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Screenit: Visual Analysis of Cellular Screens

Kasper Dinkla, Hendrik Strobelt, Bryan Genest, Stephan Reiling, Mark Borowsky, Hanspeter Pfister
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Fig. 1. An overview of Screenit with all columns opened: (a) The screens column shows the available screen data sets; (b) The
plates column shows an overview of all plates in the selected CellMorph screen, where well score is shown with a color map that
has dark colors for high scores and bright colors for low scores; (c) The wells column shows a hit list of top scoring wells at the left,
and conditions and images of the selected well at the right; (d) The phenotypes column shows the cell phenotypes that are being
modeled; (e) The features column depicts all cell image features as a list and provides information about feature value distributions.

Abstract— High-throughput and high-content screening enables large scale, cost-effective experiments in which cell cultures are
exposed to a wide spectrum of drugs. The resulting multivariate data sets have a large but shallow hierarchical structure. The
deepest level of this structure describes cells in terms of numeric features that are derived from image data. The subsequent
level describes enveloping cell cultures in terms of imposed experiment conditions (exposure to drugs). We present Screenit, a visual
analysis approach designed in close collaboration with screening experts. Screenit enables the navigation and analysis of multivariate
data at multiple hierarchy levels and at multiple levels of detail. Screenit integrates the interactive modeling of cell physical states
(phenotypes) and the effects of drugs on cell cultures (hits). In addition, quality control is enabled via the detection of anomalies
that indicate low-quality data, while providing an interface that is designed to match workflows of screening experts. We demonstrate
analyses for a real-world data set, CellMorph, with 6 million cells across 20,000 cell cultures.

Index Terms—High-content screening, visual analysis, feature selection, image classification, biology, multivariate, hierarchy

1 INTRODUCTION

The development of drugs is a process of trial and error. To dis-
cover compounds that could potentially cure disease, pharmaceutical
companies test a wide spectrum of chemical compounds on cell cul-
tures. Testing many different compounds at the same time is called a
screen. Technological advancement enables larger and more compli-
cated screens while reducing manual labor through automation. This
shifts the bottleneck from the setup and execution of screens to the
identification of promising compounds, which is referred to as call-
ing hits. These hits are subject to quality control before being for-
warded to biologists and chemists for elucidation and verification.

The physical setup of a screening experiment spans multiple levels,
as shown in Fig. 2, where each:
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Screen is divided across a number of plates that enable batch reads;
Plate embeds a grid of wells;
Well contains a solution of compounds and a group of cells, of which

images are taken;
Cell has a physical state that is captured as numeric image features.

Therefore, the data derived from a screening experiment forms a mul-
tivariate hierarchy. These hierarchies, as well as the analysis goals of
their users, pose an interesting visual analysis challenge. We present
Screenit to support the visual analysis of these hierarchies. Screenit
consists of tightly integrated visualizations that interweave the hierar-
chy levels and enable the interactive construction of models at multiple
levels of the hierarchy. In this paper we carefully explore the goals and
tasks for the analysis of screening experiments down to the cell level.
We then present a design approach that can be generalized to suit multi-
variate hierarchies across application domains. Finally, we discuss the
implementation of Screenit and demonstrate analyses for a real-world
data set, CellMorph [10], with 6 million cells across 20,000 wells.

2 BIOLOGICAL BACKGROUND

Drug development is laborious and resource intensive. The discovery
of a drug is usually not the direct result of a scientist who sees the po-
tential of a specific compound to cure a specific disease for a specific,
mechanistic reason. Instead, a large number of reasoned guesses are
taken before the lead for a potential drug is discovered. In the past, a
large number of technicians (or post-docs) were necessary to admin-
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Fig. 2. The setup of a screening experiment consists of a collection of
plates. Each plate contains a grid of wells, where each well contains
a culture of cells that is exposed to a compound. Images are taken of
each well and every cell is located and profiled to derive cell-specific
image features.

ister a wide spectrum of chemical compounds to a large collection of
cell cultures, and to subsequently observe the compounds’ effects on
cells. Recent technological advances have led to the automation of a
large part of this screening process and the analysis of screening re-
sults [11, 39, 46]. Screens are now scaled to wider and more detailed
compound spectra (high-throughput) while the observations of cell cul-
tures are becoming more information rich (high-content).

2.1 High-throughput screens

High-throughput screening is the systematic, large scale screening of
compounds within a short time span. Cell cultures are placed in a
large number of wells (small Petri dishes) and a different compound
is added to each well. These wells are embedded in plates to increase
the number of wells that can be prepared and read simultaneously.

Coordinates Every plate contains a grid of wells with columns
and rows. Each well is addressed in terms of plate, column, and row
coordinates, where a plate is commonly assigned a short label with a
number, a column is assigned a capital letter, and a row is assigned a
number. For example, the well HT46H010 is on plate HT46 at column
H and row 010. Though wells contain cells, screeners do not refer to
individual cells with coordinates, as described in Section 2.2.

Scale The size of screening experiments varies, but our collabo-
rators regularly perform screenings that consist of hundreds of plates.
These plates have 16 by 24 or 32 by 48 configurations, therefore con-
taining 384 or 1536 wells, respectively. Each well contains up to hun-
dreds of cells. This means that screens typically involve thousands of
wells containing an aggregate of millions of cells.

Well conditions Wells are subject to more conditions than admin-
istered compounds. This includes the concentration of the compound,
time point of administering the compound, time point of observing the
well, and what equipment made the observations. Moreover, a single
compound can be administered to multiple wells, either with a con-
sistent compound concentration, referred to as replicates that enable
screeners to check for consistent effects, or with increasing compound
concentrations to extrapolate dose-response curves that capture the re-
lationship between compound concentration and effect on cells.

Well features Conventional high-throughput screening methods
do not capture information about individual cells but read aggregate
signals per well, called well features. These signals are typically the
intensity of light emitted by fluorescent compounds that have been
added to the wells (in addition to the compounds that are screened
for). These fluorescent compounds become active along with specific
processes within cells. Capturing the emitted signals therefore enables
the discrimination of cell physical states. The number of different flu-
orescent compounds that are used simultaneously is limited (below
ten) by the ability to distinguish between the emitted light frequencies.
Therefore, the output of high-throughput screening forms a multivari-
ate hierarchy along the plate and well levels.

Observing aggregate signals at the well level is widely used because
it is cost-effective. Its downside is limited resolution, where effects on
individual cells within a well are not captured, causing two problems:

Effects on sub-populations of cells within a single well are missed,
as their signal is lost in the average signal of the cell population;

Morphological effects are missed, including the physical shape and
sub-cellular locations of fluorescent signals.

This information can be crucial for discriminating drug effects, which
is why high-content screening is on the rise. We have designed
Screenit to handle the scale of high-throughput experiments, with thou-
sands of wells across dozens of plates, and to include high-content
aspects with dozens of image features for millions of cells.

2.2 High-content screens

High-content screening relies on observation techniques that go be-
yond the observation of aggregate light from wells to detailed observa-
tions of individual cells within the wells [39].

Well images High-resolution microscopy images are taken of
each well, where different fluorescent signals, called channels, are iso-
lated per image. Sometimes multiple images are taken at different time
points to track cell development [32].

Cell features summarize the physical state or shape of a cell as
numbers. These numbers are derived automatically from well images
via computational analysis called profiling [7]. First, individual cells
are detected within the images to establish their coordinates and di-
mensions. Then many morphological features are computed, such as
cell (or organelle) area, circumference, texture, and elongation. Our
collaborators compute hundreds of these features for each cell and it is
often unclear to them what the features actually quantify about a cell.
A small number of these features end up being selected for the final
analysis, which depends on the personal experience of the screener.

Cell phenotypes as well features A screener does not reason in
terms of individual cells, but in classes of cells called phenotypes. A
phenotype describes a general physical state of a cell. For example,
a cell can be dying or about to divide into two. During screening the
phenotype of a cell is inferred from its image features with classifica-
tion methods from the machine learning domain [33]. For example, a
classification algorithm could distinguish a dying cell from a dividing
cell via an image feature that captures the cell’s size. Here a small
cell is likely to be dying, while a big cell is likely to be dividing and
classified as such. Subsequently, the screener looks at the composition
of phenotypes in a well to judge the effects of a compound. This miti-
gates some of the information loss incurred when looking only at the
aggregate feature values of a well.

2.3 Bridging high-throughput and high-content

Now that high-content screening has become cost-effective, analysis
of high-content information for high-throughput experiments has be-
come a necessity. Screeners already use visualization tools to call hits
and control quality, in part because calling hits depends on biological
nuances that aggregate statistics do not always capture [2]. Likewise,
quality control requires human detection of output errors that are hard
to detect via automation. In fact, one of our screener collaborators
stated that he never relies on statistical analysis alone to call hits and
always verifies hits by looking for flaws in corresponding well (image)
data and signal patterns across plates.

Analysis pipelines have expanded to cover the growing capabilities
of measurement equipment. These pipelines feature visualizations that
support hit calling and quality control, which includes high-content
data. However, screeners tend to focus on a small number of famil-
iar image features, thereby ignoring other features that could be of
greater benefit [37]. Our collaborators recognize this problem and are
building an analysis pipeline to manage the hundreds of image fea-
tures that can now be profiled at the cell level. This pipeline filters the
number of features down to dozens that have high entropy, based on
negative (control) and positive wells. Nonetheless, a screener has to
be involved in the subsequent analysis process to converge on a small
number of relevant features–and the phenotypes that they discriminate.
Existing visual analysis approaches support this effort but present the
plate, well, and cell data aspects in isolation and without an overview.

This inhibits experts to easily navigate the data and quickly converge
on relevant features, as described in the following section.

3 RELATED WORK

The individual analysis methods described in this paper are already in
active use by the screening community. For example, cell profiling
(inference of cell image features) is a large field with a number of es-
tablished platforms [7,48]. The same holds for classifying cell images
to infer phenotypes via (active) machine learning methods [19, 33].

High-content analysis tools Several visual analysis tools al-
ready address the concerns described in Section 2.

Perkin Elmer’s High Content Profiler is a proprietary visual analy-
sis platform that supports complex screen setups at the plate and
well level [2]. High-content features of cells are aggregated per
well as feature distributions without fully exposing the cell level to
the user. Hit modeling features dimension reduction, classification,
and ranking at the well level. This is based on feature distributions
of the wells, in which modeling and identifying cell phenotypes is
not possible. Therefore, loss of detail occurs at the cell level, which
impedes the derivation of hits at the well level.

Genedata’s Screener is a proprietary platform like Perkin Elmer’s
but with strong integration of well images, in which multiple wells
are easily selected and their images lined up for comparative analy-
sis [1]. The cell level is exposed as scatter plots of cell populations
for specific plates. Here the user can manually select an area in
the plot to define a phenotype, and the abundance of this phenotype
serves as a hit model for the plates’ wells.

Phaedra is a new open source alternative [3]. It supports high-
resolution well images and complex screening setups that can be
shared across multiple experiments. Various plots can be generated
for all levels, including cells. Phenotype modeling at the cell level
is limited, as is hit modeling.

CellProfiler Analyst was the first platform that fully exposed the cell
level in high-content analysis [20]. It features the definition of cell
phenotypes via manual cell selection in plots (at all levels) and by
training a classifier with user-labeled exemplar cells. This open
source platform is designed for small screens setups and offers less
functionality at the plate and well levels than the aforementioned
platforms. For example, a navigable plate overview is missing and
hit modeling is limited to ranking by a single feature or phenotype
abundance.

HCS-analyzer is a more recent, open source platform for cell and
phenotype analysis [27]. Well images have less importance in this
approach, where the user does not pick and label cell exemplars
based on the cell’s image. Instead the cells of a user-selected well
are clustered by their image features, where the user can label the
clusters with phenotypes.

