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Abstract Cube-3 implements ray-casting, a powerful volume 
rendering technique that offers high image quality while 

In this paper we present a technique for the interactive allowing for algorithmic optimizations which signifi­
control and display of static and dynamic 3D datasets. cantly reduce image generation times [6, 13, 14]. Rays 
We describe novel ways of tri-linear interpolation and are cast from the viewing position into the volume data. 
gradient estimation for a real-time volume rendering At evenly spaced locations along each ray, the data 
system, using coherency between rays. We show simu­ is tri-linearly interpolated using values of surrounding
lation results that compare the proposed methods to tra­ voxels. Central differences of voxels around the sample 
ditional algorithms and present them in the cantezt of point yield a gradient which is used as a surface normal 
Cube-B, a special-purpose architecture capable afrender­ approximation. Using the gradient and the interpolated
ing 5123 16-bit per vozel datasets at over 20 frames per sample value, a local shading model is applied and a 
second. sample opacity is assigned. Finally, ray samples along 

the ray are composited into pixel values to produce an 
1. 	Introduction image [11]. 

An important problem of ray-casting is the non­Numerous scientific applications, including biomed­
uniform mapping of samples onto voxels, since voxels ical and geophysical analysis, computational fluid dy­
may contain more than one ray sample or may be in­namics and finite element models, require the rapid dis­
volved in multiple gradient calculations. This leads play of dynamically acquired or computer generated 3D 
to redundant data accesses and irregular interprocessor datasets. Real-time visualization of dynamic volume 
communication that affect the performance. In Cube-3data, called 4D (spatial-temporal) visualization, permits 
we use a ray-casting approach that transforms the vol­observation of 3D data changes, such as the study of 
ume into an intermediate coordinate system for which fluid flow in rocks or the study of a beating heart. In 
there is a mapping of ray samples onto the volume thatorder to reveal the internal structure of the data, direct 
is one-to-one. This allows for efficient projections onto volume rendering methods have to be employed that 
a face of the volume, and the distorted image is thengenerate an image without pre-processing and allow for 
warped (2D transformed and projected) onto the viewthe interactive control of viewing parameters [6]. 
plane. 	 .The massive computational resources necessary to 

Using a similar approach, Yagel and Kaufman [20]achieve 4D visualization at high frame rates place 
describe a template based ray-casting scheme to sim­hard to meet requirements on sequential implementa­
plify path generation for rays through the volume, and tions and general-purpose computers. Only parallelism 
Schroder and Stoll [17] have implemented this method among a dedicated set of processors caD. achieve the 
on a Princeton Engine of 1024 processors and have necessary high memory bandwidth and arithmetic per­
achieved sub-second rendering times for a 1283 dataset.formance [4, 7, 12, 15] [6, Chapter 6]. While relatively 
Cameron and Underill [3] efficiently use an intermedi­fast algorithms exist for the display of static datasets 
ate volume transformation to reduce data communica­on massively parallel architectures [17, 18], very little 
tion in a. SIMD parallel processor. Lacroute and Levoyattention has been paid to the real-time visualization 
[10] recently reported on a fast implementation using a of dynamically changing high-resolution 3D data. This 
shear-warp transformation and were able to achieve in­is the main objective of Cube-3, a special-purpose ar­
teractive rendering times for 2563 datasets on a graph­chitecture capable of rendering 5123 16-bit per voxel 
ics workstation. All these implementations require adatasets at over 20 frames per second [16]. 
pre-processing step to calculate the gradient field or to 
generate color and opacity volumes and are therefore Autho!:ll' email: 
not suitable for 4D visualization.pftsterOes.sun:rsb.edu. franltwOcs.sunysb.edu, ariOcs.sun:rsb.edu 
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This paper presents two new methods that allow for 
real-time tri-linear interpolation and gradient estima­
tion without pre-computation. They are suitable for 
4D visua.li.zation and lead to an efficient implementation 
in hardware. Section 2 describes the underlying real­
time ray-casting approach that transforms the volume 
into an intermediate sheared coordinate space. Section 
3 discusses the problems associated with performing in­
terpolation in this sheared space and introduces sheared 
tri-linear interpolation as an efFective solution. We then 
present a new way of gradient approximation using co­
herency between rays in Section 4. Section 5 describes 
the main architectural features of Cube-3 and Section 6 
gives results on the proposed interpolation and shading 
methods. 

2. Real-Time Ray-Casting 

Our real-time ray-casting algorithm assumes that 
the volume is sampled on a rectilinear grid. A distorted 
intermediate image is projected onto the volume face 
that is most perpendicular to the viewing direction. Us­
ing a term by Yagel and Kaufman [20] we eall this face 
the base-plane. A 2D warp of the base-plane projection 
produces the final image. 

