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Abstract

Reconstructing a synaptic wiring diagram, or connectome, from elec-
tron microscopy (EM) images of brain tissue currently requires many
hours of manual annotation or proofreading (Kasthuri and Lichtman,
2010; Lichtman and Sanes, 2008; Seung, 2009). The desire to reconstruct
ever larger and more complex networks has pushed the collection of ever
larger EM datasets. A cubic millimeter of raw imaging data would take
up 1 PB of storage and present an annotation project that would be
impractical without relying heavily on automatic segmentation methods.
The RhoanaNet image processing pipeline was developed to automati-
cally segment large volumes of EM data and ease the burden of manual
proofreading and annotation. Based on (Kaynig et al., 2015), we updated
every stage of the software pipeline to provide better throughput per-
formance and higher quality segmentation results. We used state of the
art deep learning techniques to generate improved membrane probability
maps, and Gala (Nunez-Iglesias et al., 2014) was used to agglomerate 2D
segments into 3D objects.

We applied the RhoanaNet pipeline to four densely annotated EM
datasets, two from mouse cortex, one from cerebellum and one from mouse
lateral geniculate nucleus (LGN). All training and test data is made avail-
able for benchmark comparisons. The best segmentation results obtained
gave V Info

F-score scores of 0.9054 and 09182 for the cortex datasets, 0.9438 for
LGN, and 0.9150 for Cerebellum.

The RhoanaNet pipeline is open source software. All source code,
training data, test data, and annotations for all four benchmark datasets
are available at www.rhoana.org
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Figure 1: The RhoanaNet segmentation pipeline. First we generate boundary
probability maps for each electron microscopy image. These are then used to
obtain a 2D segmentation of neuronal regions, followed by region agglomeration
across sections to obtain a 3D segmentation. All steps are embarrassingly par-
allel and can be executed in blocks of image volumes. The 3D segmentations
from different blocks are then merged into one global reconstruction volume.

1 Introduction

Reconstructing the wiring diagram of the nervous system at the level of sin-
gle cell interactions is necessary for discovering the underlying architecture of
the brain and investigating the physical underpinning of cognition, intelligence,
and consciousness (Kasthuri and Lichtman, 2010; Lichtman and Sanes, 2008;
Seung, 2009). Advances in the data acquisition process now make it possible
to image millions of cubic microns of tissue with hundreds of TB of raw data
(Narayanan Kasthuri et al., 2015). With these techniques, a cubic millimeter
of raw imaging data would take up 1 PB of storage and present an annotation
project that would be impractical without relying heavily on automatic seg-
mentation methods (Kaynig et al., 2015). Currently the general development
of new image segmentation and reconstruction techniques for Connectomics is
hindered by the lack of available benchmark data sets. These benchmarks are
standard practice in computer vision and machine learning research and driv-
ing the development of new methods (Krizhevsky, 2009; Martin et al., 2001).
The benefit of benchmarks for Connectomics became evident when the ISBI
2012 competition with one publicly released data set greatly improved the state
of the art by opening the field to broader range of computer vision research
(Arganda-Carreras et al., 2015).

In this paper we present a complete framework for benchmarking Connec-
tomics reconstructions and apply it to four data sets with annotations (see figure
2), together with an improved version of our automatic segmentation pipeline
called RhoanaNet (see figure 1), evaluation metrics and our current benchmark
results.

The RhoanaNet pipeline and segmentation proofreading tools Mojo and
Dojo (Haehn et al., 2014) are open source software. Source code and data
are available online at www.rhoana.org.
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2 Methods

We first describe the four benchmark data sets and then our improved auto-
mated pipeline and the evaluation metrics.

