 CAT3
n3

Gl

‘ n4 GBSSI

(© ® ® =

12

13n0, n4

" 3 2 14 background-color: red
15

o = % 16

s “© ® 17
s o nt 18n2
19 background-color: red
20e2, e5
o ! 21 color:red
1 « 1 &
23
) e shorteftpath 24
25e2, e5
O e“) 26 label: "shortest path"

Figure 1: Tasks of Section I (Writing). Participants were asked to
write code in the editor to best recreate a given graph visualization.
(a) and (b) show the prompts for tasks 1 and 2, (c) shows the prompt
as well as part of the solution for task 3 (animation).

Section I: Writing. Section I of the study contained three tasks
asking participants to write ProtoGraph code to generate static (tasks
1 and 2) and animated (task 3) graphs (see Fig. 1).

Section II: Reading. The reading section of the study contained
three tasks. The first two asked participants to read a snippet of Pro-
toGraph code and use the provided digital whiteboard to draw what
they expected the graph to look like. In the third task, we provided
code for an animated graph and tested participants’ understanding
of the animation commands such as the state of the graph at a given
timestep (see Fig. 2).

Section III: Free Explore. The final section of the study allowed
the participant to use their newly acquired skills to generate a graph
or animation with ProtoGraph. This task was meant to capture the
expressivity of ProtoGraph, and showcase the variety of graph types
and animations that can be created once a user becomes familiar
with the basics of the language and interface.

2.4 Pilots and Experimental Planning

We conducted several tests and pilots to evaluate tasks, system us-
ability, data collection modalities, measures, and our procedure. Cre-
ating proper training material is a key component for the learnability
of ProtoGraph. The pilot iterations were essential in identifying
aspects of the training that were unclear, as well as small glitches
in the system itself. Participant feedback, as described in Sec. 3.6,
shows that participants found the training helpful and the ProtoGraph
interface easy to use.

3 STUuDY RESULTS

We recruited 41 participants for this study. After reviewing all
submissions, we excluded the responses of 2 participants due to
incomplete submissions. This left us with 39 valid submissions
(19 identified as female, 19 as male, and 1 chose other). Most
participants had little or no coding experience. Here we present
an overview of task accuracy and time to completion. We present
the tasks according to the aspect of ProtoGraph they were intended
to test: reading, writing, usability/free explore. The study results,
along with the screen recordings of the study are available at https:
//protograph.io/analysis/.

Figure 3a and Figure 3b show the distribution of participant per-
formance for the study tasks in sections 1 (writing) and 2 (reading),
respectively. On average, participants scored over 75% on all tasks.
Participants scored highest on tasks in the code writing portion, with

(a)
1

2 name: circle

3

4nl - n2

5n2 - n3

6n3 - nl

7

8 all nodes

9 background: green
10 label: ""

11
12all edges

13 color: green
14 label: ""
b
(b) loop

.- .-

sat
(0 :

Figure 2: Tasks of Section II (Reading). Participants were asked to
read the provided code and use the digital whiteboard to sketch out
the corresponding graph. (a) Provided code for task 1 and correct
answer. (b) Answer for task 2. In task 3, participants had to answer
questions about code for the graph shown in (c).

averages between 80% and 90% accuracy. The lowest average ac-
curacy was on Task 2 of the code reading portion, which required
participants to read code and draw the corresponding graph for a
more complex network. Figure 4 shows that there is no significant
impact of prior coding experience or experience with graph visual-
ization on participants’ accuracy, indicating that ProtoGraph is easy
to adopt even by non-programmers and novices.