The first three platforms address screen analysis in the traditional high-
throughput manner, in which large numbers of plates and wells have
priority. The two latter platforms emphasize cell level and phenotype
modeling. Screenit bridges these aspects by supporting large scale
screening setups and cell level high-content analysis. All platforms
share a design in which the screen levels have little navigation overlap.
For example, plots are often requested for isolated features, cells, and
wells, where moving up and down the plate, well, and cell hierarchy
is a hurdle. Screenit integrates these levels in a consistent manner to
enable fast navigation and cross-referencing between layers.

Multivariate models High-content screens contain data aspects
that have been studied extensively in the visualization community,
which has resulted in many advanced techniques for multivariate data
visualization [21,40,47]. This includes the interactive exploration and
manipulation of clustering algorithms and classifiers where experts
gain knowledge and control of output models [6, 8, 17, 23, 26, 28, 41].

Multivariate hierarchies The visualization of hierarchies, or
trees, is a thoroughly explored area [14, 35]. The visual analysis of
multivariate hierarchies also relates to the comparison of multiple hier-
archies [12]. This includes the comparison of cell abundance in deep

taxonomies across different samples [9, 18]. Naturally, these tech-
niques emphasize the topology of the hierarchy, communicating as
many parent-child links as possible. Our design prioritizes conveying
multivariate information at each level as encodings that our collabo-
rating screeners prefer. Screenit therefore shows only the connection
between the currently selected cell, well, and plate.

Compound effects Screenit is designed for data exploration in
the early stages of hit analysis. However, as soon as a screener is
confident about a compound’s effect, this compound’s hit information
is transferred to other experts for more comprehensive analysis. An-
alyzing large quantities of compound substructure and cellular effect
relations is challenging [44], where both machine learning [45] and vi-
sualization [22,29,38] approaches are beneficial. Beyond the structure
of compounds, genetic information about compound targets (in case of
RNAi for example) can be integrated to provide more context [16,24].

Complex screens High-content screening can also be used to
track cell growth and duplication. Visualizing this data is a com-
plicated problem, even when the hierarchy of the screening setup is
ignored. Recently it has received attention in the visualization com-
munity [32]. Likewise, numerous parameters of image analysis algo-
rithms affect the quality of screening data, where visualizations pro-
vide support as well [31].

4 ANALYSIS ROLES, GOALS, AND TASKS

During the first three months of the design process we interviewed
each of four screening experts multiple times (including one author)
to pinpoint their analysis goals and subsequently what visualization
tasks Screenit has to support. We also took part in larger meetings with
experts who offered analysis support for screening to nuance these
goals and tasks. Each expert has a different expertise, plays a different
role, and therefore has different priorities during analysis.

Biologists provide the motivation for performing screening experi-
ments. They are knowledgeable about cell types, their disease-
induced malfunctions and, therefore, their phenotype, the proba-
ble cellular mechanism by which to fix the malfunction, and com-
pounds that could potentially affect this mechanism.

Chemists oversee the initial construction of a library of different com-
pounds that could affect cells in a desired way. When an effective
compound is discovered, chemists will be involved in pinpointing
what aspects of a compound make it effective. This knowledge is
then used to compose libraries that consist primarily of compounds
that have these effective aspects. This process can be repeated sev-
eral times to converge on compounds that have optimal effect, syn-
thesis complexity, and side effects.

Bioinformaticians are statisticians or machine learning experts who
are responsible for the numeric analysis of screens, which varies
from screen to screen. This includes the development and tuning of
cell profiling and phenotype classification algorithms.

Screeners are any of the above while also being responsible for set-
ting up screens, calling hits, and quality control. After converg-
ing on high-quality hits, the screener will pass the hits–and context
information–to biologists and chemists for further analysis.

These roles come with different analysis priorities but share the same
goals:

GPM Phenotype Modeling is the creation and verification of a
model that infers cell phenotypes from image features. This in-
cludes hypothesizing about what constitutes a phenotype.

GHM Hit Modeling is the creation and verification of a model that
identifies compounds with a desired or interesting effect on the cell
phenotypes in a well. This includes hypothesizing about what con-
stitutes an effect.

GQC Quality Control is the elimination of unreliable data to reduce
the number of wrongly called hits. This involves the identification
of low-quality wells and plates.

From these domain goals we infer a set of data and visualization tasks
that guide the design of our system (Section 5):
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Fig. 2. The setup of a screening experiment consists of a collection of
plates. Each plate contains a grid of wells, where each well contains
a culture of cells that is exposed to a compound. Images are taken of
each well and every cell is located and profiled to derive cell-specific
image features.

ister a wide spectrum of chemical compounds to a large collection of
cell cultures, and to subsequently observe the compounds’ effects on
cells. Recent technological advances have led to the automation of a
large part of this screening process and the analysis of screening re-
sults [11, 39, 46]. Screens are now scaled to wider and more detailed
compound spectra (high-throughput) while the observations of cell cul-
tures are becoming more information rich (high-content).

2.1 High-throughput screens

High-throughput screening is the systematic, large scale screening of
compounds within a short time span. Cell cultures are placed in a
large number of wells (small Petri dishes) and a different compound
is added to each well. These wells are embedded in plates to increase
the number of wells that can be prepared and read simultaneously.

Coordinates Every plate contains a grid of wells with columns
and rows. Each well is addressed in terms of plate, column, and row
coordinates, where a plate is commonly assigned a short label with a
number, a column is assigned a capital letter, and a row is assigned a
number. For example, the well HT46H010 is on plate HT46 at column
H and row 010. Though wells contain cells, screeners do not refer to
individual cells with coordinates, as described in Section 2.2.

Scale The size of screening experiments varies, but our collabo-
rators regularly perform screenings that consist of hundreds of plates.
These plates have 16 by 24 or 32 by 48 configurations, therefore con-
taining 384 or 1536 wells, respectively. Each well contains up to hun-
dreds of cells. This means that screens typically involve thousands of
wells containing an aggregate of millions of cells.

Well conditions Wells are subject to more conditions than admin-
istered compounds. This includes the concentration of the compound,
time point of administering the compound, time point of observing the
well, and what equipment made the observations. Moreover, a single
compound can be administered to multiple wells, either with a con-
sistent compound concentration, referred to as replicates that enable
screeners to check for consistent effects, or with increasing compound
concentrations to extrapolate dose-response curves that capture the re-
lationship between compound concentration and effect on cells.

Well features Conventional high-throughput screening methods
do not capture information about individual cells but read aggregate
signals per well, called well features. These signals are typically the
intensity of light emitted by fluorescent compounds that have been
added to the wells (in addition to the compounds that are screened
for). These fluorescent compounds become active along with specific
processes within cells. Capturing the emitted signals therefore enables
the discrimination of cell physical states. The number of different flu-
orescent compounds that are used simultaneously is limited (below
ten) by the ability to distinguish between the emitted light frequencies.
Therefore, the output of high-throughput screening forms a multivari-
ate hierarchy along the plate and well levels.

Observing aggregate signals at the well level is widely used because
it is cost-effective. Its downside is limited resolution, where effects on
individual cells within a well are not captured, causing two problems:

Effects on sub-populations of cells within a single well are missed,
as their signal is lost in the average signal of the cell population;

Morphological effects are missed, including the physical shape and
sub-cellular locations of fluorescent signals.

This information can be crucial for discriminating drug effects, which
is why high-content screening is on the rise. We have designed
Screenit to handle the scale of high-throughput experiments, with thou-
sands of wells across dozens of plates, and to include high-content
aspects with dozens of image features for millions of cells.

2.2 High-content screens

High-content screening relies on observation techniques that go be-
yond the observation of aggregate light from wells to detailed observa-
tions of individual cells within the wells [39].

Well images High-resolution microscopy images are taken of
each well, where different fluorescent signals, called channels, are iso-
lated per image. Sometimes multiple images are taken at different time
points to track cell development [32].

Cell features summarize the physical state or shape of a cell as
numbers. These numbers are derived automatically from well images
via computational analysis called profiling [7]. First, individual cells
are detected within the images to establish their coordinates and di-
mensions. Then many morphological features are computed, such as
cell (or organelle) area, circumference, texture, and elongation. Our
collaborators compute hundreds of these features for each cell and it is
often unclear to them what the features actually quantify about a cell.
A small number of these features end up being selected for the final
analysis, which depends on the personal experience of the screener.

Cell phenotypes as well features A screener does not reason in
terms of individual cells, but in classes of cells called phenotypes. A
phenotype describes a general physical state of a cell. For example,
a cell can be dying or about to divide into two. During screening the
phenotype of a cell is inferred from its image features with classifica-
tion methods from the machine learning domain [33]. For example, a
classification algorithm could distinguish a dying cell from a dividing
cell via an image feature that captures the cell’s size. Here a small
cell is likely to be dying, while a big cell is likely to be dividing and
classified as such. Subsequently, the screener looks at the composition
of phenotypes in a well to judge the effects of a compound. This miti-
gates some of the information loss incurred when looking only at the
aggregate feature values of a well.

2.3 Bridging high-throughput and high-content

Now that high-content screening has become cost-effective, analysis
of high-content information for high-throughput experiments has be-
come a necessity. Screeners already use visualization tools to call hits
and control quality, in part because calling hits depends on biological
nuances that aggregate statistics do not always capture [2]. Likewise,
quality control requires human detection of output errors that are hard
to detect via automation. In fact, one of our screener collaborators
stated that he never relies on statistical analysis alone to call hits and
always verifies hits by looking for flaws in corresponding well (image)
data and signal patterns across plates.

Analysis pipelines have expanded to cover the growing capabilities
of measurement equipment. These pipelines feature visualizations that
support hit calling and quality control, which includes high-content
data. However, screeners tend to focus on a small number of famil-
iar image features, thereby ignoring other features that could be of
greater benefit [37]. Our collaborators recognize this problem and are
building an analysis pipeline to manage the hundreds of image fea-
tures that can now be profiled at the cell level. This pipeline filters the
number of features down to dozens that have high entropy, based on
negative (control) and positive wells. Nonetheless, a screener has to
be involved in the subsequent analysis process to converge on a small
number of relevant features–and the phenotypes that they discriminate.
Existing visual analysis approaches support this effort but present the
plate, well, and cell data aspects in isolation and without an overview.

This inhibits experts to easily navigate the data and quickly converge
on relevant features, as described in the following section.

3 RELATED WORK

The individual analysis methods described in this paper are already in
active use by the screening community. For example, cell profiling
(inference of cell image features) is a large field with a number of es-
tablished platforms [7,48]. The same holds for classifying cell images
to infer phenotypes via (active) machine learning methods [19, 33].

High-content analysis tools Several visual analysis tools al-
ready address the concerns described in Section 2.

Perkin Elmer’s High Content Profiler is a proprietary visual analy-
sis platform that supports complex screen setups at the plate and
well level [2]. High-content features of cells are aggregated per
well as feature distributions without fully exposing the cell level to
the user. Hit modeling features dimension reduction, classification,
and ranking at the well level. This is based on feature distributions
of the wells, in which modeling and identifying cell phenotypes is
not possible. Therefore, loss of detail occurs at the cell level, which
impedes the derivation of hits at the well level.

Genedata’s Screener is a proprietary platform like Perkin Elmer’s
but with strong integration of well images, in which multiple wells
are easily selected and their images lined up for comparative analy-
sis [1]. The cell level is exposed as scatter plots of cell populations
for specific plates. Here the user can manually select an area in
the plot to define a phenotype, and the abundance of this phenotype
serves as a hit model for the plates’ wells.

Phaedra is a new open source alternative [3]. It supports high-
resolution well images and complex screening setups that can be
shared across multiple experiments. Various plots can be generated
for all levels, including cells. Phenotype modeling at the cell level
is limited, as is hit modeling.

