
Reconstructing Loopy Curvilinear Structures Using Integer Programming

Engin Türetken1 ∗ Fethallah Benmansour1 Bjoern Andres2 Hanspeter Pfister2 Pascal Fua1

1Computer Vision Laboratory (EPFL), 2Visual Computing Group (Harvard University),
CH-1015 Lausanne, Switzerland MA-02138 Cambridge, US

{engin.turetken,fethallah.benmansour,pascal.fua}@epfl.ch {bandres,pfister}@seas.harvard.edu

Abstract

We propose a novel approach to automated delineation
of linear structures that form complex and potentially loopy
networks. This is in contrast to earlier approaches that usu-
ally assume a tree topology for the networks.

At the heart of our method is an Integer Programming
formulation that allows us to find the global optimum of
an objective function designed to allow cycles but penal-
ize spurious junctions and early terminations. We demon-
strate that it outperforms state-of-the-art techniques on a
wide range of datasets.

1. Introduction

Networks of curvilinear structures are abundant both in

natural and man made systems. They appear at all possible

scales, ranging from nanometers in Electron Microscopy

images of neurons and meters in aerial images of roads to

petameters in dark-matter arbors binding massive galaxy

clusters. As a result, their automated reconstruction has

been one of the earliest topics addressed by computer vi-

sion scientists. Yet, full automation remains elusive when

the image data is noisy and the structures exhibit complex

morphology.

Recently, there has been renewed interest in the recon-

struction of tree-like structures and significant progress has

been achieved by formulating the problem as one of opti-

mizing a global objective function [26, 25]. However, in

practice, many interesting networks, such as those formed

by the roads and blood vessels depicted by the first row of

Fig. 1, are not trees since they contain cycles. In the latter

case, they are created by capillaries connecting the arteries

to the veins. Furthermore, even among those that really are

trees, such as the neurites of Fig. 1, the imaging resolution

is often so low that the branches appear to cross, thus intro-

∗This work was supported in part by the Swiss National Science Foun-

dation.

(Aerial) (Confocal)

(Brightfield) (Brainbow)
Figure 1. 2D and 3D datasets used to test our approach. (Aerial)

Aerial image of roads. (Confocal) Maximum intensity projection

of a confocal image stack of blood vessels, which appear in red.

(Brightfield) Minimum intensity projection of a brightfield stack

of neurons. (Brainbow) Maximum intensity projection of a brain-

bow [17] stack. As most images in this paper, they are best visual-

ized in color.

ducing several spurious cycles that can only be recognized

as such once the whole structure has been recovered. In

fact, this is widely reported as one of the major sources of

error [28, 8, 4, 29, 26, 7] and a number of heuristics have

been proposed to avoid spurious connections in the presence

of such cycles [26, 29, 8].

Fig. 2 depicts a typical case of this nature. We will

show that, in such cases, it is more effective to relax the

tree constraint and to build loopy networks by penalizing

the formation of spurious junctions and early branch ter-

minations. More specifically, we first select evenly spaced

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.238

1820

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.238

1820

2013 IEEE Conference on Computer Vision and Pattern Recognition

1063-6919/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPR.2013.238

1822

(a) (b) (c) (d)
Figure 2. Enforcing tree topology results in creation of spurious

junctions. (a) Image with two crossing branches. The dots depict

sample points (seeds) on the centerlines found by maximizing a

tubularity measure. In 3D, these branches may be disjoint but the

z-resolution is insufficient to see it and only a single sample is

found at their intersection, which we color yellow. (b) The sample

points are connected by geodesic paths to form a graph. (c,d) The

final delineation is obtained by finding a subgraph that minimizes

a global cost function. In (c), we prevent sample points from being

used more than once, resulting in an erroneous delineation. In (d),

we allow the yellow point to be used twice, and penalize early

terminations and spurious junctions, which yields a better result.

voxels that are very likely to belong to the curvilinear struc-

tures of interest. We treat them as vertices of a graph and

connect those that are within a certain distance of each

other by geodesic paths [5] whose quality we assess on

the basis of local image evidence. We then look for a sub-

graph that maximizes a global objective function that com-

bines image-based and geometry-based terms with respect

to which edges of the original graph are active.