3.1 Section I: Writing

The writing section (Figure 3a) revealed that even with brief training
and a short acquaintance period, participants were able to use both
the ProtoGraph language and system, validating R4 the learnability
of ProtoGraph. Task 1 showed a high success rate when participants
were asked to establish the topology of the graph visualization; this
validated that ProtoGraph fulfilled R1 (specifying graph structure).
This requirement was further explored in tasks 1, 2, and 3 where
participants were asked to provide visual styling for the graph. We
saw that even when the participant was asked to establish specific
layouts, they were over 75% successful. Task 2 even required the
use of a language extension, which participants were able to achieve
with an average success rate over 75%; this validated the extensi-
bility of ProtoGraph; we implemented a useful extension that was
subsequently used by participants. Though we had initial reserva-
tions about the choice of indented colon-separated data and style
attributes, the high success rate in specifying color, shape, width,
and other visual properties showed that participants, even those with
little to no programming experience, were able to successfully use
this syntax. Furthermore, considering these properties, specifically
labels, we see that as tasks progress the participants were able to
achieve the desired target with increasing accuracy; this shows that
participants were able to quickly learn parts of the syntax and spe-
cific names/keywords. Task 3 showed that participants struggled a
little with animations, however, even in this task, the success rate
was over 50%. The growth evident in prior steps indicate that partic-
ipants may have been able to achieve higher success rates if given
multiple animation tasks (R2).

3.2 Section II: Reading

The reading task evaluated the readability of the ProtoGraph lan-
guage. While in most cases, a ProtoGraph user will be writing the
language, the readability of the language impacts the time it takes for

https://protograph.io/analysis/
https://protograph.io/analysis/

Section 1 - Writing ProtoGraph Code

cc “@® | topology
S O
© 'g - node colors
e ™ —— @8 | incrementing code
2 £ ~—@==mm | edge labels
«® | edge colors
“® | topology
. ~@==2® | node width
-% e ~=<@==8® | node shape
I ®® | node labels
Sl
sl @® | node color
l{:‘ - @@ || Jayout
~=@® | edge type
° —— @ || edge labels
© ~==@® | edge color
S.c ==@® | topology
£ ~=@® | layout
NG| we e e | labels
= «® | color
0.00 0.25 0.50 0.75 1.00

Task Score

(a) Participant accuracy scores in code writing.

Section 2 - Reading ProtoGraph Code

9 ® @ m® | node colors
g S =@ | edge style
E 8 - ————@—= @@ | # of nodes
™~ - i@ | # of frames
- L I e o e» | topology
9% ==@e» | node style
%_c e ® «w@@m | node labels
§ § e —e—. layout
~ === =88 | edge type
- o —_— - edge labels

- w==f=——am | topology
Q ==<@-am | node color
g-::%- - —e - layout
ii 5 . == | ecdge type
= g “=@as | edge color

0.00 0.25 0.50 0.75 1.00
Task Score

(b) Participant accuracy scores in code reading.

Figure 3: Participants scored on average above 75% on all but 3 subtasks in writing (a) and 3 subtasks in reading (b) ProtoGraph code

(highlighted in red).

1.0 ¢ : >
0.8

average score

1 2 3 4 5 6 7
graph familiarity level

: A A

average score

1 2 3 4 5 6 7
coding experience level

Figure 4: Participant accuracy based on experience with graph vi-
sualization (top) and coding (bottom). There was no significant
trend in participant accuracy as a function of their previous graph
visualization or coding experience.

a user to reacquaint with old code and a more readable language is
easier to discuss outside of the ProtoGraph system. The readability is
also related to how “natural” the language feels for English speakers.
Figure 3b shows detailed results for the reading sub-tasks, where
we see that the ProtoGraph language has a syntax that resulted in a
high success rate for reading and determining topology, layout, and
visual style as shown by tasks 1 and 2. Labels did not seem to have
a high success rate in this section of the study. This may have to do
with how ProtoGraph was optimized to make writing names easier
by allowing them to be specified in the constructor or as a style
attribute. The rendering has no issue resolving this and the visual

@) [ona] - Avo Avo (b)

transcription reverse tr; hscn n?on

= . omx

translation

pai mae

translation

* ¢ ..
‘e ® o° 0 °

Figure 5: Results from four participants on section III of the study,
where we invited them to create their own visualization using the
ProtoGraph system. (a) Protein creation process from a participant
with visualization experience of 5 out of 7 and coding experience of
5 out 7. (b) Family tree written in Portuguese (participant experience:
vis 4/7, coding 1/7). (c) Hy O water molecule (participant experience:
vis 3/7, coding 3/7). (d) Water molecule from another participant
(participant experience: vis 5/7, coding 3/7).

feedback means that users do not struggle with this when writing the
ProtoGraph language; however, it may make reading the ProtoGraph
language slightly more difficult. On the other hand, the low success
rate may also be the result of participants thinking that labels were
not as important and other visual properties or a slight increase in
effort required to add labels in the sketching system used in the study.
Ultimately, this could benefit from further evaluation in the future,
but we are satisfied that participants were able to specify labels as
shown in Section I. In task 3, we see that participants did not answer
perfectly regarding the animation questions; however, they were
still able to achieve an average success rate over 75%. This also
requires future evaluation as it is not clear if this is an indication of
difficulty with the animation syntax or if it is just reflective of an
increased working memory strain required to track the changes of an
animation across frames with no visual aid (due to our task set-up).