RhoanaNet Pipeline

Since the original publication of the Rhoana pipeline (Kaynig et al., 2015), we
have updated every stage to take advantage of state-of-the-art deep learning
techniques, resulting in large improvements in quality and performance. The
new RhoanaNet Pipeline consists of five main stages. An overview is given in
figure 1. The first stage of the pipeline is membrane classification, where cell
membranes are identified in the 2D images producing a membrane probability
map. Next, 2D candidate segmentations are generated based on the membrane
probability for each image. These segmentations are then grouped across sec-
tions into geometrically consistent 3D neuron reconstructions. For this stage,
3D blocks are cropped from the full volume and each block is processed in-
dividually to produce a 3D segmentation. An optional cleanup stage removes
very small objects and objects completely surrounded by a single object. In the
fourth stage, blocks are matched pairwise with neighboring blocks, and overlap-
ping objects are joined. Finally, matched objects are joined globally to produce
a consistent segmentation for the full volume.

The modular pipeline approach allows each step to be improved or replaced
independently of the rest of the pipeline. This is particularly useful for a direct
comparison between methods which only address a part of the pipeline, e.g.
updating the membrane classifier or the region agglomeration stage.

In comparison to the original Rhoana pipeline (Kaynig et al., 2015), the
membrane classification stage has been updated to use state-of-the-art deep
learning techniques, the region agglomeration has been changed from segmen-
tation fusion (Vazquez-Reina et al., 2011) to Gala (Nunez-Iglesias et al., 2014)
and the 2D segmentation and pairwise matching stages were updated to be more
efficient. In addition, the pipeline was transitioned from MATLAB to a C++
and Python code-base which resulted in run-time performance improvements.
The code for our pipeline can be found at www.rhoana.org.

Deep Learning

We used deep learning techniques to generate improved membrane probability
maps and 2D segmentations. The Keras deep learning library, (Chollet, 2015)
with the Theano back-end (Theano Development Team, 2016), was used to
train a U-Net network (Ronneberger et al., 2015) to predict the probability of a
pixel in the electron microscopy image representing a cell boundary membrane.
The U-Net architecture follows the defaults described by Ronneberger et al. It
consists of layer blocks containing three convolutional layers plus either a max-
pooling layer for down-sampling or a deconvolutional layer for up-sampling. The
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network first has four blocks downsampling the input and then four blocks up-
sampling again to the original resolution. Residual connections are built between
downsampling and upsampling blocks at matching resolutions. Ronneberger et
al. showed that this network architecture is very suitable to membrane detec-
tion in electron microscopy images, while still maintaining a good throughput
rate. On a GTX 970 GPU the data throughput rate is 1 megapixel per second;
about two orders of magnitude faster than the random forest classification on a
CPU. The U-Net architecture is sensitive to contrast variations in the images.
Therefore, all network training and test data were pre-processed using CLAHE.

2D Segmentation

With improved classification performance from the deep networks the 2D seg-
mentation stage no longer requires a graph-cut gap completion step (Kaynig
et al., 2015). Instead, a simple watershed on Gaussian smoothed membrane
probability maps is used to generate an over-segmentation, which then serves
as input for the region agglomeration stage.

Region Agglomeration

The over-segmentation obtained from the previous step needs to be grouped
into geometrically consistent 3D objects of neuronal structures. Gala (Nunez-
Iglesias et al., 2014) uses a random forest classifier to predict the probability of
two segments belonging to the same object. These scores are then used in an
agglomerative clustering scheme to group the segmented regions. The random
forest region agglomeration classifier is not only trained to group the initial
segments, but also for later stages during the agglomeration phase. Iglesias et
al. showed that this form of training significantly improves the clustering result.
Compared to the previously employed segmentation fusion, Gala performs with
greater accuracy for areas with branching structures such as dendritic spines
in the cortex. For volumes with fewer branches, segmentation fusion and Gala
perform with about the same accuracy.