The first step is to transform the volume into an in­
termediate coordinate system for which there is a simple 
mapping of voxels onto base-plane pixels. In a recent 
approach, Lacroute and Levoy [10] use a shear-warp fac­
torization of the viewing transform and project the vol­
ume in a slice-parallel fashion onto the base-plane. The 
volume is treated as a set of 2D slices which are subject 
to a 2D shear-scale and resampling operation according 
to the viewing transform. Each slice is treated inde­
pendently without computing individual rays, and the 
resulting base-plane image is warped onto the viewing 
plane. 

Other approaches [20] operate in a ray-parallel fash­
ion, where resampling and compositing operations take 
place on rays cast from each pixel of the base-plane. In 
both approaches the 3D volume is traversed only once 
per projection. The algorithms involve one resampling 
of the volume and an inexpensive 2D image warp. In 
Cube-3 we adopted the ray-parallel approach because 
it allows for efficient parallel implementations of com­
positing along rays. 

Using a technique by Yagel and Kaufman [20], we 
generate lookup tables or templates to cast discrete 
rays from the base-plane into the volume. Figure 1 
shows an example of a parallel and perspective pro­
jection. 26-connected discrete lines are pre-generated 
using a 3D variation [8] [6, pp. 280-301] of Bresenham's 
algorithm modified for non-integer endpoints. This al­
gorithm guarantees constant stepping by a distance of 
one along the major axis (the Z-axis in Figure 1). The 
stepping along the two other axes (the X- and Y-axes in 

Figure 1) is stored in two templates. For parallel pro­
jections, where neighboring rays follow the exact same 
path through the volume, the templates store n posi­
tions for an n3 volume. For perspective projections they 
are of size n 2 each (see Figure 1). 

Y-Template 

y~ y~ 
~<9?Atm 

x X-Template x X-Template 

a) ParaUelProjectiOD b)Pe~tiveProjeetioD 

Figure 1: X/V-Templates for Discrete Rays. 

Figure 2 schematieally shows how the algorithm pro­
ceeds. All the discrete rays belonging to the same scan­
line of the base-plane image reside on the same plane 
inside the volume, called the Projection Ray Plane 
(PRP). By fetching all voxels on a PRP and transform­
ing them accordingly into a 2D bufFer, all discrete rays 
can be aligned along a direction parallel to an axis, e.g. 
horizontal. If we define beams to be rays parallel to 
a main axis of the Cubic Frame BufFer (CFB), then 
for parallel projections this transformation is simply a 
shear of beams to the left or right (see Figure 2). For 
perspective projections each voxel belonging to a dis­
crete ray has to be shifted by a difFerent amount. We 
refer to this process as de-fanning, since diverging rays 
are stored adjacent to each other in the 2D bufFer. 

Tri-LinearFetch and Shear 
Interpolation 

=- :iIJ..!IJ 

'. Cvzrent Below

Ray Cubic Frame Buffer .. 
(eFB) 

_.~;~~f-If

···1

lmagePlaae Composlting Gradient 
and ZD Warp Estimation 

. and Shading 

Figure 2: Real-Time Ray-Casting. 

As soon as two PRPs are stored in two 2D bufFers 
(referred to as the above and ·current bufFers in Figure 
2), a tri-linear interpolation is performed to generate 
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sample points on continuous rays using the voxels of 
four discrete rays as input data (see Section 3). The 
two 2D buffers generate one interpolated plane of con­
tinuous rays. Three such planes, above, below and cur­
rent, are needed for local gradient approximations using 
neighboring rays (see Section 4). 

The samples of the rays are shaded and opacities 
are assigned using a user controllable transfer function. 
The shaded rays are composited into a final pixel color 
using a parallel implementation ofthe front-to-back (or 
back-ta-front) compositing: 

c' = CL +(1 - O<L)CR 

a' = O<L+(l-aL)aR (1) 

Here the subscripts L and R indicate sample color C 
or opacity a from left or right children of the binary tree, 
respectively. Other parallel projection schemes such as 
first or last opaque projection, maximum or minimum 
voxel value and weighted summation can also be em­
ployed. 

The next section discusses the issues of tri-linear in­
terpolation between discrete rays to generate continu­
ous rays, and Section 4 shows how to compute the local 
gradient at each continuous sample point. 

s. Sheared Tri-Linear Interpolation 
Tri-linear interpolation generates a value at non­

integer locations by fetching the eight surrounding vox­
els and interpolating as follows: 

PAhe :::: Pooo (1 0.)(1 - b}(l - c) +P100 0.(1 - &)(1 - c) + 
POlO (1- o.)b(1 - c) + POOl (1- 0.)(1- b)c + 
P 101 0.(1 - b}c + POll (1 - o.)bc + 
PUll o.b(l - c) + P111 o.bc. (2) 

Here the relative 3D coordinate of a sample point 
within a cube with respect to the corner voxel closest to 
the origin is (a, b, c) and the data values associated with 
the corner voxels of the cube are Pi;1c, where i, j, k = 
oor 1, and the interpolated data value associated with 
the sample point is Pelie. Different optiIirlzations aim 
at reducing the arithmetic complexity of this operation 
[9, 16], but the arbitrary memory access to fetch eight 
neighboring voxels for each sample point makes this one 
of the most time consuming operations during volume 
rendering. 