CellProfiler Analyst was the first platform that fully exposed the cell
level in high-content analysis [20]. It features the definition of cell
phenotypes via manual cell selection in plots (at all levels) and by
training a classifier with user-labeled exemplar cells. This open
source platform is designed for small screens setups and offers less
functionality at the plate and well levels than the aforementioned
platforms. For example, a navigable plate overview is missing and
hit modeling is limited to ranking by a single feature or phenotype
abundance.

HCS-analyzer is a more recent, open source platform for cell and
phenotype analysis [27]. Well images have less importance in this
approach, where the user does not pick and label cell exemplars
based on the cell’s image. Instead the cells of a user-selected well
are clustered by their image features, where the user can label the
clusters with phenotypes.

The first three platforms address screen analysis in the traditional high-
throughput manner, in which large numbers of plates and wells have
priority. The two latter platforms emphasize cell level and phenotype
modeling. Screenit bridges these aspects by supporting large scale
screening setups and cell level high-content analysis. All platforms
share a design in which the screen levels have little navigation overlap.
For example, plots are often requested for isolated features, cells, and
wells, where moving up and down the plate, well, and cell hierarchy
is a hurdle. Screenit integrates these levels in a consistent manner to
enable fast navigation and cross-referencing between layers.

Multivariate models High-content screens contain data aspects
that have been studied extensively in the visualization community,
which has resulted in many advanced techniques for multivariate data
visualization [21,40,47]. This includes the interactive exploration and
manipulation of clustering algorithms and classifiers where experts
gain knowledge and control of output models [6, 8, 17, 23, 26, 28, 41].

Multivariate hierarchies The visualization of hierarchies, or
trees, is a thoroughly explored area [14, 35]. The visual analysis of
multivariate hierarchies also relates to the comparison of multiple hier-
archies [12]. This includes the comparison of cell abundance in deep

taxonomies across different samples [9, 18]. Naturally, these tech-
niques emphasize the topology of the hierarchy, communicating as
many parent-child links as possible. Our design prioritizes conveying
multivariate information at each level as encodings that our collabo-
rating screeners prefer. Screenit therefore shows only the connection
between the currently selected cell, well, and plate.

Compound effects Screenit is designed for data exploration in
the early stages of hit analysis. However, as soon as a screener is
confident about a compound’s effect, this compound’s hit information
is transferred to other experts for more comprehensive analysis. An-
alyzing large quantities of compound substructure and cellular effect
relations is challenging [44], where both machine learning [45] and vi-
sualization [22,29,38] approaches are beneficial. Beyond the structure
of compounds, genetic information about compound targets (in case of
RNAi for example) can be integrated to provide more context [16,24].

Complex screens High-content screening can also be used to
track cell growth and duplication. Visualizing this data is a com-
plicated problem, even when the hierarchy of the screening setup is
ignored. Recently it has received attention in the visualization com-
munity [32]. Likewise, numerous parameters of image analysis algo-
rithms affect the quality of screening data, where visualizations pro-
vide support as well [31].

4 ANALYSIS ROLES, GOALS, AND TASKS

During the first three months of the design process we interviewed
each of four screening experts multiple times (including one author)
to pinpoint their analysis goals and subsequently what visualization
tasks Screenit has to support. We also took part in larger meetings with
experts who offered analysis support for screening to nuance these
goals and tasks. Each expert has a different expertise, plays a different
role, and therefore has different priorities during analysis.

Biologists provide the motivation for performing screening experi-
ments. They are knowledgeable about cell types, their disease-
induced malfunctions and, therefore, their phenotype, the proba-
ble cellular mechanism by which to fix the malfunction, and com-
pounds that could potentially affect this mechanism.

Chemists oversee the initial construction of a library of different com-
pounds that could affect cells in a desired way. When an effective
compound is discovered, chemists will be involved in pinpointing
what aspects of a compound make it effective. This knowledge is
then used to compose libraries that consist primarily of compounds
that have these effective aspects. This process can be repeated sev-
eral times to converge on compounds that have optimal effect, syn-
thesis complexity, and side effects.

Bioinformaticians are statisticians or machine learning experts who
are responsible for the numeric analysis of screens, which varies
from screen to screen. This includes the development and tuning of
cell profiling and phenotype classification algorithms.

Screeners are any of the above while also being responsible for set-
ting up screens, calling hits, and quality control. After converg-
ing on high-quality hits, the screener will pass the hits–and context
information–to biologists and chemists for further analysis.

These roles come with different analysis priorities but share the same
goals:

GPM Phenotype Modeling is the creation and verification of a
model that infers cell phenotypes from image features. This in-
cludes hypothesizing about what constitutes a phenotype.

GHM Hit Modeling is the creation and verification of a model that
identifies compounds with a desired or interesting effect on the cell
phenotypes in a well. This includes hypothesizing about what con-
stitutes an effect.

GQC Quality Control is the elimination of unreliable data to reduce
the number of wrongly called hits. This involves the identification
of low-quality wells and plates.

From these domain goals we infer a set of data and visualization tasks
that guide the design of our system (Section 5):
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TNF Navigate and Filter Hierarchy to enable insights at differ-
ent levels of detail, from the screen plates down to a single
cell. Filtering applies to well conditions and cell phenotypes.
Goals: GPM, GHM, GQC

TFS Correlate, Inspect, and Select Image Features to choose those
features that discriminate between potential phenotypes and mini-
mize the complexity of the phenotype model. Goals: GPM

The tasks for modeling phenotypes (GPM) and hits (GHM) consist
of iterations of define model → apply model → visualize model → re-
define model. Because this pattern is used differently for the phenotype
and hit models, we describe different sets of tasks for both.

TPM Define a Phenotype Model by using the image features of
example cells to train a classifier that discriminates phenotypes.
Goals: GPM

TPA Apply Phenotype Model to infer a phenotype for every cell.
Goals: GPM

TPV Visualize Phenotype Model to establish whether the model
covers relevant phenotypes and classifies cells accurately.
Goals: GPM, GQC

THM Define Hit Model via manipulation of a score function that
weights phenotype abundance by desirability. Goals: GPM

THA Apply Hit Model to score and rank each well by the likelihood
that it is indeed a hit. Goals: GHM

THV Visualize Hit Model to find those wells that are potential hits
and to establish whether the model indicates relevant and accurate
hits. Goals: GHM, GQC

5 ENCODING SCREEN LEVELS

We present a design that emerged through iterative prototyping and
feedback sessions with screeners, spanning five months subsequent
to establishing goals and tasks. Fully functional prototypes were de-
ployed, used, and commented on by our collaborators during the final
two months of the design process. This design features a column for
each level of the screening experiment. These columns are laid out
side by side, from left to right:

Screens shows a list of all available screens, where a single screen is
selected for analysis, Fig. 1(a). This can be considered as an extra
top level of the hierarchy that contains all screening experiments.

Plates provides an overview of all plates in the selected data set,
Fig. 1(b). These plates have a static grid layout and all embedded

Fig. 3. An initial prototype that relies on abstract plots: (a) A sub-sample
of cells is shown in a scatter plot, where every cell is encoded as a dot
that is positioned according to its image features, and where its color rep-
resents inferred phenotype; (b) All features are encoded as dots that are
positioned according to feature correlations; (c) All wells are encoded as
dots that are positioned according to phenotype abundance; (d) Feature
value distributions (columns) are encoded as histograms, partitioned by
cell phenotypes (rows).

wells are colored according to their score in the hit model (THV).
A plate (and well) can be selected in the overview, which is then
depicted with more detail at the top right of the column.

Wells provides an overview of wells as a list at the left of the col-
umn, showing only wells that have a top score according to the
hit model, which can be manipulated via a function editor at the
top (THM, THA, THV). Detailed image and condition information
of the selected well is shown at the right, Fig. 1(c).

Phenotypes shows the cell phenotypes that a screener wants Screenit
to distinguish (TPM). Phenotypes are arranged into sub-columns,
with an assigned phenotype color at the top and a list of exemplar
cells at the bottom, Fig. 1(d).

Features relates phenotypes to image features for all
cells (TPA, TPV), Fig. 1(e). This column is divided into
three sub-columns: feature distributions as histograms, exemplar
feature values as parallel coordinates, and feature distributions and
exemplar values as a scatter plot matrix (TFS).

Most columns have the same arrangement, where an overview of
elements is provided at the left side of the column, extending into a
detailed view of select element(s) at the right side. This combination
of simultaneous overview and detail provides a stable context for the
screener to interact with. An alternative design would be a monolithic
visualization of the hierarchy, such as a more abstract node-link de-
piction or tree map. However, early design iterations revealed that
screeners reason in terms of the physical setup of an experiment, i.e.,
plates that embed wells and wells that embed cells. Therefore, we
use the structure of the hierarchy levels to subdivide the interface into
corresponding multiple linked views [34].

The combination of all columns span a great width where a typical
computer setup with a single display is not able to show them all si-
multaneously. Luckily, it suffices for screeners to work either within
a single column or across two adjacent columns at any time. Other
columns are closed, until the user navigates to a column or performs
an action that affects the contents of the column. This creates a con-
figuration of sliding panes with two panes open in tandem at any time,
an effective data exploration approach [42]. The header of a column
is dimmed and tilted when its column is closed (shown in the accom-
panying video). Closed columns stack to provide the user a sense of
position within the hierarchy. The prototype can also be adjusted to
keep all columns opened simultaneously for larger display setups.

The plate, well, and cell (phenotype) levels are linked via a uniform
selection model for consistent navigation (TNF). At most one plate,
well, and cell are selected at the same time. Selections are always
outlined blue, as seen for the selected plate and well in Fig. 1. This
selection is constrained to the hierarchy, where the selected cell is al-
ways part of the selected well, and the selected well is always part of
the selected plate. This navigation pattern matches the typical analysis
workflows of screeners, described in the next section.

6 SCREENIT

We now walk through the analysis workflows of screeners, first navi-
gating from left to right and then right to left across the columns. In
addition, we discuss design details and decisions in light of early pro-
totypes and feedback sessions.

6.1 Screen ⇒ Plates

The far left column shows a list of available screening data sets, shown
in Fig. 1. The tool starts with a default selected data set, which in this
case is the data set CellMorph that is described in Section 8. The
selected data set is emphasized and shown within the header of the
column, where it remains visible when the screen column is closed.

Plates The plates column opens as soon as a data set is selected.
It provides an overview of all plates in the data set, in this case 68
plates named HT01, HT02, ..., HT68. These plates are stacked from
top to bottom as columns, with first and last plate names shown at the
top and bottom of the columns respectively.

Top and bottom plate names are displayed to orient the user but
the names of the other plates are omitted to create a compact plate

wells top scorer well image & conditions

Fig. 4. The wells column in which well HT25 B012 is selected (marked in
blue) and its details are provided at the right side of the column: the well
type is positive, the added compound targets ADAMTSL3, the displayed
image is composed of four observations and is Segmented, and inferred
cell Phenotypes are shown as an overlay of color coded circles. A list
of top scoring wells is shown at the left, where phenotype shares are
encoded as an area plot. An editor at the top of the hit list enables
manipulation of the score model.

configuration. The display space that this requires is limited, where
we assume the number of plates in a screening experiment to be below
a hundred. This matches the smaller screening experiments of our
collaborators. Every well can still be represented by a small number
of pixels, avoiding visual aggregation of multiple wells.

This compact configuration eases comparison of well score patterns
between plates. Likewise, the static configuration makes it easier for
screeners to orient themselves and identify inter-plate well patterns
that are related to the setup of the screen. All plates are shown in the
overview with a static position to preserve the screener’s mental map.

Heat maps Each plate in the overview shows the effect score of
all of its wells with a color scale, where dark and bright colors indicate
high and low scores, respectively. Initially, the score is defined to be
high for wells that contain a large number of cells. Wells with a low
number of cells therefore have a bright color. It is common practice to
add a consistent number of cells to each well when setting up a screen.
Big differences of cell counts between wells is therefore of interest.