This is similar in spirit to what is done in [25]. How-

ever, unlike in this earlier paper, we let graph vertices be

used by several branches, thus allowing cycles as shown in

Fig. 2(d), but introduce a regularization prior and structural

constraints to limit the number of branchings and termina-

tions. Unlike earlier graph-based delineation approaches,

ours lets vertices be shared among branches while still al-

lowing the recovery of the optimal tree from the resulting

loopy subgraph when the result should be acyclical. We for-

mulate the optimization as an Integer Program (IP), which

is NP-hard in theory but for which we propose an effective

formulation that delivers near-optimal solutions.

Our contribution is therefore the design of the con-

strained optimization problem that can be solved to optimal-

ity. We will use all four very significantly different datasets

depicted by Fig. 1 to demonstrate that our approach consis-

tently outperforms earlier ones.

In the remainder of this paper, we first briefly review re-

lated approaches. We then introduce our method, discuss its

implementation, and present our results.

2. Related Work
There has recently been a resurgence of interest in auto-

mated delineation techniques [18, 10, 20, 14] because ex-

tracting curvilinear structures automatically and robustly is

of fundamental relevance to many scientific disciplines. For

example, it has been recognized that “the lack of power-

ful and effective computational tools to automatically re-

construct neuronal arbors has emerged as a major technical

bottleneck in neuroscience research,” as stated on the home-

page of the DIADEM challenge [3]. Similar statements

could be made about medical research involving the fine

modeling of complex blood vessel structures, such as those

in the lungs, or automated delineation of linear structures in

aerial imagery databases.

Most automated approaches involve greedy strategies

that start from a set of seed points, incrementally grow

branches by evaluating a local tubularity measure—usually

based on the Hessian and Oriented Flux matrices [23, 13,

15]—in the vicinity of the initial seeds [7, 27, 4, 2]. High

tubularity paths are then iteratively added to the solution and

their end points are treated as the new seeds from which the

process can be restarted. Since the search typically involves

processing only a fraction of the image data, these algo-

rithms are computationally efficient . However, they are

sensitive to imaging artifacts and noise since errors early in

the growing process propagate, that can eventually result in

large morphological mistakes.

By contrast, graph-based methods find seed points in the

whole image or volume by evaluating the tubularity mea-

sure densely and finding its local maxima [12, 22, 27, 26,

25]. Although this is more computationally demanding,

it can still be done efficiently in Fourier space or using

GPUs [15, 16, 9]. The seed points are then connected by

paths that follow local maxima of the tubularity measure.

This results in a graph that forms an overcomplete represen-

tation of the underlying tree structure and the final step is to

build a tree by selecting an optimal subset of the edges. This

can be done by finding the Shortest Path Tree (SPT) [22],

the Minimum Spanning Tree (MST) [12, 29, 27], the k-

Minimum Spanning Tree (k-MST) [26], or a solution to the

Minimum Arborescence Problem (MAP) [25].

Although efficient polynomial-time algorithms exist for

both SPT- and MST-based formulations [22, 12, 29, 27],

these approaches suffer from the fact that they must span

all seed points, including some that might be false posi-

tives. As a result, their topology may be wrong and sub-

optimal post-processing procedures are required to elimi-

nate spurious branches and, possibly, correct topological

errors. The k-MST formulation [26] addresses this short-

coming by selecting an appropriate subset of points to be

spanned. However, it relies on a dual cost function and a

heuristic optimization algorithm [6] that does not guarantee

optimality. Furthermore, all these spanning-tree approaches

182118211823

evaluate the quality of an edge between two seed points

by integrating a function of the tubularity measure along

a connecting path. This quality measure usually fails to dis-

tinguish legitimate paths along faint curvilinear structures

from those that are shortcuts between high-contrast struc-

tures. The MAP formulation [25] addresses these issues by

using path classifiers to score the paths and introducing a

Mixed Integer Programming approach to guaranteeing op-

timality of the resulting solution.