3.3 Section Ill: Free Explore

The Free Explore section gave participants an opportunity to demon-
strate what they had learned in their brief time with the ProtoGraph

Documentation Features Access Counts

Graph Creation Styling Syntax

60
50

40

Number of times accessed
N w
o o

Selection Queries

IIII | || | | IIIII |_|-|

Documentation Pages Accessed Per Task

task name
s Task 1
mmm Task 2 3 60
mm Task 3 2
3
& 40
[}
Q
E
Q20
©
g
<
I 0
| [II

Task 1 Task 2 Task 3
& @ NI & o »
R eo .&0 Q‘Ao ¥ e’Qo \e@@ $@> o (\0% e'Qo c}{b Ooe,x & C}‘@‘ +®®Q\ W Writing Tasks
P & S J RN AN S PN SN R
RSN N éo $o X X &© K SIS
< Lal R R
[N [

Figure 6: Documentation access count per task. Left: Documentation usage for each feature. Tasks that test specific features correlate
with increased documentation accesses for that specific feature (e.g., task 2 uses shape, node width, and arrow shape). Right: Aggregated
documentation usage per task. Documentation is accessed less as the participants progress through tasks, suggesting that participants were able
to quickly learn the ProtoGraph language. This validates the readability requirement of the language.

system. The section allowed participants to create any graph visu-
alization or animation and provided validation that the ProtoGraph
system can be used to solve real-world scenarios. Though this
section was optional; we saw that almost all of the participants’
challenged themselves to use most of what they had learned or try
features they had not yet learned. In Fig. 5 we see a few notable
examples that show that participants were able to successfully create
visualizations that are very similar to the anticipated use cases of the
ProtoGraph system. All examples were chosen from participants’
submissions in Section III. We hope that the ProtoGraph system can
be used as a pedagogical tool and examples (a) through (d) in Fig. 5
show pedagogical use cases. Fig. 5a shows the protein transcription
process and fits the scenario where a biology professor or teacher
prepares a graphic for a slideshow, worksheet, or textbook. This
participant also made use of node shapes that were not introduced
in the training showing that they were able to successfully navigate
the documentation or autocomplete to find specific styles that they
desired; this participant even leveraged the animation syntax of the
ProtoGraph language to show the multi-step protein creation process
as an animation. As this participant did, an instructor could use
the ProtoGraph system to create animations to explain concepts in
steps and break down complex processes. Fig. 5b shows a family
tree written in Portuguese; this reflects the use case where a student
might construct a graph visualization for a homework assignment
or presents a visual representation of a historical lineage. Notably,
this family tree visualization was made by a participant who rated
their prior coding experience as a 1 on a 1 to 7 Likert scale; this
highlights the ease of adoption and ease of use of the ProtoGraph
system in creating a real-world visualization for someone with little
to no programming experience. Visualizations (c) and (d) show
that two participants coincidentally had the idea of creating a graph
visualization for representing a > O molecule; we even see that the
second participant (d) used the width and height style properties to
resize the “O” (oxygen) node to better represent the size of the atom.
This represents the pedagogical use in another field: chemistry; here
an instructor or student may use this to prepare chemistry slides or
notes.

Average Number of Lines per Task Average Time per Task Average Lines per Minute by Task

shibdelile

Task 1 Task 2 Task 3 Task 1 Task 3 Task 1 Task 3
Writing Tasks Wmmg Tasks Wrmr\g Tasks

5

_ Average lnes per minute

Average line count

Average duration (minutes)

Figure 7: From left to right: Average number of written code lines,
task completion times and coding speed per task in Section I (Writ-
ing). The average number of lines written per minute (right) in-
creased as participants progressed through tasks, which indicates
good learnability (R4) and a corresponding increase in efficiency
(RS).