For example, a well with a small number of cells suggests that many
cells have died, which suggests that the added compound is toxic. In
Fig. 1 we can already spot plates in column HT25...HT36 with repeti-
tive areas of dark, high-scoring wells. This suggests that the machine
that consecutively read these plates could be defective (GQC). Alter-
natively, the added compounds could be laid out along the plates by
increasing toxicity. These ambiguities can be resolved by navigating
down the hierarchy to inspect individual wells in more detail (TNF).

In earlier prototypes we incorporated wells in more abstract visual-
izations, shown in Fig. 3(c). However, the screeners indicated multiple
times that they prefer an overview of the wells that matches the physi-
cal setup of the plates. This overview includes individual well scores,
where patterns at the plate level are less likely to be overlooked.

Detailed plate The plates column also shows a large representa-
tion of a single, selected plate at the top right. This detailed view eases
the inspection of well scores and the selection of a specific well. It sup-
ports orientation by showing the plate, column, and row coordinates of
the selected well and those at the boundary of the plate (Section 2.1).
The outlining of the wells in the detailed plate bridges the more ab-
stract well depiction of the plate overview.

6.2 Plates ⇒ Wells

The wells column is opened when a well is selected in either the plate
overview or detailed plate view (TNF). An overview of top scoring
wells, called the hit list is shown at the left of the wells column in
Fig. 4. Right next to this list is an image of the selected well with
associated information and options shown on top of the image.

Well image The image of the selected well takes up most of the
wells column. When the plates and wells columns are opened this
enables the navigation to (and validation of) those wells that seem to
be suspect in the plate overview. At the top right of the image it is
possible to switch between multiple images that have been captured
of the same well. As seen in Fig. 4, two image types Segmented and
Normal are available for the CellMorph screen:

Normal shows the integration of multiple measurements (fluorescent
channels) into an image, in which activity in cell nuclei can be iden-
tified as blue, and the activity in the cytoplasm by green or red;

Segmented superimposes profiling information on the Normal image,
demarcating cell and nuclei boundaries;

None does not show any image to make an overlay more legible.

In case of CellMorph, both image types consist of four sub-images cap-
tured at different spots of the same well. An overlay can be shown that
depicts the cell phenotypes as colored circles. However, phenotypes
first have to be modeled via the phenotypes and features columns.

Well conditions The conditions and type of a well are shown as
a table above the well image. Wells can be annotated with conditions
from multiple categories. For example, in Fig. 4 the type of the well
is positive because gene ADAMTSL3 is the target of an administered
compound. This form of textual well annotation with little structure
enables screeners to input a large variety of experiment setups.

Textual well conditions also tie in directly with the well filter func-
tionality, where the user inputs part of a condition that a well should
have. This filter is shown as part of the wells column header, for exam-
ple Wells: positive in Fig. 4 where only wells with a positive condition
are shown (TNF). Moreover, any of the conditions shown at the top left
of the well image can be selected to make it the filtered condition. This
enables fast lookup and cross referencing of well conditions, respec-
tively. For example, in Fig. 1 the wells are filtered to match positive,
where only those wells with a compound are shown, hiding the con-
trol wells. As a result the top row of each plate is lightened, as seen
for row 004 of selected and enlarged plate HT25. The plates HT03,
HT22, HT66, HT68 show few positive wells.

An earlier prototype featured the ability to select multiple well con-
ditions in the wells column, which then serve to partition the plates in
the plates column according to what selected conditions are present on
the plate. This change of plate layout confused the screeners and it did
not fit in their current workflows. Instead, screeners preferred to filter
for well conditions directly–at the plate level and the well level. This
led to the current text filter, where the screener gets direct feedback
when he is interested in comparing conditions.

6.3 Wells ⇒ Phenotypes

Any of the cells shown in a well image can be selected by clicking it,
which opens the phenotypes column next to the wells column (TNF).

Phenotypes The phenotype model relates a cell’s phenotype
to its image features and it can be defined via the phenotypes col-
umn (TPM). The top of the column displays the phenotypes in the
model, where there is a difference between those phenotypes that are
currently shown and hidden, Fig. 1. Phenotypes are color coded via
automated selection of colors from a fixed palette. In addition, pheno-
types can be shown and hidden at any time by the user. Each shown
phenotype has its own sub-column and is headed by a tile that shows
the phenotype color and form:

Picked phenotypes are defined by exemplars that are handpicked by
the user to shape a phenotype model;

Not Sure represents those cells that do not fit in the current phenotype
model, i.e., a phenotype cannot be inferred with confidence.
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TNF Navigate and Filter Hierarchy to enable insights at differ-
ent levels of detail, from the screen plates down to a single
cell. Filtering applies to well conditions and cell phenotypes.
Goals: GPM, GHM, GQC

TFS Correlate, Inspect, and Select Image Features to choose those
features that discriminate between potential phenotypes and mini-
mize the complexity of the phenotype model. Goals: GPM

The tasks for modeling phenotypes (GPM) and hits (GHM) consist
of iterations of define model → apply model → visualize model → re-
define model. Because this pattern is used differently for the phenotype
and hit models, we describe different sets of tasks for both.

TPM Define a Phenotype Model by using the image features of
example cells to train a classifier that discriminates phenotypes.
Goals: GPM

TPA Apply Phenotype Model to infer a phenotype for every cell.
Goals: GPM

TPV Visualize Phenotype Model to establish whether the model
covers relevant phenotypes and classifies cells accurately.
Goals: GPM, GQC

THM Define Hit Model via manipulation of a score function that
weights phenotype abundance by desirability. Goals: GPM

THA Apply Hit Model to score and rank each well by the likelihood
that it is indeed a hit. Goals: GHM

THV Visualize Hit Model to find those wells that are potential hits
and to establish whether the model indicates relevant and accurate
hits. Goals: GHM, GQC

5 ENCODING SCREEN LEVELS

We present a design that emerged through iterative prototyping and
feedback sessions with screeners, spanning five months subsequent
to establishing goals and tasks. Fully functional prototypes were de-
ployed, used, and commented on by our collaborators during the final
two months of the design process. This design features a column for
each level of the screening experiment. These columns are laid out
side by side, from left to right:

Screens shows a list of all available screens, where a single screen is
selected for analysis, Fig. 1(a). This can be considered as an extra
top level of the hierarchy that contains all screening experiments.

Plates provides an overview of all plates in the selected data set,
Fig. 1(b). These plates have a static grid layout and all embedded

Fig. 3. An initial prototype that relies on abstract plots: (a) A sub-sample
of cells is shown in a scatter plot, where every cell is encoded as a dot
that is positioned according to its image features, and where its color rep-
resents inferred phenotype; (b) All features are encoded as dots that are
positioned according to feature correlations; (c) All wells are encoded as
dots that are positioned according to phenotype abundance; (d) Feature
value distributions (columns) are encoded as histograms, partitioned by
cell phenotypes (rows).

wells are colored according to their score in the hit model (THV).
A plate (and well) can be selected in the overview, which is then
depicted with more detail at the top right of the column.

Wells provides an overview of wells as a list at the left of the col-
umn, showing only wells that have a top score according to the
hit model, which can be manipulated via a function editor at the
top (THM, THA, THV). Detailed image and condition information
of the selected well is shown at the right, Fig. 1(c).

Phenotypes shows the cell phenotypes that a screener wants Screenit
to distinguish (TPM). Phenotypes are arranged into sub-columns,
with an assigned phenotype color at the top and a list of exemplar
cells at the bottom, Fig. 1(d).

Features relates phenotypes to image features for all
cells (TPA, TPV), Fig. 1(e). This column is divided into
three sub-columns: feature distributions as histograms, exemplar
feature values as parallel coordinates, and feature distributions and
exemplar values as a scatter plot matrix (TFS).

Most columns have the same arrangement, where an overview of
elements is provided at the left side of the column, extending into a
detailed view of select element(s) at the right side. This combination
of simultaneous overview and detail provides a stable context for the
screener to interact with. An alternative design would be a monolithic
visualization of the hierarchy, such as a more abstract node-link de-
piction or tree map. However, early design iterations revealed that
screeners reason in terms of the physical setup of an experiment, i.e.,
plates that embed wells and wells that embed cells. Therefore, we
use the structure of the hierarchy levels to subdivide the interface into
corresponding multiple linked views [34].

The combination of all columns span a great width where a typical
computer setup with a single display is not able to show them all si-
multaneously. Luckily, it suffices for screeners to work either within
a single column or across two adjacent columns at any time. Other
columns are closed, until the user navigates to a column or performs
an action that affects the contents of the column. This creates a con-
figuration of sliding panes with two panes open in tandem at any time,
an effective data exploration approach [42]. The header of a column
is dimmed and tilted when its column is closed (shown in the accom-
panying video). Closed columns stack to provide the user a sense of
position within the hierarchy. The prototype can also be adjusted to
keep all columns opened simultaneously for larger display setups.

The plate, well, and cell (phenotype) levels are linked via a uniform
selection model for consistent navigation (TNF). At most one plate,
well, and cell are selected at the same time. Selections are always
outlined blue, as seen for the selected plate and well in Fig. 1. This
selection is constrained to the hierarchy, where the selected cell is al-
ways part of the selected well, and the selected well is always part of
the selected plate. This navigation pattern matches the typical analysis
workflows of screeners, described in the next section.

6 SCREENIT

We now walk through the analysis workflows of screeners, first navi-
gating from left to right and then right to left across the columns. In
addition, we discuss design details and decisions in light of early pro-
totypes and feedback sessions.

6.1 Screen ⇒ Plates

The far left column shows a list of available screening data sets, shown
in Fig. 1. The tool starts with a default selected data set, which in this
case is the data set CellMorph that is described in Section 8. The
selected data set is emphasized and shown within the header of the
column, where it remains visible when the screen column is closed.

Plates The plates column opens as soon as a data set is selected.
It provides an overview of all plates in the data set, in this case 68
plates named HT01, HT02, ..., HT68. These plates are stacked from
top to bottom as columns, with first and last plate names shown at the
top and bottom of the columns respectively.

Top and bottom plate names are displayed to orient the user but
the names of the other plates are omitted to create a compact plate

wells top scorer well image & conditions

Fig. 4. The wells column in which well HT25 B012 is selected (marked in
blue) and its details are provided at the right side of the column: the well
type is positive, the added compound targets ADAMTSL3, the displayed
image is composed of four observations and is Segmented, and inferred
cell Phenotypes are shown as an overlay of color coded circles. A list
of top scoring wells is shown at the left, where phenotype shares are
encoded as an area plot. An editor at the top of the hit list enables
manipulation of the score model.

configuration. The display space that this requires is limited, where
we assume the number of plates in a screening experiment to be below
a hundred. This matches the smaller screening experiments of our
collaborators. Every well can still be represented by a small number
of pixels, avoiding visual aggregation of multiple wells.

This compact configuration eases comparison of well score patterns
between plates. Likewise, the static configuration makes it easier for
screeners to orient themselves and identify inter-plate well patterns
that are related to the setup of the screen. All plates are shown in the
overview with a static position to preserve the screener’s mental map.

Heat maps Each plate in the overview shows the effect score of
all of its wells with a color scale, where dark and bright colors indicate
high and low scores, respectively. Initially, the score is defined to be
high for wells that contain a large number of cells. Wells with a low
number of cells therefore have a bright color. It is common practice to
add a consistent number of cells to each well when setting up a screen.
Big differences of cell counts between wells is therefore of interest.

For example, a well with a small number of cells suggests that many
cells have died, which suggests that the added compound is toxic. In
Fig. 1 we can already spot plates in column HT25...HT36 with repeti-
tive areas of dark, high-scoring wells. This suggests that the machine
that consecutively read these plates could be defective (GQC). Alter-
natively, the added compounds could be laid out along the plates by
increasing toxicity. These ambiguities can be resolved by navigating
down the hierarchy to inspect individual wells in more detail (TNF).

