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Abstract

Recent deep learning methods have achieved promising
results in image shadow removal. However, their restored
images still suffer from unsatisfactory boundary artifacts,
due to the lack of degradation prior embedding and the de-
ficiency in modeling capacity. Our work addresses these
issues by proposing a unified diffusion framework that in-
tegrates both the image and degradation priors for highly
effective shadow removal. In detail, we first propose a
shadow degradation model, which inspires us to build a
novel unrolling diffusion model, dubbed ShandowDiffusion.
It remarkably improves the model’s capacity in shadow re-
moval via progressively refining the desired output with
both degradation prior and diffusive generative prior, which
by nature can serve as a new strong baseline for image
restoration. Furthermore, ShadowDiffusion progressively
refines the estimated shadow mask as an auxiliary task of
the diffusion generator, which leads to more accurate and
robust shadow-free image generation. We conduct exten-
sive experiments on three popular public datasets, including
ISTD, ISTD+, and SRD, to validate our method’s effective-
ness. Compared to the state-of-the-art methods, our model
achieves a significant improvement in terms of PSNR, in-
creasing from 31.69dB to 34.73dB over SRD dataset.

1. Introduction

Shadow removal aims to enhance visibility of the im-
age shadow regions, pursuing a consistent illumination dis-
tribution between shadow and non-shadow regions. Deep
learning-based methods [4, 7, 44] achieved superior perfor-
mance recently by fully utilizing the power of large col-
lections of data. While most of the existing methods fo-
cused on learning the discriminative models for shadow re-
moval, modeling the underlying distribution of nature im-
ages is overlooked in their restoration process. Conse-

Input GT Fu et al. BMNet

(c) ShadowDiffusion

PSNR: 29.20 
SSIM: 0.813

PSNR: 36.49 
SSIM: 0.969

PSNR: 39.53 
SSIM: 0.984

(b) Previous Methods(a) Input+GT

...

...

...

...

Figure 1. (a) Input shadow image and corresponding ground truth
shadow-free image, (b) shadow removal results of two most recent
competing methods Fu et al. [7] and BMNet [44], and (c) our pro-
posed ShadowDiffusion iteratively (T → 0) restores the shadow-
free image and refines the shadow mask, in which the x0 and m0

are the final enhanced result and refined mask, respectively.

quently, the shadow removal results usually contain severe
boundary artifacts and remaining shadow patterns, as shown
in Figure 1(b). Though the adversarial loss can alleviate
this issue, these approaches [15, 33] require careful adjust-
ment during training, might overfit certain visual features
or data distribution, and might hallucinate new content and
artifacts. Very recently, various diffusion models, such as
the popular diffusion denoising diffusion probability model
(DDPM) [13], have gained wide interest in the field of low-
level vision [28, 29]. Comparing to other deep generative
models, diffusion models are more powerful for model-
ing image pixel distribution, which provides great potential
for significantly improving visual quality and benefits high-
quality image restoration. However, no work to-date has
exploited diffusion models for shadow removal tasks.
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Moreover, there are two major limitations in existing
shadow removal methods: First, the shadow degradation
prior that reflects its corresponding physical properties has
not been well exploited in deep learning. Though recent
work [19] attempted to incorporate simple shadow model
as a linear and uniform degradation, such an assumption
is too restrictive for restoring real shadow images subjec-
tive to complicated lighting conditions. Second, most of
the deep shadow removal methods requires an estimated
shadow mask as the inputs, which are either provided by
the benchmark datasets [33] or generated by a pre-trained
shadow detector [5]. However, these mask estimates are
usually inaccurate, e.g., wrong indicators near the boundary
or small shadow objects. Even the carefully hand-crafted
masks sometimes contain coarse boundaries. Since existing
methods blindly rely on the estimated masks without ex-
ploiting their correlation to the actual shadow images for re-
finement, there are usually severe boundary artifacts in their
shadow removal results [7, 44], as shown in Figure 1(b).

To alleviate the challenges in shadow removal, we
first introduce a general shadow model of spatially-variant
degradation, by decomposing the degradation matrix into
the shadow mask and shadow intensities. Based on the
new shadow model, we propose a novel unrolling diffusion-
based shadow removal framework, called ShadowDiffu-
sion, which integrates both the generative and degradation
priors. Specifically, we formulate the shadow removal prob-
lem as to jointly pursue the shadow-free image and refined
shadow mask. Mask refinement is designed as an auxiliary
task of the diffusion generator to progressively refine the
shadow mask along with shadow-free image restoration in
an interactive manner as shown in Figure 1(c). After that,
we further propose an unrolling-inspired diffusive sampling
strategy to explicitly integrate the degradation prior into the
diffusion framework. Experimental results show that Shad-
owDiffusion can achieve superior performance consistently
over the three widely-used shadow removal datasets and
significantly outperform the state-of-the-art methods. Be-
sides, our model can be applied to other image enhancement
tasks, e.g., low-light image enhancement and exposure cor-
rection. Our main contributions are summarized as follows:

• We propose the first diffusion-based model for shadow
removal. A novel dynamic mask-aware diffusion
model (DMDM) is introduced to jointly pursue a
shadow-free image and refined shadow mask, which
leads to robust shadow removal even with an inaccu-
rate mask estimate.