Pairwise Block Matching

Pairwise matching was previously solved using Binary Integer Linear Program
optimization (Vazquez-Reina et al., 2011). We have replaced this step with a
much faster algorithm based on the stable matching algorithm (Gale and Shap-
ley, 1962). Block matching is performed using multiple image planes from the
overlapping volume between neighboring blocks. Objects are first matched by
the stable matching algorithm for objects with overlaps above a given thresh-
old (usually set to approximately 100nm2 per overlapping slice). After the
first round of stable matching, any remaining unmatched objects are optionally
matched to their largest partners.
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Figure 2: Image summary of the four datasets. Clockwise from top left with im-
age heights: S1 Cortex (12.29 microns), LGN (16.38 microns), Cerebellum (8.19
microns), ECS Cortex (8.19 microns). Each panel consists of a source EM im-
age (left), U-Net membrane probability results (middle) and final segmentation
results (right). All images are from test volume data.

Datasets

We provide four benchmark datasets, each of which presents different challenges
for segmentation.

S1 Cortex

This dataset was collected from mouse somatosensory cortex (Narayanan Kasthuri
et al., 2015) and consists of several ground truth annotated volumes. The data is
publicly available on the Open Connectome website (www.openconnectomeproject.org)
and has been partly analyzed in an open benchmark competition (brainiac2.mit.edu/SNEMI3D/home).
The data consists of 3 fully annotated sub-volumes from the whole S1 data set
described in Kasthuri’s paper. This data has a resolution of 6 nm per pixel and
a section thickness of about 30 nm. AC4 is a fully annotated volume of size
1024×1024×100 pixels and corresponds to the training data of the benchmark
competition from 2013. In addition we provide a similar sized volume AC3
consisting of 1024× 1024× 300 pixels and a large cylindrical volume of a recon-
structed dendrite and surrounding structures. The cylindrical volume fits inside
a 2048 × 2048 × 300 pixel crop from the S1 dataset. We used half of AC3 and
all of AC4 as training data for both membrane classification and agglomeration
stages of the pipeline, and the large dendrite volume as test data. All volumes
are densely packed with dendrites and axons with many branching structures
and small processes such as spine necks which make automatic reconstruction
particularly challenging. This image data contains very few artifacts.

Cerebellum

This dataset was collected from developing mouse cerebellum, and contains a
mix of parallel fibers and Purkinje cell processes. The parallel fibers generally
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travel in the same direction without branches, and therefore present a relatively
easy task for automatic reconstruction. However, the developing Purkinje cells
consist of many branching processes and contain sub-cellular structures that
are difficult to differentiate from the outer membrane of cells. The resolution
of this data is about 8 nm per pixel with a section thickness of 30 nm. The
data set consists of one fully annotated volume of 1024× 1024× 100 pixels. We
used the first 50 sections for training and the last 50 sections to evaluate test
performance.

LGN

This training and test volume is a small part of a 67 million cubic micrometer
volume from mouse lateral geniculate nucleus (LGN) (Morgan et al., 2016).
Cell membranes appear densely packed and contrast is lower than in the other
datasets. The data also contains some challenging staining artifacts, which are
common in electron microscopy data and need to be addressed by automated
reconstruction methods. The resolution of this data set is 4nm× 4nm× 30nm.
The training volume is 2360 × 2116 × 151 pixels. The test volume is 2360 ×
2116 × 20 pixels.

ECS Cortex

This dataset was collected from mouse cortex, with the tissue processed to
preserve the extra-cellular space (ECS) normally present in brain tissue. This
data looks very different to conventionally stained EM data, as neuronal regions
are not densely packed. It is the smallest data set in our collection, but the
unique staining and resulting tissue properties make it a very interesting data
set to analyze. The resolution of this data is 4 nm per pixel with a section
thickness of 30 nm. The training volume is 1536 × 1536 × 98 pixels. A small
subsection of this volume consisting of 632×560×40 pixels has been annotated
again by a second person. To train our membrane detection network we used
the training images and annotations from both label stacks. The test volume
consists of 1536 × 1536 × 20 pixels.