In earlier prototypes we incorporated wells in more abstract visual-
izations, shown in Fig. 3(c). However, the screeners indicated multiple
times that they prefer an overview of the wells that matches the physi-
cal setup of the plates. This overview includes individual well scores,
where patterns at the plate level are less likely to be overlooked.

Detailed plate The plates column also shows a large representa-
tion of a single, selected plate at the top right. This detailed view eases
the inspection of well scores and the selection of a specific well. It sup-
ports orientation by showing the plate, column, and row coordinates of
the selected well and those at the boundary of the plate (Section 2.1).
The outlining of the wells in the detailed plate bridges the more ab-
stract well depiction of the plate overview.

6.2 Plates ⇒ Wells

The wells column is opened when a well is selected in either the plate
overview or detailed plate view (TNF). An overview of top scoring
wells, called the hit list is shown at the left of the wells column in
Fig. 4. Right next to this list is an image of the selected well with
associated information and options shown on top of the image.

Well image The image of the selected well takes up most of the
wells column. When the plates and wells columns are opened this
enables the navigation to (and validation of) those wells that seem to
be suspect in the plate overview. At the top right of the image it is
possible to switch between multiple images that have been captured
of the same well. As seen in Fig. 4, two image types Segmented and
Normal are available for the CellMorph screen:

Normal shows the integration of multiple measurements (fluorescent
channels) into an image, in which activity in cell nuclei can be iden-
tified as blue, and the activity in the cytoplasm by green or red;

Segmented superimposes profiling information on the Normal image,
demarcating cell and nuclei boundaries;

None does not show any image to make an overlay more legible.

In case of CellMorph, both image types consist of four sub-images cap-
tured at different spots of the same well. An overlay can be shown that
depicts the cell phenotypes as colored circles. However, phenotypes
first have to be modeled via the phenotypes and features columns.

Well conditions The conditions and type of a well are shown as
a table above the well image. Wells can be annotated with conditions
from multiple categories. For example, in Fig. 4 the type of the well
is positive because gene ADAMTSL3 is the target of an administered
compound. This form of textual well annotation with little structure
enables screeners to input a large variety of experiment setups.

Textual well conditions also tie in directly with the well filter func-
tionality, where the user inputs part of a condition that a well should
have. This filter is shown as part of the wells column header, for exam-
ple Wells: positive in Fig. 4 where only wells with a positive condition
are shown (TNF). Moreover, any of the conditions shown at the top left
of the well image can be selected to make it the filtered condition. This
enables fast lookup and cross referencing of well conditions, respec-
tively. For example, in Fig. 1 the wells are filtered to match positive,
where only those wells with a compound are shown, hiding the con-
trol wells. As a result the top row of each plate is lightened, as seen
for row 004 of selected and enlarged plate HT25. The plates HT03,
HT22, HT66, HT68 show few positive wells.

An earlier prototype featured the ability to select multiple well con-
ditions in the wells column, which then serve to partition the plates in
the plates column according to what selected conditions are present on
the plate. This change of plate layout confused the screeners and it did
not fit in their current workflows. Instead, screeners preferred to filter
for well conditions directly–at the plate level and the well level. This
led to the current text filter, where the screener gets direct feedback
when he is interested in comparing conditions.

6.3 Wells ⇒ Phenotypes

Any of the cells shown in a well image can be selected by clicking it,
which opens the phenotypes column next to the wells column (TNF).

Phenotypes The phenotype model relates a cell’s phenotype
to its image features and it can be defined via the phenotypes col-
umn (TPM). The top of the column displays the phenotypes in the
model, where there is a difference between those phenotypes that are
currently shown and hidden, Fig. 1. Phenotypes are color coded via
automated selection of colors from a fixed palette. In addition, pheno-
types can be shown and hidden at any time by the user. Each shown
phenotype has its own sub-column and is headed by a tile that shows
the phenotype color and form:

Picked phenotypes are defined by exemplars that are handpicked by
the user to shape a phenotype model;

Not Sure represents those cells that do not fit in the current phenotype
model, i.e., a phenotype cannot be inferred with confidence.
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distribution values intensity

Fig. 5. Part of the features column, see Fig. 1 for full sized column. All
image features are listed by name, dimming those that are not selected
to be in the model. The three sub-columns next to it depict: feature
value distributions as histograms, values per exemplar as parallel coor-
dinates, and intensity plots of all combinations of selected feature pairs.
In this case the intensity plots include a non-linear projection of all image
features that forms a landscape.

The picked phenotypes have to be assembled by the user in the ex-
emplars section. An enlarged picture of the selected cell is shown at
the top, marked with a colored square at the top left to indicate what
phenotype it has according to the current model. The user can confirm
or counter this by adding the selected cell to the underlying exemplar
stack of a phenotype. Alternatively, the selected cell can be assigned
to a new phenotype. The exemplars’ images form stacks, from which
the user can distinguish the phenotypes, their assigned colors, and the
visual criteria that motivated the user to define the phenotypes.

The exemplars and their user-assigned phenotypes form a training
set from which a classifier (model) is derived. This classifier can evalu-
ate the phenotype of any cell, from the cell’s image features. Screenit
uses a random forest classifier because it is robust and fast, but can
easily be replaced by another classifier. Initially all of the screen’s
cells are evaluated to be of the not sure phenotype because there is
no model without exemplar cells. Therefore, a typical workflow of
one of our collaborator screeners is to first select a (negative) control
well. In this well many cells are expected to be of a normal pheno-
type, because no compounds have been added that stimulate cells into
an aberrant state. The screener then assembles these phenotypes by
picking exemplars from the control well. These exemplars refine the
model, where a proper phenotype will be evaluated for a larger number
of cells.

By default the model is based on all available image features (Cell-
Morph has 54 features). If possible, a screener wants to keep the phe-
notype model simple and therefore limits the number of selected fea-
tures. However, selecting the right features is important to maintain
the accuracy of the model. To make these informed decisions, more
information about cells, corresponding inferred phenotypes, and their
feature values is required.

6.4 Phenotypes ⇒ Features

Cell image feature information is acquired by opening the features
column. The features column has three sub-columns, shown in Fig. 5.

Histograms The left column lists all cell features with their value
distributions. These distributions cover the entire cell population parti-
tioned by phenotype, shown as histograms that are colored according
to their phenotype. These histograms enable the screener to spot fea-
tures that could serve as phenotype discriminators. For example, a
feature can have a bi-modal distribution or a distribution with a heavy
tail. Both suggest groups of cells–potential phenotypes–where cells of
each group have localized values for the feature in question.

The initial phenotype model uses all available features to distin-
guish phenotypes. However, when phenotypes and corresponding ex-
emplars have been picked, as shown in Fig. 1, disparities between phe-
notype distributions indicate discriminating features–according to the
phenotype model. For example, feature Tt.var in Fig. 5 has distinct
distributions per phenotype, with strongly separated means. Discrimi-
nating features are potential candidates for inclusion in the model.

The features column has changed often during the design process,
but the histogram list has been constant. Screenit exposes screeners to
the richness of high-content screens, which is what the feature list pro-
vides at all times. It has been well-received during feedback sessions.

Selection A simplified model, based on a limited number of
features, can be constructed by toggling the features in the feature
list (TFS). Selected features have emphasized labels, as shown in
Fig. 5. The phenotype model is redefined (TPM) and applied (TPA)
as soon as the feature selection changes. The feature list is arranged
according to pairwise feature correlations, where highly correlated fea-
tures are positioned close to each other in the list. This enables a
screener to select features with a high overall information content and
it reduces clutter in the parallel coordinates plot.

The simplified model and its visualizations enables a screener to rea-
son about modeled phenotypes in terms of features and the inducing
biological mechanics within the cells. During a feedback session one
bioinformatician screener emphasized the need to discover a screens’
phenotypes but also to explain each phenotype, associate it with cellu-
lar mechanics and processes, and name it accordingly.

Parallel coordinates Adjacent to the feature distributions is a
parallel coordinate plot that encodes the values of all features for ev-
ery phenotype exemplar, shown in Fig. 5. The polylines are semi-
transparent and colored by phenotype to make them easier to distin-
guish. The selected cell is drawn as a thick blue polyline, which en-
ables the user to inspect individual exemplars by selecting them in
the phenotypes column. As a complement to the feature histograms,
the screener is therefore able to evaluate the exemplars that have been
picked. For example, a screener can spot and select an outlying exem-
plar that has dubious feature values, or feature values that indicate an
unexpected, novel phenotype (TPV).

Plot Matrix The selected features of a simplified model are shown
as a matrix of intensity (2D histogram) plots on the right, as shown in
Fig. 5. A plot is shown for every possible pair of selected features,
where for every pixel the most abundant phenotype (for all cells in the
data set) is identified by its assigned color. The brightness of the color
relates to abundance. The low abundance areas are darker, where out-
lying cells are easier to spot, and the high abundance areas are brighter
to indicate distribution peaks. This decomposes the phenotype model
in terms of all cells and their feature values. This interests screeners
who construct and tune phenotype classification algorithms.

The phenotype exemplars are shown as colored markers on top.
These enable screeners to spot outlying exemplars that warrant inspec-
tion, such as the pink outlier in the bottom half of the matrix in Fig. 5.
It also enables cross referencing phenotype exemplars and model dis-
tributions (TPV). For example, the model appears to make a clear cut
between the green and pink phenotypes for the Tt.asm feature, in terms
of the phenotype distributions of all cells, and the phenotype exem-
plars. But in the At.ent and Tt.asm plot we see that the distinction is
not consistent for higher values of At.ent, where the classifier labels a
large number of cells as not sure.

Initially we worked with scatter plots of a small sample (1000s) of
cells, as shown in Fig. 3(a). The cells were given translucent colors ac-
cording to their phenotype. However, these plots have poor legibility
in areas where phenotype populations overlap. Alternatively, contour
density plots were used for the intensity plots for some time. These
plots are often used to visualize cell populations in Flow Cytometry
experiments, which are familiar to screeners [15]. However, the con-
tours created too much clutter when shown on top of each other for
multiple phenotypes. The thin contours also inhibited screeners from
distinguishing phenotypes by their colors.

Clutter is still an issue for the features column, as is the deceptive
loss of information when reducing clutter in the plot matrix. How-
ever, the ability to hide and show phenotypes mostly mitigates these
problems. This functionality was requested by one screener, who men-
tioned never needing to look at more than three phenotypes at a time.

Landscape Two special cell features can be included in a screen
data set that are not part of the model but do form a landscape plot
at the top right of the plot matrix. For the CellMorph data we pre-
computed a multidimensional scaling of all cell image features via the
t-SNE approach [43]. Cells with similar image features will therefore
be positioned close to each other in the plot, in general. This provides
insight into the high-dimensional distribution of phenotypes. For ex-
ample, in Fig. 5 the exemplars of the pink phenotype have a dense
configuration, which suggests that this phenotype covers a small and
well-defined group of cells. This is not surprising since the exemplar
images (Fig. 1) indicate that this phenotype models dead cells. On
the other hand, the green phenotype appears to span a large number of
cells across feature space. Again this comes as no surprise because the
exemplar images indicate that the phenotype models healthy, dormant
cells that make up a significant part of the numerous control wells.

6.5 Features ⇒ Phenotypes, Wells, Plates

Outlying cells and separate cell populations are easy to spot in these
two dimensional histograms. For example, the Tt.sen and Tt.asm plot
in Fig. 5 shows outlying cells to the left of the general cell popula-
tion. The user is able to select any of the cells in a plot, immediately
showing all of the cell’s features in the parallel coordinate plot and
its image in the phenotypes column. Subsequently, if the selected cell
turns out to be of interest, it can be assigned to a phenotype as an exem-
plar. This constitutes an additional workflow to refine the phenotype
model, where exemplars are picked according to their image features
(and agnostic to well conditions) instead of their raw images (TPM).