However, none of these approaches address the delin-

eation problem for loopy structures. For the cases where

spurious loops seem to be present, for example due to insuf-

ficient imaging resolution in 3D stacks or due to projections

of the structures on 2D [24], some of the above-mentioned

methods [26, 29, 8] attempt to distinguish spurious cross-

ings from legitimate junctions by penalizing sharp turns and

high tortuosity paths in the solutions and introducing heuris-

tics to locally and greedily resolve the ambiguities. They do

not guarantee global optimality and, as a result, easily get

trapped into local minima, as reported in several of these pa-

pers. This is what our approach seeks to address by looking

for the global optimum of a well-defined objective function.

3. Method

Our algorithm, like those of [12, 29, 27, 26, 25] starts

by building a weighted graph designed to be an overcom-

plete representation for the underlying network of curvilin-

ear structures, such as the one of Fig. 2(b). It then finds

an optimal subgraph in terms of an appropriately designed

objective function.

The major difference from these earlier approaches is

that instead of constraining the subgraph to be a tree as

in Fig. 2(c), we allow it to contain cycles, as in Fig. 2(d),

and penalize spurious junctions and early branch termina-

tions. In the Result Section, we will show that this yields

improved results over very diverse datasets.

In the remainder of this section, we introduce our Inte-

ger Programming approach to finding an optimal and poten-

tially loopy subgraph.

3.1. Formulation

Our approach to constructing over-complete graphs such

as the one of Fig. 2(b) is similar to that of [25]. For each

pixel or voxel, we first estimate its likelihood of being on the

centerline of a curvilinear structure whose radius is within

a given range, using a tubularity measure similar to those

discussed in Section 2. We then find regularly spaced local

maxima, which will serve as the nodes of our graph, and

connect all those that are within a given distance from each

other. The paths are obtained by minimizing a geodesic dis-

tance in (N+1)-D scale space—N spatial dimensions and the

radius—as described in [5].

Figure 3. A loopy graph with a single root vertex v (in red). Al-

lowing vertex c (in green) to be used by the two different branches

(denoted by blue and yellow arrows) produces a loopy solution

instead of a tree. Describing the crossing in terms of edge pairs

{i, c, j} and {k, c, l} being active and all other edge pairs con-

taining c, such as {k, c, j}, being inactive makes it possible to

eventually recover the tree topology nevertheless.

This produces a graph G = (V,E), whose vertices

V = {vi} represent the seed points and pairs of oppositely

directed edges E = {eij = (vi, vj), eji = (vj , vi)} the

paths linking them. Algorithms [12, 29, 27, 26, 25] that rely

on this kind of formulation can all be understood as maxi-

mizing an a posteriori probability given image evidence and

geometric priors. Most of them do so by selecting a subset

of these edges that define a cycle-free subgraph. Disallow-

ing cycles prevents vertices from being shared by separate

branches, as is required for successful reconstruction cases

such as the one of Fig. 2.

Conversely, allowing such crossings produces cyclic

graphs such as the one shown in Fig. 3. However, in some

cases, such as when delineating the neural structures of the

Brightfield and Brainbow images of Fig. 1, we know that

the underlying structure truly is a tree whose topology we

will eventually want to recover. In the case of Fig. 3, this

means that we need to be able to distinguish the one branch

from the other. One approach would be to first recover the

subgraph defined by the active edges and then attempt to

assess its topology. However, to consistently enforce geo-

metric constraints on branches even at junctions, we do both

simultaneously by reasoning in terms of whether consecu-

tive pairs of edges belong to the final delineation or not.

Concretely, in the case of Fig. 3, edge pairs (eic, ecj) and

(ekc, ecl) should belong but neither (eic, ecl) nor (ekc, ecj).
Similarly, consider the vertices labeled i,j,k,l, and m in the

graph of Fig. 2(b). In the delineation of Fig. 2(d), edge pairs

(eij , ejk) and (emj , ejl) are both active and vertex j belongs

to both branches.