• We further propose an unrolling-inspired diffusive
sampling strategy to explicitly integrate the shadow
degradation prior into the intrinsic iterative process of
DMDM.

• Extensive experimental results on the public ISTD,

ISTD+, and SRD datasets show that the pro-
posed ShadowDiffusion outperforms the state-of-the-
art shadow removal methods by large margins. Be-
sides, our method can be generalized to a series of im-
age enhancement tasks.

2. Related Work
Shadow removal. Classic shadow removal methods usu-
ally employed various handcrafted priors, e.g., image gra-
dients [10], illumination [41], and regions [11], for enhanc-
ing the illumination of shadow regions. Those methods are
built under an ideal assumption, leading to obvious shadow
boundary artifacts when transferring to real-world cases.

Taking advantage of the powerful ability in learning
mappings from the training pairs, deep learning-based
methods [6,15,19] achieved superior performance in recent
years. One group of works still reconstructed the shadow-
free image under a physical illumination model with global
degradation. For instance, Le et al. [19] ideally applied the
physical linear transformation model to enhance the shadow
region and reconstructed the shadow-free image by image
decomposition. Fu et al. [7] proposed an over-exposure fu-
sion way for shadow removal, where the proposed model
can smartly blend a series of over-enhanced shadow images
as well as the original shadow image by a learnable pixel-
wise weighting map. However, such a global degradation
model is too strict since real-world illumination degrada-
tion is always non-uniform. Besides, generative adversarial
network techniques [15, 22, 33] are applied to enhance the
reality of enhanced results. However, the results of these
methods always suffered from color distortions and might
hallucinate new content and artifacts.
Diffusion model for image restoration. Diffusion-based
generative models [31] recently produced amazing results
with improvements adopted in denoising diffusion proba-
bilistic models [13], which becomes increasingly influen-
tial in the field of low-level vision tasks, such as super-
resolution [17, 29], inpainting [24], and colorization [28].
Saharia et al. [29] introduced a denoising diffusion proba-
bilistic model to image super-resolution and achieved better
performance compared with the state-of-the-art Generative
Adversarial Network (GAN) [8] based methods. Inspired
by conditional generation models [23,25], Pallette [28] was
proposed as a general image-to-image framework to solve
the image restoration with conditional denoising diffusion
probability models. Ozan et al. [26] presented a patch-
based diffusion model for weather removal that enables the
size-agnostic processing, which employed a guided denois-
ing process across overlapping patches during inference.

However, most of these methods focus on synthetic
degradation, such as image colorization, image inpainting,
and super-resolution, in which it is very easy to simulate
large-scale training pairs on existing natural image datasets
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Figure 2. Illustration of the proposed ShadowDiffusion, in which the training (dashed line) and sampling (solid line) processes are detailed
in Algorithm 1 and Algorithm 2, respectively. Each sampling iteration consists of the sampling of dynamic mask-aware diffusion model
(DMDM) and data consistency (DC) steps (Here DC corresponds to Eq (13) & (14)).

to train diffusion-based models. In this paper, we explore
the real-world shadow removal problem with limited train-
ing pairs. A novel dynamic mask-aware diffusion model
with the stricter and iteratively refined conditions is pro-
posed to address the above problem.
Deep unrolling methods. Consistency of the predictions
with respect to the degradation model is crucial for reliably
solving ill-posed restoration tasks. Deep unrolling, by in-
corporating the known degradation model into the deep net-
works via an iterative optimization algorithm, has demon-
strated remarkable performance on various inverse prob-
lems. For example, Karol et al. [9] proposed to unroll
the iterative shrinkage thresholding algorithm (ISTA) for
sparse coding, which demonstrated promising results on
super-resolution [21]. Yang et al. [38] introduced an un-
rolling network describing the data flow graphs in the iter-
ative procedures of Alternating Direction Method of Mul-
tipliers (ADMM) for magnetic resonance imaging (MRI)
reconstruction. Based on half-quadratic splitting, Zhang et
al. [40] proposed an unfolding scheme that enables a sin-
gle network to address different scale factors in the super-
resolution task. Compared with model-free learning based
methods, the deep unrolling scheme integrates the degrada-
tion constraint into the learning model by iteratively regu-
larizing the network output according to the model prior.