Since the selected plate and well always conform to the selected
cell, it is possible to navigate to the wells and plates columns to put
the selected cell in context. For example, when an outlying cell is
selected and the picture of the cell in the phenotypes column indicates
that the cell has not been imaged properly, the screener navigates to its
well and confirms that the entire well has a malformed image (TNF).

6.6 Phenotypes ⇒ Wells, Plates

A screener will navigate to the wells or plates column as soon as he is
convinced that the phenotype model is sufficient to serve as a basis for
future hit model(s). Usually this results in the phenotypes and wells
columns opened. In the phenotypes column the screener can hide any
phenotype that is not interesting. A hidden phenotype is excluded from
the hit model, which effectively filters the hierarchy by cell phenotype
(TNF). This also enables a screener to model those phenotypes that are
currently of no interest (normal cells, for example). The screener will
then proceed to the wells column to inspect the well hit list.

Hit List At the left of the wells column in Fig. 4 is a list of high
scoring wells (THV). Wells are identified by their coordinates at the far
left, where the selected well is always shown at the top in blue. Next
to this are the abundances (or well shares) of the visible phenotypes,
visualized as an area plot where phenotypes are easy to trace along the
wells. Cell count is visualized at the right of the list as a thick black
trend line. Both encodings concern related data and therefore match
in style. However, the cell count encoding does not use filled areas to
avoid confusion between the phenotype ratios and absolute cell counts.
Fig. 4 has three visible phenotypes, pink, green, and gray for the not
sure class. The selected well is always shown at the top of the hit
list with a blue label, regardless of its hit score. Any of the wells in
the hit list can be selected for detail on demand and navigation of the
hierarchy (TNF). The not sure class is dominant across all top scoring
wells, matching the hit function editor.

The hit list was not part of the design for a considerable time. We
tried to visualize wells in terms of their phenotype abundance and with-
out an explicitly defined hit score. For example, the high-dimensional
projection of wells that is shown in Fig. 3(c) is similar to the static,

targeted analysis by bioinformaticians of the CellMorph data [10].
However, this did not appear to engage the screeners, except for one
screener with a bioinformatics background. The screeners emphasized
their use of flower plots to visualize phenotype abundance, and we
therefore incorporated them, as shown in Fig. 6. Flower plots encode
the phenotype shares of each well in a plate as arcs of fixed angle,
where the arc area encodes phenotype abundance.
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phenotype B
phenotype C

abundance as area

Fig. 6. In a flower plot pheno-
type shares are displayed per
well as arcs of equal angles and
varying area.

The flower plots required too
much space to be legible when vi-
sualizing an entire plate and even
though flower plots are often used
by screeners, comparing pheno-
type abundances across an entire
plate is not a common task. Fil-
tering the flower plots by well con-
ditions and user selection was in-
cluded in the design to increase
plot size and legibility, but instead
it mostly disoriented the screen-
ers. Moreover, screeners are used
to composing hit lists that include
context information (e.g., pheno-
types) to pass on to chemists for
more thorough analysis. Screeners
asked for inclusion of such a hit list multiple times during the design
process. Therefore, flower plots were succeeded by the area plot along
the hit list, fulfilling both the need for a hit list and for information
about phenotype abundance.

Hit Function Editor An editor is provided at the top of the well hit
list that enables the screener to manipulate the hit model (THV). Each
phenotype has its own plot with a curve that fits three control points
that can be moved by the user. This curve is colored according to the
phenotype that it represents and the ordering of the plots is consistent
with the phenotypes in the hit list underneath.

Each curve defines the score contribution (y-axis) of a phenotype
for a well, based on the ratio (x-axis) of the phenotype in that well.
The domain of the curve is defined in terms of z-score, where the aver-
age phenotype share across all wells has z-score 0 at the origin of the
plot (i.e., zero standard deviations from the mean). The minimum and
maximum z-scores are limited to -5 and 5 respectively, beyond which
the score is fixed. The score range spans [−1,1] along the y-axis. For
a given well, the individual scores of all of its phenotypes, and its cell
count, are summed to attain the aggregate well score.

For example, in Fig. 4 a hit score is defined where a well with an
average to high cell count is promoted, a high share of not sure cells
is promoted, and an average share of the pink phenotype is rewarded
and a high share of the pink phenotype is highly awarded. Due to this
hit model definition, we see that the top scoring wells in the list have
consistently high shares of the pink and gray (not sure) phenotypes. In
this case, screeners can find new phenotypes (not sure) that co-exist
with the pink phenotype, such as selected well HT25 B012 in Fig. 4.
Editable transfer functions were requested repeatedly by one screener
because simpler score models, such as a plain sum of abundances for
a selection of phenotypes, were not expressive enough.

The score decomposition of the selected well is visualized explicitly,
where every plot shows a blue dot that represents the selected well and
its associated score. Absolute selected well share and cell counts are
stated underneath the plots. Therefore, the screener is able to shape
the hit function according to a particular well’s phenotype shares. This
enables the discovery of wells with (dis)similar phenotype shares.

The hit score editor was at one point part of the phenotypes column,
where the editor plots shared the same sub-columns as the phenotypes
and their exemplars. However, this results in a great distance between
the editor (cause) and the heat map and hit list (effect). Placing the
function editor on top of the hit list makes its function immediate, sim-
ilar to the direct manipulation of column weights in a ranked list in
LineUp [13]. It is therefore easier to see whether the edited function
isolates a signal across the wells, as a skewed score distribution across
the heat maps and as dark spots in Fig. 1.
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distribution values intensity

Fig. 5. Part of the features column, see Fig. 1 for full sized column. All
image features are listed by name, dimming those that are not selected
to be in the model. The three sub-columns next to it depict: feature
value distributions as histograms, values per exemplar as parallel coor-
dinates, and intensity plots of all combinations of selected feature pairs.
In this case the intensity plots include a non-linear projection of all image
features that forms a landscape.

The picked phenotypes have to be assembled by the user in the ex-
emplars section. An enlarged picture of the selected cell is shown at
the top, marked with a colored square at the top left to indicate what
phenotype it has according to the current model. The user can confirm
or counter this by adding the selected cell to the underlying exemplar
stack of a phenotype. Alternatively, the selected cell can be assigned
to a new phenotype. The exemplars’ images form stacks, from which
the user can distinguish the phenotypes, their assigned colors, and the
visual criteria that motivated the user to define the phenotypes.

The exemplars and their user-assigned phenotypes form a training
set from which a classifier (model) is derived. This classifier can evalu-
ate the phenotype of any cell, from the cell’s image features. Screenit
uses a random forest classifier because it is robust and fast, but can
easily be replaced by another classifier. Initially all of the screen’s
cells are evaluated to be of the not sure phenotype because there is
no model without exemplar cells. Therefore, a typical workflow of
one of our collaborator screeners is to first select a (negative) control
well. In this well many cells are expected to be of a normal pheno-
type, because no compounds have been added that stimulate cells into
an aberrant state. The screener then assembles these phenotypes by
picking exemplars from the control well. These exemplars refine the
model, where a proper phenotype will be evaluated for a larger number
of cells.

By default the model is based on all available image features (Cell-
Morph has 54 features). If possible, a screener wants to keep the phe-
notype model simple and therefore limits the number of selected fea-
tures. However, selecting the right features is important to maintain
the accuracy of the model. To make these informed decisions, more
information about cells, corresponding inferred phenotypes, and their
feature values is required.

6.4 Phenotypes ⇒ Features

Cell image feature information is acquired by opening the features
column. The features column has three sub-columns, shown in Fig. 5.

Histograms The left column lists all cell features with their value
distributions. These distributions cover the entire cell population parti-
tioned by phenotype, shown as histograms that are colored according
to their phenotype. These histograms enable the screener to spot fea-
tures that could serve as phenotype discriminators. For example, a
feature can have a bi-modal distribution or a distribution with a heavy
tail. Both suggest groups of cells–potential phenotypes–where cells of
each group have localized values for the feature in question.

The initial phenotype model uses all available features to distin-
guish phenotypes. However, when phenotypes and corresponding ex-
emplars have been picked, as shown in Fig. 1, disparities between phe-
notype distributions indicate discriminating features–according to the
phenotype model. For example, feature Tt.var in Fig. 5 has distinct
distributions per phenotype, with strongly separated means. Discrimi-
nating features are potential candidates for inclusion in the model.

The features column has changed often during the design process,
but the histogram list has been constant. Screenit exposes screeners to
the richness of high-content screens, which is what the feature list pro-
vides at all times. It has been well-received during feedback sessions.

Selection A simplified model, based on a limited number of
features, can be constructed by toggling the features in the feature
list (TFS). Selected features have emphasized labels, as shown in
Fig. 5. The phenotype model is redefined (TPM) and applied (TPA)
as soon as the feature selection changes. The feature list is arranged
according to pairwise feature correlations, where highly correlated fea-
tures are positioned close to each other in the list. This enables a
screener to select features with a high overall information content and
it reduces clutter in the parallel coordinates plot.

The simplified model and its visualizations enables a screener to rea-
son about modeled phenotypes in terms of features and the inducing
biological mechanics within the cells. During a feedback session one
bioinformatician screener emphasized the need to discover a screens’
phenotypes but also to explain each phenotype, associate it with cellu-
lar mechanics and processes, and name it accordingly.

Parallel coordinates Adjacent to the feature distributions is a
parallel coordinate plot that encodes the values of all features for ev-
ery phenotype exemplar, shown in Fig. 5. The polylines are semi-
transparent and colored by phenotype to make them easier to distin-
guish. The selected cell is drawn as a thick blue polyline, which en-
ables the user to inspect individual exemplars by selecting them in
the phenotypes column. As a complement to the feature histograms,
the screener is therefore able to evaluate the exemplars that have been
picked. For example, a screener can spot and select an outlying exem-
plar that has dubious feature values, or feature values that indicate an
unexpected, novel phenotype (TPV).

Plot Matrix The selected features of a simplified model are shown
as a matrix of intensity (2D histogram) plots on the right, as shown in
Fig. 5. A plot is shown for every possible pair of selected features,
where for every pixel the most abundant phenotype (for all cells in the
data set) is identified by its assigned color. The brightness of the color
relates to abundance. The low abundance areas are darker, where out-
lying cells are easier to spot, and the high abundance areas are brighter
to indicate distribution peaks. This decomposes the phenotype model
in terms of all cells and their feature values. This interests screeners
who construct and tune phenotype classification algorithms.

The phenotype exemplars are shown as colored markers on top.
These enable screeners to spot outlying exemplars that warrant inspec-
tion, such as the pink outlier in the bottom half of the matrix in Fig. 5.
It also enables cross referencing phenotype exemplars and model dis-
tributions (TPV). For example, the model appears to make a clear cut
between the green and pink phenotypes for the Tt.asm feature, in terms
of the phenotype distributions of all cells, and the phenotype exem-
plars. But in the At.ent and Tt.asm plot we see that the distinction is
not consistent for higher values of At.ent, where the classifier labels a
large number of cells as not sure.

Initially we worked with scatter plots of a small sample (1000s) of
cells, as shown in Fig. 3(a). The cells were given translucent colors ac-
cording to their phenotype. However, these plots have poor legibility
in areas where phenotype populations overlap. Alternatively, contour
density plots were used for the intensity plots for some time. These
plots are often used to visualize cell populations in Flow Cytometry
experiments, which are familiar to screeners [15]. However, the con-
tours created too much clutter when shown on top of each other for
multiple phenotypes. The thin contours also inhibited screeners from
distinguishing phenotypes by their colors.