To formalize this, let F = {eijk = (eij , ejk)} be the set
of consecutive edge pairs in G, X = {Xijk} the vector of
binary random variables denoting whether edge pairs {eijk}

182218221824

truly belong to the underlying curvilinear structure, and x =
{xijk} the corresponding vector of indicator variables. We
will say that eijk is active in the solution if xijk = 1. Given
the graph and the image evidence I , we look for the optimal
subgraph as the solution of

x∗ = argmax
x∈Pc

P (X = x|I,G) ,

= argmax
x∈Pc

P (I,G|X = x)P (X = x) ,

= argmin
x∈Pc

− log(P (I,G|X = x))− log(P (X = x)), (1)

where x belongs to the set Pc of binary vectors that define

feasible subgraphs, as defined in the following section. In

other words, we seek to minimize the sum of two negative

log-likelihood terms, which we evaluate as follows.
As we will show in the appendix, assuming conditional

independence of the image evidence given the true values
of the random variables Xijk, the first log likelihood term
of Eq. 1 can be rewritten as

− log(P (I,G|X = x)) =
∑

eijk∈F
wijkxijk, (2)

where wijk is a cost term that accounts for the quality of the

geodesic paths associated with the edge pair eijk. We use

the path classification approach of [25] to compute it and

give the details of the computation in the appendix. As dis-

cussed in Section 2, we have found it more effective at dis-

tinguishing legitimate paths from spurious ones than more

standard methods, such as those that integrate a tubularity

measure along the path.

The second log likelihood term in Eq. 1 is a prior term

that penalizes unwarranted bifurcations or terminations. We

model it as a Bayesian network with latent variables Mij =∑
emij∈F Xmij and Oij =

∑
eijn∈F Xijn, which denote

the true number of incoming and outgoing edge pairs into

or out of edge eij . Furthermore, let

• pt = P (Oij = 0|Mij = 1) be the prior probability

that a branch terminates at edge eij ,

• pc = P (Oij = 1|Mij = 1) be the prior probability

that a branch continues at edge eij ,

• pb = P (Oij = 2|Mij = 1) be the prior probability

that a branch bifurcates at edge eij ,

Assuming that the edge pairs {eijn} are independent of the

other edge pairs, given the true state the edge eij , and by in-

specting the probability of each admissible event, namely

termination, continuation or bifurcation at edge eij , the

prior term − log(P (X = x)) can be rewritten as

−
∑

eij∈E

[∑
emi∈E

log(pt)xmij +
∑

ejn∈E
log

(
pc

pt

)
xijn +

∑
ejn∈E

∑
ejk∈E
k<n

log

(
pbpt

(pc)2

)
xijnxijk

]
, (3)

which we derive in the appendix. In short, minimizing the

negative log likelihood of Eq. 1 amounts to minimizing,

with respect to the indicator variables x, the criterion

∑
eijk∈F

aijkxijk +
∑

eijk,eijn∈F
bijknxijkxijn , (4)

which is the sum of the linear and quadratic terms of Eqs. 2

and 3 and whose aijk and bijkn coefficients are obtained

by summing the respective terms.

However, not all choices of binary values for the indica-

tor variables give rise to a connected subgraph that repre-

sents a plausible delineation. The above minimization must

therefore be carried out subject to a set of constraints that

we introduce next.

3.2. Constraints

Our images may contain several disconnected structures.

To avoid having to process them sequentially in a greedy

manner, which may result in some branches being “stolen”

by the first structure we reconstruct and therefore a subopti-

mal solution, we connect them all. Assuming we are given a

set R of seed vertices, one for each structure of interest, we

create a virtual root vertex vv and connect it to each vr ∈ R
by zero cost edge pairs containing all other vertices to which

vr is connected.

We now define four sets of constraints to ensure that the

solutions to the minimization problem of Eq. 4 are such that

seed vertices are not isolated, branches are edge-disjoint,

potential crossovers are consistently handled, and all active

edge pairs are connected.

Non-isolated Seeds: We require the seed vertices vr ∈ R
to be connected to at least one vertex other than the virtual

root vv and to have no incoming edge other than evr. We

write this as

∑
eri∈E

xvri ≥ 1, ∀vr ∈ R , (5)

∑
eijr∈F

xijr +
∑

eirj∈F :vi �=vv

xirj = 0, ∀vr ∈ R .