3. ShadowDiffusion

We present the proposed ShadowDiffusion, by first intro-
ducing our shadow degradation model. Then, the dynamic
mask-aware diffusion model (DMDM) and its training pro-
cess are presented, which can predict the shadow-free image
jointly with progressive mask refinement. Finally, we intro-
duce the unrolling-inspired diffusive sampling based on the

DMDM which integrates the diffusive generative model and
shadow degradation prior.

3.1. Shadow Degradation Model
A shadow region of an image y is caused by partial or

complete occlusions. Inspired by Retinex theory [18], clas-
sic methods adopted a simple shadow degradation, in which
shadow images y is formed by applying an illumination
change surface a to the shadow-free image x as follows:

y = a · x , (1)

where · denotes the element-wise multiplication. Here a
is strictly assumed to be 1 in the lit area, and a constant
a ∈ (0, 1) in the umbra area. (1) is usually too restrictive as
the natural lighting are mostly non-uniform in practice.

In general, illumination degradation should be spatially-
variant and highly dependent on shadow mask information.
Thus, we propose a new shadow degradation model as

y = h · x = w ·m · x + (1−m) · x . (2)

Here, h denotes the pixel-wise illumination degradation
map, which can be decomposed into the shadow mask m
and illumination weight w. The shadow mask m indicates
the shadow locations that shadow regions are 1 and the rest
are 0. Our Model (2) owns the following advantages:

• The shadow image y can be modeled as a non-uniform
illumination transformation on shadow-free image x
under the pixel-wise degradation map h. This degrada-
tion prior provides richer information than the uniform
degradation for shadow removal.

• The shadow mask m provides shadow location infor-
mation, which have a direct and critical effect on the
shadow degradation h, which therefore significantly
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affect the estimation of the desired shadow-free image
x̂. As a wrong shadow mask leads to an inaccurate
degradation map, which is quite common in practice,
our degradation model flexibly enables to embed the
mask refinement as an auxiliary task, and make the re-
finement and shadow-free image restoration mutually
beneficial.

3.2. Dynamic Mask-Aware Diffusion Model
The shadow mask is crucial for shadow removal. It in-

dicates the exact location of shadow regions according to
(2). In other words, inaccurate shadow mask inputs will
directly affect the shadow removal outcomes. Thus, we
remodel the shadow removal as a joint task to pursue a
shadow-free image and refined mask, in which mask refine-
ment would be an auxiliary task of the diffusion generator
to progressively refine the shadow mask along with shadow-
free image generation. Different from previous conditional
diffusion-based image restoration works [28,29] generating
the underlying image with an invariable condition, we pro-
pose a dynamic mask-aware diffusion model (DMDM) to
progressively generate the shadow-free image and refined
conditions (masks).

We first revisit the previous conditional diffusion
model [29], which learns a conditional reverse pro-
cess pθ(x0:T |y) without modifying the diffusion process
q(x1:T |x0) for x, such that the sampled image has high
fidelity to the data distribution conditioned on y. During
training, we sample (x0,y, m̃) ∼ q(x,y, m̃) from a triplet
data distribution (e.g., a shadow-free image x, shadow im-
age y, and corresponding initial shadow mask m̃). Our
training approach is outlined in Algorithm 1, in which we
learn the dynamic mask-aware reverse process:

pθ (x0:T |y,m0:T ) = p (xT )

T∏
t=1

pθ (xt−1 |xt,y,mt) . (3)

We can marginalize the Gaussian diffusion process to sam-
ple intermediate xt terms directly from shadow-free image
x0 through xt =

√
ᾱtx0 +

√
1− ᾱtε, where βt is the noise

schedule, αt = 1−βt, ᾱt =
∏t
i=1 αi, and ε ∼ N (0, I) has

the same dimensionality as x0. The denoiser εθ takes the
shadow image y, the intermediate variable xt, and the time
step t as input to predict the noise map et and the refined
mask mt as follows:

et,mt = εθ
(√
ᾱtx0 +

√
1− ᾱtε,y, m̃, t

)
. (4)

As the shadow mask information is highly dependent on
the shadow-free image generation, we build a model to per-
form the shadow-free image prediction and mask refine-
ment jointly. We add a mask prediction head after the last
layer of εθ, with one 1 × 1 convolution layer and one Sig-
moid function to predict the refined mask. Following [13],
the diffusive objective function is

Ldiff = Ex0,t,ε ‖et − ε‖2F . (5)

Algorithm 1 Dynamic mask-aware diffusion training.
Input: shadow image y, shadow-free image x, and ini-

tial mask m̃.
1: while not converged do
2: t ∼ Uniform{1, . . . , T}
3: ε ∼ N (0, I)
4: et,mt = εθ

(√
ᾱtx0 +

√
1− ᾱtε,y, m̃, t

)
5: Perform Gradient descent steps on∇θ Ltotal(θ)
6: end while
7: return θ

Algorithm 2 Unrolling-inspired diffusive sampling.
Input: shadow image y, initial mask m̃, diffusion

model εθ, number of implicit sampling iterations T , zT ∼
N (0, I), vT = m̃, and initial parameters ψ, φ, and ρ.