Clutter is still an issue for the features column, as is the deceptive
loss of information when reducing clutter in the plot matrix. How-
ever, the ability to hide and show phenotypes mostly mitigates these
problems. This functionality was requested by one screener, who men-
tioned never needing to look at more than three phenotypes at a time.

Landscape Two special cell features can be included in a screen
data set that are not part of the model but do form a landscape plot
at the top right of the plot matrix. For the CellMorph data we pre-
computed a multidimensional scaling of all cell image features via the
t-SNE approach [43]. Cells with similar image features will therefore
be positioned close to each other in the plot, in general. This provides
insight into the high-dimensional distribution of phenotypes. For ex-
ample, in Fig. 5 the exemplars of the pink phenotype have a dense
configuration, which suggests that this phenotype covers a small and
well-defined group of cells. This is not surprising since the exemplar
images (Fig. 1) indicate that this phenotype models dead cells. On
the other hand, the green phenotype appears to span a large number of
cells across feature space. Again this comes as no surprise because the
exemplar images indicate that the phenotype models healthy, dormant
cells that make up a significant part of the numerous control wells.

6.5 Features ⇒ Phenotypes, Wells, Plates

Outlying cells and separate cell populations are easy to spot in these
two dimensional histograms. For example, the Tt.sen and Tt.asm plot
in Fig. 5 shows outlying cells to the left of the general cell popula-
tion. The user is able to select any of the cells in a plot, immediately
showing all of the cell’s features in the parallel coordinate plot and
its image in the phenotypes column. Subsequently, if the selected cell
turns out to be of interest, it can be assigned to a phenotype as an exem-
plar. This constitutes an additional workflow to refine the phenotype
model, where exemplars are picked according to their image features
(and agnostic to well conditions) instead of their raw images (TPM).

Since the selected plate and well always conform to the selected
cell, it is possible to navigate to the wells and plates columns to put
the selected cell in context. For example, when an outlying cell is
selected and the picture of the cell in the phenotypes column indicates
that the cell has not been imaged properly, the screener navigates to its
well and confirms that the entire well has a malformed image (TNF).

6.6 Phenotypes ⇒ Wells, Plates

A screener will navigate to the wells or plates column as soon as he is
convinced that the phenotype model is sufficient to serve as a basis for
future hit model(s). Usually this results in the phenotypes and wells
columns opened. In the phenotypes column the screener can hide any
phenotype that is not interesting. A hidden phenotype is excluded from
the hit model, which effectively filters the hierarchy by cell phenotype
(TNF). This also enables a screener to model those phenotypes that are
currently of no interest (normal cells, for example). The screener will
then proceed to the wells column to inspect the well hit list.

Hit List At the left of the wells column in Fig. 4 is a list of high
scoring wells (THV). Wells are identified by their coordinates at the far
left, where the selected well is always shown at the top in blue. Next
to this are the abundances (or well shares) of the visible phenotypes,
visualized as an area plot where phenotypes are easy to trace along the
wells. Cell count is visualized at the right of the list as a thick black
trend line. Both encodings concern related data and therefore match
in style. However, the cell count encoding does not use filled areas to
avoid confusion between the phenotype ratios and absolute cell counts.
Fig. 4 has three visible phenotypes, pink, green, and gray for the not
sure class. The selected well is always shown at the top of the hit
list with a blue label, regardless of its hit score. Any of the wells in
the hit list can be selected for detail on demand and navigation of the
hierarchy (TNF). The not sure class is dominant across all top scoring
wells, matching the hit function editor.

The hit list was not part of the design for a considerable time. We
tried to visualize wells in terms of their phenotype abundance and with-
out an explicitly defined hit score. For example, the high-dimensional
projection of wells that is shown in Fig. 3(c) is similar to the static,

targeted analysis by bioinformaticians of the CellMorph data [10].
However, this did not appear to engage the screeners, except for one
screener with a bioinformatics background. The screeners emphasized
their use of flower plots to visualize phenotype abundance, and we
therefore incorporated them, as shown in Fig. 6. Flower plots encode
the phenotype shares of each well in a plate as arcs of fixed angle,
where the arc area encodes phenotype abundance.
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Fig. 6. In a flower plot pheno-
type shares are displayed per
well as arcs of equal angles and
varying area.

The flower plots required too
much space to be legible when vi-
sualizing an entire plate and even
though flower plots are often used
by screeners, comparing pheno-
type abundances across an entire
plate is not a common task. Fil-
tering the flower plots by well con-
ditions and user selection was in-
cluded in the design to increase
plot size and legibility, but instead
it mostly disoriented the screen-
ers. Moreover, screeners are used
to composing hit lists that include
context information (e.g., pheno-
types) to pass on to chemists for
more thorough analysis. Screeners
asked for inclusion of such a hit list multiple times during the design
process. Therefore, flower plots were succeeded by the area plot along
the hit list, fulfilling both the need for a hit list and for information
about phenotype abundance.

Hit Function Editor An editor is provided at the top of the well hit
list that enables the screener to manipulate the hit model (THV). Each
phenotype has its own plot with a curve that fits three control points
that can be moved by the user. This curve is colored according to the
phenotype that it represents and the ordering of the plots is consistent
with the phenotypes in the hit list underneath.

Each curve defines the score contribution (y-axis) of a phenotype
for a well, based on the ratio (x-axis) of the phenotype in that well.
The domain of the curve is defined in terms of z-score, where the aver-
age phenotype share across all wells has z-score 0 at the origin of the
plot (i.e., zero standard deviations from the mean). The minimum and
maximum z-scores are limited to -5 and 5 respectively, beyond which
the score is fixed. The score range spans [−1,1] along the y-axis. For
a given well, the individual scores of all of its phenotypes, and its cell
count, are summed to attain the aggregate well score.

For example, in Fig. 4 a hit score is defined where a well with an
average to high cell count is promoted, a high share of not sure cells
is promoted, and an average share of the pink phenotype is rewarded
and a high share of the pink phenotype is highly awarded. Due to this
hit model definition, we see that the top scoring wells in the list have
consistently high shares of the pink and gray (not sure) phenotypes. In
this case, screeners can find new phenotypes (not sure) that co-exist
with the pink phenotype, such as selected well HT25 B012 in Fig. 4.
Editable transfer functions were requested repeatedly by one screener
because simpler score models, such as a plain sum of abundances for
a selection of phenotypes, were not expressive enough.

The score decomposition of the selected well is visualized explicitly,
where every plot shows a blue dot that represents the selected well and
its associated score. Absolute selected well share and cell counts are
stated underneath the plots. Therefore, the screener is able to shape
the hit function according to a particular well’s phenotype shares. This
enables the discovery of wells with (dis)similar phenotype shares.

The hit score editor was at one point part of the phenotypes column,
where the editor plots shared the same sub-columns as the phenotypes
and their exemplars. However, this results in a great distance between
the editor (cause) and the heat map and hit list (effect). Placing the
function editor on top of the hit list makes its function immediate, sim-
ilar to the direct manipulation of column weights in a ranked list in
LineUp [13]. It is therefore easier to see whether the edited function
isolates a signal across the wells, as a skewed score distribution across
the heat maps and as dark spots in Fig. 1.
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Hit Score Overview Opening the plate view provides an
overview of the well scores across the plates, as seen in Fig. 1. This
reveals consistent hot spots for plates HT21...HT30, indicating simi-
lar cell effects due to consistent compound effects, or faulty observa-
tions. Moreover, this makes it easy for a screener to fine-tune the score
function and reference the plate overview to determine whether he is
converging on a clear signal (THM, THV).

7 IMPLEMENTATION

Screenit is web-based, where the client-side handles most visualiza-
tion and interaction tasks, and the server-side handles screen data stor-
age and analysis. The implementation is open source and publicly
available at: http://vcglab.org/screenit

The client-side is written predominantly in TypeScript and renders
visualizations via HTML5 canvas. Well information, such as abun-
dance of phenotypes and cell counts, are stored client-side after being
computed server-side. This enables scores to be computed client-side
in a fraction of a second, which improves interactive editing of the
score function and is feasible for up to 10,000s of wells. Likewise,
well and cell images are fetched from the server when required. This
keeps the memory usage of the browser below 1GB.

Cell computations are performed server-side, such as binning val-
ues per feature and phenotype, classifying cells, and subsequently de-
riving well phenotype abundance. The data served to the client is ag-
gregated for wells and features, amounting to at most several MBs per
request. The server-side data set is considerably larger. For example,
the CellMorph data set has an image collection of over 100GB and the
54 image features of 6 million cells take over 1.5GB in compact form.

Image features have to be precomputed via a profiler [7] and stored
as NumPy files, as described in the website. The server’s analysis fea-
tures are implemented in Python and rely heavily on packages Scikit-
learn [30] and Pandas [25]. The default Scikit-learn random forest
classifier is used to train and apply the phenotype model, but it can
be replaced by an arbitrary classifier. The Tangelo framework handles
server-client requests, which is agnostic of client state [4] where hard-
ware can be scaled up and distributed to support more users.

Most analysis code is concurrent, such as cell classification and
computing feature histograms. This enables the 6 million cells of Cell-
Morph to be (re)analyzed in seconds and allows for future data sets
to scale. Caching of computation results is supported to improve per-
formance and response times. In case of CellMorph 16GB of server
memory suffices to perform all computations while retaining all fea-
ture values in memory for optimal response times.

8 USE CASES

We present typical use cases of Screenit with an analysis of the Cell-
Morph screen [10]. This screen consists of 6 million cells in 20,000
wells that are embedded in 68 plates. Each cell has 54 features, pre-
computed and published by the CellMorph authors [10]. Each well
contains a siRNA compound that disables a specific gene, which pro-
vides insight into the relation between gene activity and cell pheno-
types.

8.1 The case of ELMO’s skeleton

The ELMO2 gene is known to (indirectly) regulate the control of cy-
toskeleton organization. The cytoskeleton of a cell is a network of
filaments that give a cell its rigid form and supports its internals. If the
development, and dynamic alteration, of a cell’s cytoskeleton is dis-
rupted it impacts the physical shape of the cell. ELMO2 is among the
genes that are targeted and highlighted by the CellMorph study [10].

A point of reference To model the malformed cells that we ex-
pect for the ELMO2 well, we first have to establish a basis of normal
cells. We therefore select a well that we know to be a negative con-
trol, where no gene is affected. In the CellMorph screen the top row
of every plate consists of negative control wells. We arbitrarily select
the top well HT37 N004 to navigate to a cell culture that consists of
common phenotypes, shown in Fig. 7(a). This well is a rich source of
normal cells from which we pick a number of exemplars that shape the
first phenotype for the phenotype model, shown in Fig. 7(b).

Fig. 7. ELMO2 analysis steps.

ELMO’s effect Next, we find the well where ELMO2 is targeted
by filtering for its well condition, shown in Fig. 7(c). The image of
this well confirms the presence of many elongated cells, which can
then be used to shape a second phenotype. The server subsequently
trains the model, using the exemplars of our two phenotypes and all
available cell image features. Navigating to the features column re-
veals the feature distributions across the entire population and shows
which features discriminate the phenotypes that we are interested in.
We select features At.var, At.sen, Tt.var, Nt.den, and ext.

Model refinement In the resulting density plots (not shown in
the figures) both the normal and elongated cells span a broad range
of feature values. Selecting outlying cells in the plots reveals novel
phenotypes that are currently classified as normal or elongated. We
therefore have to refine the phenotype model to narrow down what
constitutes an elongated cell. Navigating up the hierarchy, to the wells
that contain the novel phenotypes, reveals more cells that serve as extra
examples. Using this approach, new phenotypes are added in iterations
until all cells are divided amongst six phenotypes. This is a large share
of the eight presented in the CellMorph study [10]. As seen in Fig 7(d)

Fig. 8. Quality control steps.

for the refined model, the elongated cells (tagged orange) turn out to
be especially hard to classify in comparison, as the model classifies
three of the elongated exemplars to be not sure (tagged grey).