Disjoint Edges: For each edge eij ∈ E, we let at most

one edge pair be active among all those that either contain

eij or sufficiently overlap with it. We do the first by pre-

venting the number of active incoming edge pairs into an

edge to be more than one. Second, we treat edges that over-

lap more than a certain fraction of their radius as being the

same edge for the purpose of this constraint. Let tij denote

182318231825

the geodesic path corresponding to edge eij . We write

∑
ekl∈C(eij)

∑
emk∈E:
vm �=vl

xmkl ≤ 1, ∀eij ∈ E : vi �= vv,

C(eij) =
{
ekl ∈ E |

(tkl⊂tij)∨
(l(tij∩tkl)>αr̄(tij∩tkl)∧

l(tij)<l(tkl))

}
, (6)

where l(.) and r̄(.) denote

the length and mean radius

of a path respectively. α
is a constant value that de-

termines the allowed extent

of the overlap between the

geodesic paths of the edges.

It is set to 5 in all our experiments. In the example depicted

by the figure above, among all the edge pairs incoming to

the edges eij , ek1l1 and ek2l2 , only one can be active in the

final solution.

For those curvilinear structures that are inherently trees,

these constraints make their recovery from the resulting

subgraph possible by starting from the terminal vertices and

following the active edge pairs along the paths that lead to

the root vertices.

Crossover Consistency: A potential crossover in G is

a vertex, which is adjacent to at least four other ver-

tices and whose in- and out-degrees are greater than one.
A consistent
solution con-
taining such a
vertex vp is then
defined as the
one, in which
branches do not
terminate at vp
if its in-degree
in the solution is

greater than one. The figure to the left illustrates consistent
configurations denoted by a swoosh and inconsistent ones
denoted by a cross. We express this as

∑

eki∈E:
vk �=vj

xkij +
∑

elm∈E:
vl �=vq ,vl �=vj

xlmq −
∑

eju∈E:
vu �=vi

xiju ≤ 1 , (7)

∀eij ∈ E ∀emq ∈ C(vj) : vm �= vi

C(vj) = {enk ∈ E | vk = vj ∨ (vj ∈ tnk, vn �= vj , vk �= vj)}

These constraints are only active when dealing with

structures that inherently are trees, such as the neural struc-

tures of Fig. 1. For inherently loopy ones, such as the roads

and blood vessels, we deactivate them to allow creation of

junctions that are parts of legitimate cycles.

Connectedness: We require all the active edge pairs to be

connected to the virtual root vv . An edge pair eijk is said to

be connected if there exists a path in G, starting at vv and

containing eijk, along which all the edge pairs are active.

Let ylij (i �= l) be a non-negative continuous flow vari-
able that denotes the number of distinct directed paths in the
solution, from the virtual root vv to vertex vl, that traverse
the edge eij . This gives rise to the following constraint set

∑

evj∈E
yl
vj =

∑

eil∈E
yl
il, ∀vl ∈ V \ {vv} , (8)

∑

evj∈E
yl
vj ≤ deg−(vl), ∀vl ∈ V \ {vv} , (9)

∑

eij∈E
yl
ij =

∑

ejk∈E
yl
jk, ∀vj , vl ∈ V \ {vv} : vj �= vl , (10)

yl
il ≥ xilk, ∀eilk ∈ F , (11)

ylil =
∑

eki∈E
xkil, ∀eil ∈ E : vi �= vv , (12)

yl
ij ≤ deg−(vl)

∑

eki∈E
xkij ,

∀eij∈E:vi �=vv,

∀vl∈V \{vv,vi,vj} , (13)

where deg−(.) is the in degree of a vertex. The first two

constraints guarantee that the amount of flow outgoing from

virtual vertex vv to true vertex vl is equal to the incoming

flow to vl, which must be smaller than the in degree of vl.
The following constraint imposes conservation of flow at

intermediate vertices. Finally, the last three constraints bind

the flow variables to the binary ones, ensuring that a con-

nected network formed by the non-zero flow variables is

also connected in the active edge pair variables. Note that,

since we are looking for possibly cyclic subgraphs, there

can be multiple paths incoming to a vertex. Hence, unlike

the flow variables of [11] that are bounded by one, the ones

defined here have no upper bounds.

3.3. Optimization

Minimizing the objective function of Eq 4 subject to

the constraints described above is NP-Hard. Nevertheless,

its solution can be closely approximated using the branch

and cut algorithm implemented in a publicly available li-

brary [1]. We produced all the results described in the result

section by running this code. The optimization algorithm

always converged to the global optimum using a very small

solution gap (1e−7).