1: for t = T, . . . , 1 do
2: et−1,mt−1 = εθ (zt,y,vt, t)

3: xt−1=
√
ᾱt−1

(
zt−
√

1−ᾱt·et−1√
ᾱt

)
+
√

1− ᾱt−1 ·et−1

4: update zt−1 with Eq (13).
5: update vt−1 with Eq (14).
6: end for
7: return xt, mt

Besides, according to the shadow and shadow-free image
pairs in the training stage, we can adopt a ground truth
shadow mask as a reference to constrain the rationality of
the refined mask

Lmask = Et∼[1,T ] ‖mt −mgt‖2F , (6)

where the ground truth shadow mask mgt can be ob-
tained by binarizing the residual map between shadow and

shadow-free images mgt =

{
1 x− y > 0.1 ,

0 otherwise .
The hybrid objective function Ltotal is obtained by com-

bining the above losses, which guides the training of the
denoiser εθ in our DMDM as follows,

Ltotal = Ldiff + λLmask , (7)

where λ are the weighting coefficient to balance the influ-
ence of each term.

3.3. Unrolling-Inspired Diffusive Sampling
Based on the shadow degradation model (2), we for-

mulate the shadow removal as a degradation prior guided
model, where regularization terms are inferred by a learn-
able conditional generative diffusion model instead of using
hand-crafted priors under Maximum A Posteriori (MAP)
framework. By considering the provided initial mask m̃
may be coarse or inaccurate, the shadow mask m would be
iteratively refined along with desired shadow-free image x
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optimization, which can be obtained by minimizing the fol-
lowing energy function with joint image-mask regularizer:

min
x,m,z,v

1

2
‖h · z− y‖2F+ψR([x|m]) +

φ

2
‖v − m̃‖2F

s.t. x = z, m = v , (8)

where z and v are the auxiliary variables that convert (8)
into a constrained problem and R(·) is the regularizer cap-
turing assumed joint image and mask priors. [·|·] denotes
the concatenation operation. ψ and φ are trade-off parame-
ters. Here we assume that the degradation matrix h can be
estimated by a pre-trained degradation estimation network
as h = D(y, m̃). To deal with the equality constraints, two
quadratic penalty terms are introduced, and the problem is
rewritten as follows:

min
x,m,z,v

1

2
‖h · z− y‖2F + ψR([x|m]) +

φ

2
‖v − m̃‖2F

+
ρ1
2
‖x− z‖2F +

ρ2
2
‖m− v‖2F , (9)

where ρ1 and ρ2 are penalty parameters (we set the ρ =
ρ1 = ρ2 for simpler solutions). By employing vari-
able splitting algorithms such as half-quadratic splitting
(HQS) [2], the optimization problem (9) can be addressed
by iteratively solving three sub-problems1 as follows:

[x|m]t−1 =arg min
x,m

ψR([x|m]) +
ρ

2
‖[x|m]−[zt|vt]‖2F , (10)

zt−1 = arg min
z

1

2
‖h · z−y‖2F +

ρ

2
‖xt−1−z‖2F , (11)

vt−1 = arg min
v

φ

2
‖v − m̃‖2F +

ρ

2
‖mt−1 − v‖2F . (12)

Here (11) and (12) are least-squares problems with
quadratic penalty terms, which have closed-form solutions

zt−1 = (h · y + ρxt−1)/(h · h + ρ1) , (13)

vt−1 = (φm̃ + ρmt−1)/(φ+ ρ) . (14)

Note that, (13) and (14) commonly refer to the data consis-
tency (DC) steps [30] by sharing the information between
the input and reconstructed variable. The update process of
x and m can be solved by the sampling process of DMDM,
denoted as Gθ(·) (details refer to Section 3.2), yielding the
iterates

[x|m]t−1 = Gθ(zt,y,vt, t) . (15)

Algorithm 2 summarizes the whole process of diffusion-
based unrolling, where the Gθ(·) corresponds to Lines 2-3.
The sampling of Gθ follows the diffusive sampling strategy
of DDIM [26, 32] to accelerate the inference stage.