ELMO’s affiliate The model’s performance could be improved by
adding more exemplars, but it turns out that we are already able to
shape a hit model that identifies wells with a high share of elongated
(or malformed) cells, shown in Fig. 7(e). Here a well is selected where
NDRG1 is targeted. Its well image reveals a large number of cells with
a not necessarily elongated but odd shape. A lookup of NDRG1 in
UniProt reveals that the gene regulates microtubule dynamics, where
microtubules are part of the cytoskeleton. This could explain the simi-
larity of phenotypes between the ELMO2 and NDRG1 wells.

8.2 Quality control

Continuing from the ELMO use case, we walk through two quality
control workflows. The first workflow starts at the cell level and the
second at the plate overview. In the phenotype column we first hide all
phenotypes except for the normal cells and the cells about which the
model is not sure. Subsequently, outlying cells (with extreme feature
values) are easy to spot. Selecting these cells reveals images that are
of low quality. As shown in Fig. 8(a), selecting an outlying cell in the
ext and At.var density plot reveals a cell that looks like a black blob.
When we move up the hierarchy, to its well, we see in the well image
that this cell is not an isolated case and that there could be a foreign
object in the background that interferes with the imaging.

At the well level we are able to define a hit model, based on our
refined phenotype model, which identifies potential low-quality wells.
For example, an extremely low cell count can be rewarded. One well
with a low cell count is shown in Fig. 8(b), where the image quality is
so poor that the cell profiler has trouble detecting cells. Likewise, we
look for wells with a high percentage of cells of the not sure pheno-
type in Fig. 8(c). This reveals a well with many cells that cannot be
classified accurately, possibly caused by a bright patch in the image.

9 DISCUSSION

Screenit supports analysis of both high-throughput and high-content
aspects of screens, within certain limits.

Bridging high-throughput and high-content Section 3 identi-
fies a gap of priorities between existing screen visualization tools, in
which industry platforms emphasize a well-centric analysis for large

screens, and academic tools emphasize cell-centric analysis for small
screens. The design of Screenit bridges this gap by integrating plate,
well, and cell levels side by side, in correspondence to screener work-
flows. This, for example, enables the context-preserving navigation of
Section 8.2 from an outlying cell up to its containing wells and plates.
Existing tools present the levels in greater isolation, where the position
of a cell in the screen hierarchy is not immediately apparent.

In contrast with existing tools, Screenit provides detailed informa-
tion for a large number of features at the cell level, almost treating fea-
tures as another hierarchy level. Feature information is organized and
displayed for all screen cells, where the feature values of a selected
cell are apparent in context of all cells. Moreover, phenotype exem-
plars and inferred phenotypes of all cells are presented in this same
context. This enables the fast identification and selection of discrim-
inating features to construct a simplified model, and detailed model
visualization to spot outlying cells for both features and phenotypes.

The image data that underlies high-content screens is strongly inte-
grated into Screenit. Cells can be inspected as part of their well im-
age. According to one screening expert this provides cell context and
neighborhood information that is important for picking phenotype ex-
emplars. Vice-versa, the well overlay of inferred phenotypes provides
a context to assess the phenotype model. Existing tools either lack the
cell images for exemplars selection, favoring feature value plots [27]
with less context information, or show cell images in isolation [20].

Limitations While we designed Screenit to scale to a large num-
ber of cells, there are improvements to be made to increase the number
of plates and cell features. Likewise, large screens have more than a
hundred plates, which Screenit currently cannot support in an effective
manner. Industry screening tools place more focus on plate and well
configuration and analysis, featuring dose-response curve definition
and visualization, and more elaborate well model visualization and
manipulation. Likewise, Screenit focuses on the initial stage of screen-
ing QC and hit discovery, in which well meta-data is limited to plain
tags. For now, compound structure and effect analysis, mentioned in
Section 3, is performed afterwards with separate tools.

Lessons learned We were fortunate enough to collaborate with
a large team of experts from different backgrounds, described in Sec-
tion 4. This gave us a lot of input, albeit from experts with varying per-
spectives, which lead to mixed signals during large meetings. In partic-
ular, experts from various sub-domains had their own preferences for
specific analysis and visualization methods. As a new experience, it
required us longer than usual to pinpoint the analysis problem and sub-
sequent goals. This happened as soon as we identified the screeners,
or front line analysts [36], who we subsequently focused on.

Another new experience was the involvement of a dedicated busi-
ness analyst (co-author) with an anthropology background and expe-
rience in requirements assessment for large projects. He set up small
meetings with experts per sub-domain to ease determining individual
goals. Moreover, he arranged meetings of different sizes and constella-
tions, where we developed the design with a wide spread of feedback.
All meetings were transcribed, which proved valuable for motivating
subsequent design decisions and which is a known design aid [5].

10 CONCLUSIONS

We introduced Screenit, a visual analysis tool that enables screeners to
inspect complex data from high-throughput and high-content experi-
ments, and to create models for cell phenotypes and well hits. Screenit
enables experts to spot data artifacts for quality control. By defining
models and propagating model outcomes to the plate, well, and cell
levels, screening experts can explore their data and modeling results
in an integrated, holistic way.
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Hit Score Overview Opening the plate view provides an
overview of the well scores across the plates, as seen in Fig. 1. This
reveals consistent hot spots for plates HT21...HT30, indicating simi-
lar cell effects due to consistent compound effects, or faulty observa-
tions. Moreover, this makes it easy for a screener to fine-tune the score
function and reference the plate overview to determine whether he is
converging on a clear signal (THM, THV).

7 IMPLEMENTATION

Screenit is web-based, where the client-side handles most visualiza-
tion and interaction tasks, and the server-side handles screen data stor-
age and analysis. The implementation is open source and publicly
available at: http://vcglab.org/screenit

The client-side is written predominantly in TypeScript and renders
visualizations via HTML5 canvas. Well information, such as abun-
dance of phenotypes and cell counts, are stored client-side after being
computed server-side. This enables scores to be computed client-side
in a fraction of a second, which improves interactive editing of the
score function and is feasible for up to 10,000s of wells. Likewise,
well and cell images are fetched from the server when required. This
keeps the memory usage of the browser below 1GB.

Cell computations are performed server-side, such as binning val-
ues per feature and phenotype, classifying cells, and subsequently de-
riving well phenotype abundance. The data served to the client is ag-
gregated for wells and features, amounting to at most several MBs per
request. The server-side data set is considerably larger. For example,
the CellMorph data set has an image collection of over 100GB and the
54 image features of 6 million cells take over 1.5GB in compact form.

Image features have to be precomputed via a profiler [7] and stored
as NumPy files, as described in the website. The server’s analysis fea-
tures are implemented in Python and rely heavily on packages Scikit-
learn [30] and Pandas [25]. The default Scikit-learn random forest
classifier is used to train and apply the phenotype model, but it can
be replaced by an arbitrary classifier. The Tangelo framework handles
server-client requests, which is agnostic of client state [4] where hard-
ware can be scaled up and distributed to support more users.

Most analysis code is concurrent, such as cell classification and
computing feature histograms. This enables the 6 million cells of Cell-
Morph to be (re)analyzed in seconds and allows for future data sets
to scale. Caching of computation results is supported to improve per-
formance and response times. In case of CellMorph 16GB of server
memory suffices to perform all computations while retaining all fea-
ture values in memory for optimal response times.

8 USE CASES

We present typical use cases of Screenit with an analysis of the Cell-
Morph screen [10]. This screen consists of 6 million cells in 20,000
wells that are embedded in 68 plates. Each cell has 54 features, pre-
computed and published by the CellMorph authors [10]. Each well
contains a siRNA compound that disables a specific gene, which pro-
vides insight into the relation between gene activity and cell pheno-
types.

8.1 The case of ELMO’s skeleton

The ELMO2 gene is known to (indirectly) regulate the control of cy-
toskeleton organization. The cytoskeleton of a cell is a network of
filaments that give a cell its rigid form and supports its internals. If the
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rupted it impacts the physical shape of the cell. ELMO2 is among the
genes that are targeted and highlighted by the CellMorph study [10].

A point of reference To model the malformed cells that we ex-
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cells. We therefore select a well that we know to be a negative con-
trol, where no gene is affected. In the CellMorph screen the top row
of every plate consists of negative control wells. We arbitrarily select
the top well HT37 N004 to navigate to a cell culture that consists of
common phenotypes, shown in Fig. 7(a). This well is a rich source of
normal cells from which we pick a number of exemplars that shape the
first phenotype for the phenotype model, shown in Fig. 7(b).

Fig. 7. ELMO2 analysis steps.
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of the eight presented in the CellMorph study [10]. As seen in Fig 7(d)
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phenotypes except for the normal cells and the cells about which the
model is not sure. Subsequently, outlying cells (with extreme feature
values) are easy to spot. Selecting these cells reveals images that are
of low quality. As shown in Fig. 8(a), selecting an outlying cell in the
ext and At.var density plot reveals a cell that looks like a black blob.
When we move up the hierarchy, to its well, we see in the well image
that this cell is not an isolated case and that there could be a foreign
object in the background that interferes with the imaging.

At the well level we are able to define a hit model, based on our
refined phenotype model, which identifies potential low-quality wells.
For example, an extremely low cell count can be rewarded. One well
with a low cell count is shown in Fig. 8(b), where the image quality is
so poor that the cell profiler has trouble detecting cells. Likewise, we
look for wells with a high percentage of cells of the not sure pheno-
type in Fig. 8(c). This reveals a well with many cells that cannot be
classified accurately, possibly caused by a bright patch in the image.
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Existing tools present the levels in greater isolation, where the position
of a cell in the screen hierarchy is not immediately apparent.
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displayed for all screen cells, where the feature values of a selected
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plars and inferred phenotypes of all cells are presented in this same
context. This enables the fast identification and selection of discrim-
inating features to construct a simplified model, and detailed model
visualization to spot outlying cells for both features and phenotypes.

The image data that underlies high-content screens is strongly inte-
grated into Screenit. Cells can be inspected as part of their well im-
age. According to one screening expert this provides cell context and
neighborhood information that is important for picking phenotype ex-
emplars. Vice-versa, the well overlay of inferred phenotypes provides
a context to assess the phenotype model. Existing tools either lack the
cell images for exemplars selection, favoring feature value plots [27]
with less context information, or show cell images in isolation [20].

Limitations While we designed Screenit to scale to a large num-
ber of cells, there are improvements to be made to increase the number
of plates and cell features. Likewise, large screens have more than a
hundred plates, which Screenit currently cannot support in an effective
manner. Industry screening tools place more focus on plate and well
configuration and analysis, featuring dose-response curve definition
and visualization, and more elaborate well model visualization and
manipulation. Likewise, Screenit focuses on the initial stage of screen-
ing QC and hit discovery, in which well meta-data is limited to plain
tags. For now, compound structure and effect analysis, mentioned in
Section 3, is performed afterwards with separate tools.

Lessons learned We were fortunate enough to collaborate with
a large team of experts from different backgrounds, described in Sec-
tion 4. This gave us a lot of input, albeit from experts with varying per-
spectives, which lead to mixed signals during large meetings. In partic-
ular, experts from various sub-domains had their own preferences for
specific analysis and visualization methods. As a new experience, it
required us longer than usual to pinpoint the analysis problem and sub-
sequent goals. This happened as soon as we identified the screeners,
or front line analysts [36], who we subsequently focused on.

Another new experience was the involvement of a dedicated busi-
ness analyst (co-author) with an anthropology background and expe-
rience in requirements assessment for large projects. He set up small
meetings with experts per sub-domain to ease determining individual
goals. Moreover, he arranged meetings of different sizes and constella-
tions, where we developed the design with a wide spread of feedback.
All meetings were transcribed, which proved valuable for motivating
subsequent design decisions and which is a known design aid [5].
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