Metrics

It has been difficult to find consensus on the correct metric to use to measure
segmentation accuracy in Connectomics. Easy to understand metrics such as
“error free path length”, “edit distance” and “number of split and merge errors
per cubic micron” are favored by biologists because of the intuitive nature of
these metrics. A short description of these metrics provides a good idea of
what the resulting numbers mean and how close the segmentation comes to a
correct result. Unfortunately these metrics are not robustly defined and require
arbitrary decisions to be made about what constitutes an error.

For example, small disagreements between segmentations do not change the
overall structure of the 3D reconstruction. Two annotations of the same volume

6



Figure 3: Automatic segmentation results (left) an manual annotations (right)
for a 53.4µm3 section of dendrite (13.1µm in length). 131 merge operations (non-
red colors) and 23 split operations (not shown) would be required to proofread
all errors larger than 0.0054 µm3.

made by different experts (or made by the same expert at different times) will
contain many differences in exact boundary locations, even when the overall
structure of the reconstructed objects is the same. Therefore, metrics such as
“errors per cubic micron” typically only count errors above a chosen minimum
error volume. Similarly, the “error free path length” metric will typically ignore
small merge or split errors lasting for a chosen minimum path length or number
of annotation nodes. Ignoring these small errors is a reasonable approach to
take and necessary when using this type of metric, however it makes it difficult
to robustly define the metric and prevent exploitation of tuning parameters in
the metric.

To avoid uncertainty introduced by arbitrary decisions, the computer vision
community favors metrics that count all errors in a contingency table and assign
different weights to each error depending on the size of the error, and complex-
ity of the ground truth segmentation. Rand index, Adjusted Rand index and
variation of information (VI) are examples of this type of metric. Unfortunately
these metrics result in a number which is difficult to interpret intuitively and
does not provide an obvious link to how close the segmentation is to the ground
truth or how much time it would take to correct the segmentation manually or
with a semi-automated proof reading software.

Arganda-Carreras et al. addressed this problem by defining two evalua-
tion metrics which on the one hand provide the rigorous definition needed for
benchmarking, and on the other hand provide some intuition about the ratio
of split and merge errors in the segmentation. The two metrics defined in their
paper (Arganda-Carreras et al., 2015) are based on the popular Rand and VI
score and therefore named V Rand and V Info, with the term Info referring to the
information theoretic background of the definition of variation of information.
For both metrics Arganda-Carreras et al. separate these metrics into split-
and merge-focused sub-metrics (V Rand

split , V Rand
merge and V Info

split , V Info
merge) which have a
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higher score if the segmentation contains fewer split (resp. merge) errors. As
a summary metric they suggest the F-score, the harmonic mean between the
split and the merge scores. Both metrics are normalized to a range between
0 and 1 with a higher value indicating a better segmentation. The evaluation
done by Arganda-Carreras et al. shows that the ranking obtained with both
metrics is not necessarily the same. While both metrics are normalized, they
show different sensitivity to region sizes. The V Rand emphasizes correct seg-
mentation of large structures, while V Info penalizes erroneous segmentation of
smaller structures.

Another interesting point is the influence of the background label. If pixels
labeled as background either in the ground truth or the automatic segmen-
tation are excluded from the evaluation, automated segmentations with wide
background margins tend to produce more favorable scores. To avoid tuning of
this unwanted behavior, it is now standard practice to ignore the background
labels from the ground truth segmentation, and grow all regions from the auto-
mated segmentation until no pixels are labeled background anymore. We follow
this practice and report scores for V Rand and V Info for all data sets as obtained
from the RhoanaNet Pipeline segmentation. Note that extra-cellular space is
considered background for the ECS dataset.

Another challenge for the Connectomics community is the difficulty in com-
paring techniques across different species, sample preparation techniques, imag-
ing modalities, and ground-truth annotation methods. It is impossible to mean-
ingfully compare results using any metric if the source data is not the same, and
given the complexity of the image processing pipelines it is difficult to identify
where one method performs better than another. Fortunately, open datasets
and challenges such as the ISBI 2012 and 2013 neuron segmentation challenges,
which used the S1 data set, provide a starting point for direct comparisons be-
tween segmentation methods. The RhoanaNet Pipeline goes one step further,
enabling direct comparison of whole pipelines as well as methods addressing
specific parts of the pipeline.