It is noted that, in contrast to repeatly forwarding the
single-stage model, diffusion model is a natural architecture
to solve the unrolling optimization problem via the progres-
sive generation process. Our framework can incorporate

1Note that we follow the t→ t−1 iteration update order to preserve the
order consistency between unrolling and the diffusion sampling process.

the degradation priors into the diffusion model with al-
most no additional inference time. The shadow-free image
is slowly restored based on the diffusion model, while the
extra degradation prior can largely accelerate the shadow-
free image generation and make the iterations close to the
truly shadow-free data manifold. The effectiveness of our
design is manifested in Section 4.3.

4. Experiments
4.1. Experimental Setups
Implementation details. The proposed method is imple-
mented using PyTorch, which is trained using one NVIDIA
RTX A5000 GPU. The training epoch is set as 1000. We
use Adam optimizer with the momentum as (0.9, 0.999).
The initial learning rate is 3 × 10−5. Following [29], we
use the Kaiming initialization technique [12] to initialize the
weights of the proposed model and use 0.9999 Exponential
Moving Average (EMA) for all our experiments. We fol-
lowed the similar U-Net architecture as denoiser εθ of [29].
We used 1000 diffusion steps T and noise schedule βt lin-
early increasing from 0.0001 to 0.02 for training, and 25
steps for inference. We select the most recent transformer-
based image-to-image backbone [36] as the degradation es-
timation network D, in which we pre-train D with the con-
catenation of shadow image and mask as input and regard
the hgt = y/(x+η), with η = 1× e−4, as the ground truth
degradation map. We set the λ = 0.5 in our experiments.
The detailed architectures and hyper-parameter settings can
be found in the supplementary.
Benchmark datasets. We work with three benchmark
datasets for the various shadow removal experiments: (1)
ISTD [33] dataset includes 1330 training and 540 testing
triplets (shadow images, masks and shadow-free images).
(2) Adjusted ISTD (ISTD+) dataset [19] reduces the illu-
mination inconsistency between the shadow and shadow-
free image of ISTD. (3) SRD [27] dataset consists of 2680
training and 408 testing pairs of shadow and shadow-free
images. We use the predicted masks that are provided by
DHAN [5] for training and testing following most previous
methods [5, 7, 44, 45].
Evaluation measures. Following the previous works [5, 7,
11,19,27,33], we utilize the root mean square error (RMSE)
in the LAB color space as the quantitative evaluation met-
ric of the shadow removal results, comparing to the ground
truth shadow-free images. Besides, we also adopt the Peak
Signal-to-Noise Ratio (PSNR) and the structural similarity
(SSIM) [35] to measure the performance of various methods
in the RGB color space. For the PSNR and SSIM metrics,
higher values represent better results.

4.2. Comparison with State-of-the-Art

We compare the proposed method with the popular or
state-of-the-art shadow removal algorithms, including one
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Method Shadow Region (S) Non-Shadow Region (NS) All Image (ALL)
PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓ PSNR↑ SSIM↑ RMSE↓

IS
T

D

Input Image 22.40 0.936 32.10 27.32 0.976 7.09 20.56 0.893 10.88
Guo et al. [11] 27.76 0.964 18.65 26.44 0.975 7.76 23.08 0.919 9.26
MaskShadow-GAN [15] - - 12.67 - - 6.68 - - 7.41
ST-CGAN [33] 33.74 0.981 9.99 29.51 0.958 6.05 27.44 0.929 6.65
DSC [14] 34.64 0.984 8.72 31.26 0.969 5.04 29.00 0.944 5.59
G2R [22] 31.63 0.975 10.72 26.19 0.967 7.55 24.72 0.932 7.85
DHAN [5] 35.53 0.988 7.49 31.05 0.971 5.30 29.11 0.954 5.66
Fu et al. [7] 34.71 0.975 7.91 28.61 0.880 5.51 27.19 0.945 5.88
DC-ShadowNet [16] 31.69 0.976 11.43 28.99 0.958 5.81 26.38 0.922 6.57
Zhu et al. [45] 36.95 0.987 8.29 31.54 0.978 4.55 29.85 0.960 5.09
BMNet [44] 35.61 0.988 7.60 32.80 0.976 4.59 30.28 0.959 5.02
Ours 40.15 0.994 4.13 33.70 0.977 4.14 32.33 0.969 4.12