3.4 General Analysis

The study was a revealing and validating process. While participants
did not perform perfectly, the high success rate showed that even in a
short amount of time, participants were able to effectively learn and
use the ProtoGraph system. In Sec. 3.6, we discuss the end-of-study
survey which includes a 7-point Likert scale asking about familiarity
with graph visualizations and prior experience with programming.
The study included participants with varying levels of programming
experience and experience with graph visualizations. Notably, most
of our participants had little programming experience and knowl-
edge of graph visualizations. This distribution, allied with the high
accuracy rates observed, gives us confidence in the learnability of the
ProtoGraph system. Participants were able to complete tasks with
high accuracy and increasingly fewer documentation accesses as the
study progressed (see Sec. 3.5). They also were able to complete
tasks with increasing efficiency as shown by lines written divided
by duration. Fig. 7 shows that after an initial learning period which
is shown in the slower completion of task 1, users were able to
complete tasks 2 and 3 significantly faster. This jump in writing
speed was so drastic that between tasks 1 and 2 participants were on
average able to write double the lines of code in the same time or
less, and their efficiency further increased from tasks 2 to 3. This
reveals that participants were able to quickly get acquainted with the
ProtoGraph system, indicating learnability R4 and that participants

were able to greatly increase their speed as they spent time with the
system, validating our efficiency requirement RS5.

3.5 Documentation Usage

The documentation usage data we collected during the study pro-
vided us great insight into the experience of the participants. This
usage showed that participants were able to approach a new syntax
and with very brief and concise documentation, they were able to
learn and implement the syntax; this further validates the learnabil-
ity and approachability of the ProtoGraph language. We saw that
when participants were asked to use visual properties that they were
not explicitly introduced to in the active training, they were able
to successfully use the documentation to learn and use the specific
style. As a tool, the documentation paired with the autocomplete re-
duced errors and reduced the need for perfect recall in the participant.
Fig. 6 shows the documentation usage per location/page separated
by task in the writing section. Documentation usage for language
fragments that are present in each task (e.g., “connect”, “node color”,
and queries) declined as tasks progressed. This suggests that par-
ticipants were able to quickly learn core aspects of the ProtoGraph
language, thus reducing the need to check the documentation (R4).
This is even more evident with “Document pages accessed per task”
in Fig. 6 which shows a decrease in overall documentation access
per task.

3.6 Participant Feedback

The ProtoGraph system is a user-first system designed to help users
quickly and effectively make graph visualizations and animations.
Therefore, we asked each participant to complete a short survey
at the end of the study. We asked participants about their prior
familiarity with graph visualizations and programming experience.
We also asked them to rate and give feedback on the ProtoGraph
system about usefulness, learnability, readability, and usability.

We collected answers on a 7-point Likert scale and a free-response
field for any comments. The vast majority of users rated the Pro-
toGraph system as highly useful, learnable, readable, and usable.
Comments from participants with self-reported coding experiences
of 1 and 2 included: “The protoGraph language was easy to read
because it uses day to day words”. “For someone that has little expe-
rience with code it is simple to read it”, “After learning to use it it is
very easy to remember the commands and use them.” This feedback
highlights the approachability and ease of use for non-programmers.
On the other end of the spectrum, comments among participants
who reported coding experiences of 6 or higher included “Found it
very similar to other languages so it was easy to understand”, “It
made creating graphs very simple yet fun. Very accessible language
rules and easy to understand documentation.”, “The language is
well-structured into ’blocks” that are easy and pleasant to the eye.
The names of the commands and attributes are intuitive, so the user
can easily understand and remember them.” , “The interface is user
friendly, everything is where you can see it and easy to find. Also,
when an error has been made, the user is notified immediately which
is efficient.” Ultimately, the feedback shows that ProtoGraph was
well received by participants at all levels of coding experience.

REFERENCES
[1] Rrweb. https://github.com/rrweb-io/rrweb.

	Introduction
	Study Description
	Procedure
	Measures
	Tasks
	Pilots and Experimental Planning

	Study Results
	Section I: Writing
	Section II: Reading
	Section III: Free Explore
	General Analysis
	Documentation Usage
	Participant Feedback