4. Results
In this section, we first describe briefly the four datasets

of Fig. 1, which we used to validate our approach. We then

present our results on the first two, which contain cyclic

networks, and finally on the next two, which contain true

trees but whose optical resolution is so poor that they look

like cyclic graphs. We show that our approach outperforms

the state-of-the-art in both cases.

182418241826

4.1. Datasets and Path Classification

We evaluated our approach on the four different datasets

depicted by Fig. 1 and described in more detail below:

• Aerial: Aerial images of loopy road networks. We

used 21 grayscale versions of these images for train-

ing and 8 for testing.

• Confocal: Two image stacks of direction selective reti-

nal ganglion cells were acquired with a confocal mi-

croscope. We used a portion of one to train our path

classifier and both for testing. We only considered the

red channel of these stacks since it is the only one used

to label the blood vessels.

• Brightfield: Six image stacks were acquired by bright-

field microscopy from biocytin-stained rat brains. We

used three for training and three for testing.

• Brainbow: Neurites were visualized by targeting

mice primary visual cortex using the brainbow tech-

nique [17] so that each neuronal structure has a distinct

color. We used one image stack for training and three

for testing.

Many roads of the Aerial dataset are partially occluded

by trees while the images from the other datasets are very

noisy, making the delineation task challenging in all cases.

Fig. 4 depicts some of our results on these datasets and we

provide additional ones as supplementary material.

To obtain these results, we had to estimate the cost terms

wijk of Eq 2. To this end, we used the path classifier of [25],

which operates on histograms of gradient deviation features

and was designed for grayscale images. To adapt it to the

Brainbow color images, we first converted the stacks into

the CIELAB space and clustered their voxels using the K-

Means algorithm. For each cluster, we then computed a nor-

malized gray scale image whose voxel values are inversely

proportional to the color distance between the original voxel

and the cluster mean. This results in K gray scale images

(K is set to 50 in all our experiments) and each voxel is as-

sociated to the one its cluster corresponds to. For a pixel

along any given path, the gradient features are computed

on this associated image. The result is that only gradients

corresponding to pixels with a similar color are taken into

account.

4.2. Roads and Blood Vessels

The roads and blood vessels of the Aerial and Confocal
datasets form graphs in which there are many real cycles.

In the case of the blood vessels, this is because there are

capillaries that connect the arteries to the veins and irrigate

the cells along the way.

As can be seen in the first row of Fig. 4, the road net-

works are recovered almost perfectly in spite of the occlu-

sions. The only errors are driveways that are treated as very

BRBW1 BRBW2 BRBW3 BRF1 BRF2 BRF3

HGD-QMIP [25] 0.3692 0.5118 0.4016 0.6114 0.4263 0.6551

L-QMIP 0.8327 0.6897 0.7848 0.7282 0.5122 0.7391

Table 1. DIADEM [3] scores for our results (L-QMIP) and those

of [25] (HGD-QMIP) for the delineations of 3 Brainbow stacks

and the 3 Brightfield ones. They are denoted by BRBWi and

BRFi, respectively. Our scores are higher and therefore better.

BRF1 BRF2 BRF3

NARAY [21] 0.56 0.65 0.88 0.99 0.64 0.64 0.91 0.99 0.55 0.61 0.87 0.99

L-QMIP 0.14 0.33 0.86 0.76 0.18 0.32 0.89 0.88 0.14 0.32 0.80 0.67

Table 2. NetMets [19] scores for our results (L-QMIP) and those

obtained with the code made publicly available by the DIADEM

challenge winners [21] (NARAY). The NetMets software outputs

four numbers for each trial, geometric False Positive Rate, geo-

metric False Negative Rate, connectivity False Positive Rate, and

connectivity False Negative Rate. We list them here in that order

and ours are lower and therefore better.

short roads and a few roads dead-ending because the con-

necting path to the closest junction is severely occluded.

The first one could be addressed by introducing a seman-

tic threshold on short overhanging segments while the latter

would require a much more sophisticated semantic under-

standing. We supply results on the four remaining test im-

ages as supplementary material.

The quality of the blood vessel delineations depicted by

the second row is much harder to assess on the printed page

but becomes clear when looking at the rotating volumes that

we supply as supplementary material.