SR
D

Input Image 18.96 0.871 36.69 31.47 0.975 4.83 18.19 0.830 14.05
Guo et al. [11] - - 29.89 - - 6.47 - - 12.60
DeshadowNet [27] - - 11.78 - - 4.84 - - 6.64
DSC [14] 30.65 0.960 8.62 31.94 0.965 4.41 27.76 0.903 5.71
DHAN [5] 33.67 0.978 8.94 34.79 0.979 4.80 30.51 0.949 5.67
Fu et al. [7] 32.26 0.966 9.55 31.87 0.945 5.74 28.40 0.893 6.50
DC-ShadowNet [16] 34.00 0.975 7.70 35.53 0.981 3.65 31.53 0.955 4.65
Zhu et al. [45] 34.94 0.980 7.44 35.85 0.982 3.74 31.72 0.952 4.79
BMNet [44] 35.05 0.981 6.61 36.02 0.982 3.61 31.69 0.956 4.46
Ours 38.72 0.987 4.98 37.78 0.985 3.44 34.73 0.970 3.63

Table 1. The quantitative results of shadow removal using our ShadowDiffusion and recent methods on ISTD [33] and SRD [27] datasets.

Method Shadow Non-Shadow All
PSNR↑ RMSE↓ PSNR↑ RMSE↓ PSNR↑ RMSE↓

Input Image 20.83 40.2 37.46 2.6 20.46 8.5
DeshadowNet [27] - 15.9 - 6.0 - 7.6
ST-CGAN [33] - 13.4 - 7.7 - 8.7
Param-Net [20] - 9.7 - 3.0 - 4.0
SP+M-Net [19] 37.59 5.9 36.02 3.0 32.94 3.5
DHAN [5] 32.92 11.2 27.15 7.1 25.66 7.8
Fu et al. [7] 36.04 6.6 31.16 3.8 29.45 4.2
BMNet [44] - 5.6 - 2.5 - 3.0
Ours 39.82 4.9 38.90 2.3 35.72 2.7

Table 2. The quantitative results of shadow removal using our
ShadowDiffusion and recent methods on ISTD+ [19] dataset.

traditional method, i.e., Guo et al. [11], and several deep
learning-based methods, i.e., MaskShadow-GAN [15], De-
shadowNet [27], ST-CGAN [33], DSC [14], G2R [22],
DHAN [5], Param-Net [20], SP+M-Net [19], Fu et al. [7],
DC-ShadowNet [16], Zhu et al. [45], and BMNet [44].
All of the shadow removal results by the competing meth-
ods are quoted from the original papers or reproduced us-
ing their official implementations. Following the previous
methods [7, 44, 45] to evaluate the shadow removal perfor-
mance, we evaluate the shadow removal results with a res-
olution of 256× 256.
Quantitative evaluation. Tables 1&2 show the quantita-
tive results on the testing sets over ISTD, SRD, and ISTD+,
respectively. It is clear that our methods outperform all
competing methods by large margins in the shadow area,
non-shadow area and the whole image over all of the three
datasets. It significantly improves the PSNR from 31.69dB
to 34.73dB over SRD dataset, compared to the most re-
cent method BMNet, especially for the shadow region from
35.05dB to 38.72dB. The shadow scenarios from SRD
dataset are much more complicated than ISTD dataset, even
including some object-correlated shadows, e.g., the shad-
ows are caused by the trees and building in the second
row of Figure 3. Existing methods may ignore the effec-
tive degradation and generative priors, failing in such com-

plicated textures. Conversely, with the merits of the joint
image-mask modeling, our methods can better deal with
object-correlated shadow cases. Besides, by incorporating
the useful illumination degradation assumption and learning
the desired shadow-free image distribution, our method can
handle complicated cases and produce artifact-free results.
Qualitative evaluation. To further demonstrate the ad-
vantage of our method against other competing methods,
Figures 3 & 4 present the visual examples of the shadow
removal results on SRD and ISTD datasets, respectively.
More visual examples can be found in the supplementary.
Note that the images from the SRD dataset have more com-
plicated textures and color distributions. In these samples
of the SRD dataset, previous works fail to enhance the il-
lumination of the background and suppress the boundary
artifacts in a complicated and colorful region, e.g., the blue
poster of the third example in Figure 3. Almost all compet-
ing methods cannot preserve the illumination consistencies
between shadow and non-shadow regions, which seriously
destroys the image structures and patterns as shown in the
wall of the first and third examples in Figure 3. Some small
shadow regions, e.g., the shadow caused by the street lamp
of the second example of Figure 3, are easily ignored by ex-
isting methods. Instead, thanks to the auxiliary of the mask
refinement, the shadow mask of fine areas can be more ac-
curate, achieving better results for different sizes of shad-
ows. On the other hand, the image from ISTD dataset has
high context similarity and the scene is relatively simple,
while the shadow residual would be more visible. In these
samples of the ISTD dataset, previous works usually pro-
duce illumination inconsistencies and wrongly-enhanced
shadow boundaries. The DSC [14] would wrongly en-
lighten some regions with insufficient lightness, e.g., the
black floor tile in the third example in Figure 4, leading to
many ghosts. Moreover, due to the limited dataset, methods
without effective prior always have poor scene understand-
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PSNR: 36.92 
SSIM: 0.979