3 Results

Here we demonstrate the RhoanaNet image processing pipeline on the four EM
datasets discussed above. Deep neural networks were trained for each dataset
individually, using the same network structure and hyper parameters each time.
Agglomeration random forest training was performed on sub-volumes from the
training data for each dataset individually, and cross-validation was used to
choose the best random forest. A range of segmentation agglomeration levels
were used to measure V Info

F-score on test data as shown in Figure 4. Full V Rand and
V Info results for segmentations maximizing V Info

F-score are summarized in Table 1.
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Figure 4: Segmentation metric V Info
F-score shown for a grid search over agglomera-

tion levels. Maximal V Info
F-score, results are highlighted with yellow dots with full

results shown in Table 1.
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S1 Cortex

This dataset contained very little noise, and Gala was able to connect most of
the branching structures common in this data, including some spine necks, see
Figure 3. A curiosity of this data set is that the training volume AC3 contains
very little myelin. We therefore first trained on the whole training data (AC3
and AC4), and then fine tuned the network by restricting the training set to only
images from AC4. We found that this training method lead to a slight increase in
false positive detections on mitochondria, but a a good increase in true positive
detection of myelinated cell boundaries. The decision to fine tune the network
and all parameter tuning was performed on a validation set consisting of 10
images from AC3 and 10 images from AC4. No parameter tuning or additional
training was performed based on the results on the test volume.

Cerebellum

The training set for this data is very small, but proved to be sufficient to train the
U-Net to a satisfactory level. We follow the approach described by Ronneberger
et al. (Ronneberger et al., 2015) and use random rotations, flips, and non-linear
deformations for data augmentation.

LGN

Despite lower contrast and the presence of some artifacts, U-Net training pro-
vided good boundary predictions for this dataset and the best agglomeration
achieved the highest V Info

F-score of all datasets at 0.9438.

ECS Cortex

This data set contains annotations from two different neurobiologists. Unfor-
tunately the smaller set of annotations is restricted to a cropped volume of
632 × 560 × 40 pixels. This size is smaller than the default configuration of the
U-Net, which takes input patches of size 572× 527 pixels. We therefore slightly
reduced the size of the input patch for the U-Net to 540 × 540 pixels for this
data set. This input size is still significantly larger than the context evaluated
per pixel, thus it is unlikely to influence the accuracy of the network, but it
slightly reduces the throughput performance during predictions.

4 Discussion

We presented the Rhoana pipeline for dense neuron annotation, updated to use
deep learning U-Nets and region agglomeration using Gala. 3D segmentation
results were qualitatively improved by the enhancements, with V Info

F-score scores
ranging between 0.9 and 0.95 for the four datasets, and the pipeline can process
very large volumes automatically.
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V Rand
split V Rand

merge V Rand
F-score V Info

split V Info
merge V Info

F-score

S1 Cortex 0.7850 0.9216 0.8478 0.9276 0.8843 0.9054
Cerebellum 0.9583 0.9731 0.9656 0.9253 0.9049 0.9150
LGN 0.9162 0.6705 0.7744 0.9590 0.9290 0.9438
ECS Cortex 0.9589 0.6170 0.7509 0.9718 0.8702 0.9182

Table 1: Segmentation Results: Full segmentation metric results for each
dataset. F-scores for Rand and Information Theoretic metrics are in bold.

High throughput of EM image data and quality of segmentation results will
be very important for the future of Connectomics. Further improvements in
segmentation quality and throughput are necessary and informed strategies for
proofreading such as (Plaza et al., 2012; Haehn et al., 2014; Plaza, 2014) will
be required to minimize human effort. This open source pipeline provides an
improvement in both quality and throughput and the open benchmark datasets
provide an open and reproducible reference example on which future improve-
ments can be built.
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