4.3. Neural Structures

The neurites of the Brightfield and Brainbow datasets

form tree structures without cycles. However, because of

the low z-resolution, branches that really are disjoint appear

to cross.

Because the ground truth tracings are trees, we were able

to compute the DIADEM scores [3] for the four delineations

depicted by the bottom two rows of Fig. 4. They are listed

in Table 1 along with those results obtained by solving the

Mixed Integer Program advocated in [25], which is not de-

signed to prevent cycles. Since we use the same algorithm

to assess the quality of the paths in both cases, the main dif-

ference between the two approaches is that ours allows ver-

tices to be used more than once and favors creation of cycles

through the additional cost terms and constraints, while the

other does not, which results in a substantial performance

gain.

We also evaluated the curvelet transform based algorithm

of [21] on the Brightfield dataset. We used the publicly

available code by the winners of the DIADEM challenge.

Since the code does not allow the user to provide a set of

root nodes, the DIADEM score of its output cannot be com-

puted. However, the same group recently made available a

182518251827

Figure 4. Delineation results, best viewed in color. Top Row: Four road images with final delineations shifted and overlaid to allow

comparisons. Bottom Rows: For each dataset, two minimal or maximal projections and overlaid delineation results. Each connected

curvilinear structure network is shown in a distinct color.

software package to evaluate reconstructions based on the

NetMets [19] measure. Similar to the DIADEM metric,

this measure takes as input the reconstruction, the corre-

sponding ground truth tracings and a sensitivity parameter

182618261828

σ, which is set to twice the minimum image spacing in all

our experiments.

We evaluated this measure on both their result and ours

and report the outcome in Table 2, which shows that our

approach brings about a very significant improvement.

5. Conclusion
We have presented a graph-based approach to delineat-

ing complex linear structures in 2D images and 3D image

stacks. Unlike most earlier ones, it explicitly handles the

fact that they may be cyclic and builds graphs in which ver-

tices may belong to more than one branch. This results in a

substantial performance increase.

However the geometric constraints we impose are still

relatively local since they bear on consecutive edge pairs. In

future work, we will focus on imposing more global ones.

References
[1] Gurobi Optimizer. http://www.gurobi.com/. 5

[2] K. Al-Kofahi, S. Lasek, D. Szarowski, C. Pace, G. Nagy,

J. Turner, and B. Roysam. Rapid Automated Three-

Dimensional Tracing of Neurons from Confocal Image

Stacks. TITB, 6(2):171–187, 2002. 2

[3] G. A. Ascoli, K. Svoboda, and Y. Liu. Digital Reconstruction

of Axonal and Dendritic Morphology Diadem Challenge,

2010. http://diademchallenge.org/. 2, 6

[4] E. Bas and D. Erdogmus. Principal Curves as Skeletons of

Tubular Objects - Locally Characterizing the Structures of

Axons. Neuroinformatics, 9(2-3):181–191, 2011. 1, 2

[5] F. Benmansour and L. Cohen. Tubular Structure Segmen-

tation Based on Minimal Path Method and Anisotropic En-

hancement. IJCV, 92(2):192–210, 2011. 2, 3

[6] C. Blum and M. Blesa. Combining Ant Colony Opti-

mization with Dynamic Programming for Solving the K-

Cardinality Tree Problem. In Computational Intelligence and

Bioinspired Systems, pages 25–33, 2005. 2

[7] A. Choromanska, S. Chang, and R. Yuste. Automatic Recon-

struction of Neural Morphologies with Multi-Scale Graph-

Based Tracking. Frontiers in Neural Circuits, 6(25), 2012.

1, 2

[8] P. Chothani, V. Mehta, and A. Stepanyants. Automated Trac-

ing of Neurites from Light Microscopy Stacks of Images.

Neuroinformatics, 9:263–278, 2011. 1, 3

[9] L. Domanski, C. Sun, R. Hassan, P. Vallotton, and D. Wang.

Linear Feature Detection on Gpus. 2010. 2

[10] D. Donohue and G. Ascoli. Automated Reconstruction

of Neuronal Morphology: An Overview. Brain Research

Reviews, 67:94–102, 2011. 2

[11] C. Duhamel, L. Gouveia, P. Moura, and M. Souza. Mod-

els and Heuristics for a Minimum Arborescence Problem.