PSNR: 34.08 
SSIM: 0.969

PSNR: 40.32 
SSIM: 0.988

PSNR: 27.17 
SSIM: 0.865

PSNR: 29.05 
SSIM: 0.933

PSNR: 18.77 
SSIM: 0.526

(a) DSC

PSNR: 31.09 
SSIM: 0.954

PSNR: 30.02 
SSIM: 0.958

PSNR: 27.45 
SSIM: 0.895

PSNR: 28.75 
SSIM: 0.902

PSNR: 26.93 
SSIM: 0.839

PSNR: 19.66 
SSIM: 0.605

PSNR: 22.24 
SSIM: 0.829

PSNR: 31.82 
SSIM: 0.946

PSNR: 26.77 
SSIM: 0.798

PSNR: 27.66 
SSIM: 0.942

PSNR: 32.97 
SSIM: 0.959

PSNR: 33.79 
SSIM: 0.961

Input (b) Fu et al. (c) DC-ShadowNet (d) Zhu et al. (e) BMNet Ours GT

Figure 3. Examples of shadow removal results on the SRD [27] dataset. The input shadow image, the estimated results of (a) DSC [14],
(b) Fu et al. [7], (c) DC-ShadowNet [16], (d) Zhu et al. [45], (e) BMNet [44], and Ours, as well as the ground truth, respectively. Please
zoom in to see the details.

Input (b) BMNet Ours GT(a) DSC

PSNR: 25.55 
SSIM: 0.967

PSNR: 29.18 
SSIM: 0.958

PSNR: 32.39 
SSIM: 0.973

PSNR: 34.46 
SSIM: 0.973

PSNR: 35.43 
SSIM: 0.987

PSNR: 37.01 
SSIM: 0.981

PSNR: 21.36 
SSIM: 0.906

PSNR: 21.23 
SSIM: 0.902

PSNR: 22.67 
SSIM: 0.928

Figure 4. Examples of shadow removal results on the ISTD [33]
dataset. The input shadow image, the estimated results of (a)
DSC [14], (b) BMNet [44], and Ours, as well as the ground truth,
respectively. Please zoom in to see the details.

ing and generalizability. The performance would largely
degrade when generalizing to unusual cases, e.g., the first
example in Figure 4, where images with stronger contrast
and face patterns are scarce in the training set. However,
with the merits of employed shadow degradation and gen-
erative priors, it is clear that our methods can successfully
produce natural shadow-free images without boundary arti-
facts and shadow patterns.

Fu et al.

Shadow Input Mask Input

BMNet

Ours w/o Mask
Refinement

Ours w/ Mask
Refinement

GT

Refined Mask

PSNR: 30.89 
SSIM: 0.945

PSNR: 31.96 
SSIM: 0.947

PSNR: 34.08 
SSIM: 0.969

PSNR: 36.23 
SSIM: 0.971

Figure 5. Visual examples of the results of our model w/ and w/o
mask refinement, as well as two recent competing methods, i.e.,
Fu et al. [7] and BMNet [44].

4.3. Ablation Study
The effect of iterative mask refinement. Previous meth-
ods [4, 5, 7, 44] employed the detected shadow masks as
additional auxiliary information of the network to provide
the shadow locations. However, the detected masks might
contain inaccurate regions or coarse boundaries as shown
in Figure 5. Such wrong guidance makes almost all mask-
guided shadow removal algorithms fail, especially for the
SRD dataset [27], since the complicated scenes and di-
verse shadow shapes. With the merits of the proposed dy-
namic mask-aware diffusion model (DMDM), the coarse
or inaccurate mask can be iteratively corrected along with
the shadow-free image generation. Thus, the effect of the
wrong mask can be effectively alleviated and our model has
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Method Detector1 [5] Detector2 [43]
PSNR↑ SSIM↑ PSNR↑ SSIM↑

w/o mask refine 34.55 0.968 33.61 0.943
w/ mask refine 34.73 0.970 34.27 0.952

Table 3. Quantitative comparison between results produced by w/
and w/o mask refinement on SRD [27] dataset using the detected
shadow mask from different shadow detectors as initial mask m̃.

Method ISTD ISTD+ SRD
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Ours w/o unrolling 32.12 0.964 35.21 0.967 34.36 0.970
Ours (Complete model) 32.33 0.969 35.72 0.969 34.73 0.970

Table 4. Quantitative comparison between the results produced
by w/o unrolling, and the complete model over ISTD [33],
ISTD+ [19], and SRD [27] datasets.

01020
Step

10

15

20

25

30

35

PS
NR w/ unrolling

w/o unrolling
Input

GTOursOurs w/o unrolling

BMNet

Figure 6. Left: The PSNR performance variations of our model
w/o and w/ unrolling with steps. Right: Visual examples of the
results of the most recent competing method, i.e., BMNet [44],
Our model w/o unrolling, and Our Complete model.

better robustness in practical applications. Table 3 shows
that the shadow removal results of our model with and with-
out mask refinement under the guidance of masks generated
by different shadow detectors [5,43] over SRD dataset. The
shadow removal results will be better if the initial mask is
more accurate as shown in Table 3, and the decline with a
worse mask input will not be too noticeable with the pro-
posed iterative mask refinement.
The effect of unrolling framework. In order to illustrate
the effectiveness of our unrolling framework, we first in-
vestigate the performance of only our dynamic mask-aware
diffusion model (DMDM) without the unrolling optimiza-
tion as shown in the first row in Table 4. We observe that
the performance of the complete model is better than the
separate diffusion model over all testing sets. The unrolling
optimization can provide reliable guidance in the sampling
stage of the diffusion model, producing a more accurate ex-
posure and artifact-free results than the model without un-
rolling as shown in Figure 6 (right). However, according to
a predicted shadow degradation map, the diffusion model
can be boosted in the sampling stage. Besides, the perfor-
mance of the diffusion model only would be converged very
slow in the sampling stage and the output would be unstable
even around the last three steps as shown in Figure 6 (left).
Under the strict guidance of degradation map, the conver-

Method Shadow Non-Shadow All
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

SR3 [29] 35.44 0.980 34.35 0.970 31.29 0.946
WeatherDiffusion [26] 33.38 0.981 31.15 0.972 28.45 0.951

DMDM Only 38.39 0.987 37.21 0.982 34.36 0.970
Ours (Complete model) 38.72 0.987 37.78 0.985 34.73 0.970

Table 5. Quantitative comparisons with different diffusion-based
models over SRD dataset [27].

Low-light enhancement Exposure correction
Method PSNR↑ SSIM↑ LPIPS↓ Method PSNR↑ SSIM↑
KinD++ [42] 21.30 0.82 0.16 Deep UPE [34] 14.25 0.64
URetinex-Net [37] 21.33 0.83 0.12 DPE (HDR) [3] 16.21 0.62
MIRNet [39] 24.14 0.84 0.13 Afifi et al. [1] 19.48 0.74
Ours 27.36 0.93 0.10 Ours 22.33 0.84

Table 6. A comparison of the recent state-of-the-art methods for
(left) low-light enhancement and (right) exposure correction.

gence would be faster and more stable.
The effect of different diffusion models. We select
two recent diffusion-based image restoration methods, i.e.,
SR3 [29] and WeatherDiffusion [26] as the competing
methods to verify the effectiveness of the proposed dynamic
mask-aware diffusion model (DMDM) and the proposed
diffusion-based unrolling framework as shown in Table 5.
For a fair evaluation, we re-train these two methods and
change the original three-channel condition (shadow im-
age) into four-channel (the concatenation of shadow image
and mask). Obviously, the existing diffusion model per-
forms much worse for shadow removal than our proposed
DMDM. Only the concatenation of shadow image and mask
as a condition cannot provide a sufficient prior for shadow-
free image generation, especially for real-world shadow re-
moval with limited training pairs, comparing the first and
fourth rows in Table 5.

4.4. Extension to Other Image Enhancement Tasks

Our ShadowDiffusion can be easily applied to other im-
age enhancement tasks, e.g., low-light enhancement and ex-
posure correction, whose degradation can be regarded as the
special case of proposed degradation Model (2) and the m
will be the all 1 matrix. Note that we remove the mask re-
finement and mask conditions in the framework since other
enhancement tasks are globally corrupted without the pro-
vided mask. Our revised ShadowDiffusion also achieves
new state-of-the-art performances among these two tasks as
shown in Table 6. More comparison results can be found in
the supplementary.

5. Conclusion
In this paper, we propose a spatially-variant shadow

degradation model, decomposing the shadow degradation
map into the shadow mask and shadow intensity. In-
spired by that, we propose an unrolling diffusion frame-
work, dubbed as ShadowDiffusion, to explicitly integrate
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degradation prior and diffusive generative prior. Moreover,
we further consider mask refinement as an auxiliary task of
the diffusion generator to progressively refine the shadow
mask. Finally, comprehensive experiments demonstrate the
superiority of our ShadowDiffusion, which achieves signifi-
cant improvement compared to the state-of-the-art methods
over ISTD, ISTD+, and SRD datasets.
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