Networks, 51(1):34–47, 2008. 5

[12] M. Fischler, J. Tenenbaum, and H. Wolf. Detection of Roads

and Linear Structures in Low-Resolution Aerial Imagery Us-

ing a Multisource Knowledge Integration Technique. CVIP,

15(3):201–223, March 1981. 2, 3

[13] A. Frangi, W. Niessen, K. Vincken, and M. Viergever. Mul-

tiscale Vessel Enhancement Filtering. Lecture Notes in

Computer Science, 1496:130–137, 1998. 2

[14] C. Kirbas and F. Quek. Vessel Extraction Techniques and

Algorithms: A Survey. In Symposium on BioInformatics

and BioEngineering, pages 238–245, 2003. 2

[15] M. Law and A. Chung. Three Dimensional Curvilinear

Structure Detection Using Optimally Oriented Flux. In

ECCV, 2008. 2

[16] M. Law and A. Chung. An Oriented Flux Symmetry Based

Active Contour Model for Three Dimensional Vessel Seg-

mentation. In ECCV, pages 720–734, 2010. 2

[17] J. Livet, T. Weissman, H. Kang, R. Draft, J. Lu, R. Bennis,

J. Sanes, and J. Lichtman. Transgenic strategies for com-

binatorial expression of fluorescent proteins in the nervous

system. Nature, 450(7166):56–62, 2007. 1, 6

[18] J. Lu. Neuronal Tracing for Connectomic Studies.

Neuroinformatics, 9(2-3):159–166, 2011. 2

[19] D. Mayerich, C. Bjornsson, J. Taylor, and B. Roysam. Net-

mets: Software for Quantifying and Visualizing Errors in Bi-

ological Network Segmentation. BMC Bioinformatics, 13,

2012. 6, 7

[20] E. Meijering. Neuron Tracing in Perspective. Cytometry Part

A, 77(7):693–704, 2010. 2

[21] A. Narayanaswamy, Y. Wang, and B. Roysam. 3-d image

pre-processing algorithms for improved automated tracing of

neuronal arbors. Neuroinformatics, 9(2-3):219–231, 2011. 6

[22] H. Peng, F. Long, and G. Myers. Automatic 3D Neuron Trac-

ing Using All-Path Pruning. Bioinformatics, 27(13):239–

247, 2011. 2

[23] Y. Sato, S. Nakajima, H. Atsumi, T. Koller, G. Gerig,

S. Yoshida, and R. Kikinis. 3D Multi-Scale Line Filter for

Segmentation and Visualization of Curvilinear Structures in

Medical Images. MIA, 2:143–168, June 1998. 2

[24] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and

B. van Ginneken. Ridge Based Vessel Segmentation in Color

Images of the Retina. TMI, 2004. 3

[25] E. Turetken, F. Benmansour, and P. Fua. Automated Recon-

struction of Tree Structures Using Path Classifiers and Mixed

Integer Programming. In CVPR, June 2012. 1, 2, 3, 4, 6

[26] E. Turetken, G. Gonzalez, C. Blum, and P. Fua. Automated

Reconstruction of Dendritic and Axonal Trees by Global Op-

timization with Geometric Priors. Neuroinformatics, 9(2-

3):279–302, 2011. 1, 2, 3

[27] Y. Wang, A. Narayanaswamy, and B. Roysam. Novel 4D

Open-Curve Active Contour and Curve Completion Ap-

proach for Automated Tree Structure Extraction. In CVPR,

pages 1105–1112, 2011. 2, 3

[28] Y. Wang, A. Narayanaswamy, C. Tsai, and B. Roysam.

A Broadly Applicable 3D Neuron Tracing Method Based

on Open-Curve Snake. Neuroinformatics, 9(2-3):193–217,

2011. 1

[29] T. Zhao, J. Xie, F. Amat, N. Clack, P. Ahammad, H. Peng,

F. Long, and E. Myers. Automated Reconstruction of Neu-

ronal Morphology Based on Local Geometrical and Global

Structural Models. Neuroinformatics, 9:247–261, May 2011.

1, 2, 3

182718271829