By transforming discrete rays from the PRP so that 
they are aligned and storing them in two 2D buffers 
(see Figure 2), we can greatly reduce this data access 
and communication cost. Instead of fetching the eight­
neighborhood of each resampling location, four discrete 
rays are fetched from the buffer, two from each of the 
above and below planes. In parallel implementations, 

neighboring rays reside in adjacent interpolation mod­
ules, requiring only a local shift operation of one voxel 
unit between neighbors. 

S5 II·..·····..···· 

S4 

S3 II ........... 


S2 

oDiscrete Ray A 
• Discrete Ray B

SI IlMissing Voxels 

a) Parallel Projection b)Pe~tiveProjectioD 

Figure 3: Problems with Discrete Ray Interpolation. 

However, there is a problem intrinsic to interpola­
tion between discrete rays. Figure 3 illustrates this in 
2D. The samples on the continuous ray have to be inter­
polated using bi-linear interpolation between samples of 
the discrete rays A (white) and B (black). Sample SI 
can be correctly interpolated using four voxels from A 
and B, since they form a rectangle, i.e., the rays do not 
make a discrete step to the left or right. 

As soon as the discrete rays step to the left or right 
as is the case for samples S2 and S4, the neighboring 
voxels form a parallelogram, and a straightforward bi­
linear interpolation would produce the wrong sample 
values. The grey shaded square voxels in Figure 3a 
would be needed to yield the correct result, but they 
reside on rays two units apart from ray B. 

This problem is exacerbated for perspective projec­
tions (Figure 3b). The discrete rays diverge, and the 
correct neighboring voxels are not even stored in the 
2D plane buffers. For example, only two voxels ohay A 
contribute to the correct interpolation at sample point 
S3. In the 3D case as many as six voxels may be miss­
ing in the immediate neighborhood of a sample point 
for perspective projections. 

The solution is to perform a IIheared tri-linear in­
terpolation by factoring it into four linear and one bi­
linear interpolation. Instead of specifying the sample 
location with respect to a corner voxel closest to the 
origin, each 3D coordinate along the ray consists of rel­
ative weights for linear interpolations along each axis in 
possibly sheared voxel neighborhoods. These weights 
can be pre-computed and stored in the X/Y-templates 
discussed in Section 2. Figure 4 shows the necessary 
interpolation steps in 3D. 

First we perform four linear interpolations in direc­
tion of the major axis (the Z-axis in Figure 4) using 
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oDiscrete Ray A Back Planes 
• Discrete Ray B 
.Linearlye InterpOlated

Samples 
x Ray Sample 

a) Parallel Projection b) Perspective Projection 

Figure 4: Sheared Tri-Linear Interpolation. 

eight voxels of four neighboring discrete rays inside the 
2D buffers. These eight voxels are the vertices of an 
oblique para.llelepiped for para.llel projections (see Fig­
ure 4a) or of a frustum of a pyramid for perspective 
projections (see Figure 4b). Four voxels each reside on 
two separate planes one unit apart, which we ca.ll the 
front or the back plane depending on when it is encoun­
tered during ray traversal in the direction of the major 
axis. Therefore, only one weight factor has to be stored, 
corresponding to the distance between the front plane 
and the position of the ray sample point. The result­
ing four interpolated values form a rectangle and can be 
bi-Iinearly interpolated to yield the final sample value. 
We split this bi-Iinear interpolation into two linear in­
terpolations between the corner values and a final linear 
interpolation between the edge values. At the bottom 
of Figure 4 this is shown as two interpolations in X­
direction followed by one interpolation in Y-direction. 

o Discrete Ray A 
• Discrete Ray B 

@Out-of-Range
WSamp\es 

a)NoOffset b) Offset in Range c) Offset out of Range 

Figure 5: Variable Ray Offsets in Major Direction. 

The sample points corresponding to the continuous 
rays have to be inside the polyhedron defined by the 
voxels on the four surrounding discrete rays. When 
constructing the discrete rays, a.ll continuous rays start 

at integer positions ofthe base plane, i.e., they coincide 
with voxels ofthe first slice of the volume dataset. How­
ever, as Figure 5a shows, using these rays during ray­
casting effectively reduces the tri-Iinear interpolation to 
a bi-Iinear interpolation, because a.ll sample points along 
the ray fa.ll onto the front planes of the para.llelepipeds 
or pyramid frustum. 

Using X and Y integer positions on the base-plane 
we can a.llow an offset from the base-plane in major 
direction as a degree of freedom and are able to perform 
sheared tri-Iinear interpolations (Figure 5b). But for 
offsets in major direction that are too big, as shown in 
Figure Sc), some of the samples along the rays may fa.ll 
outside the bounding box defined by the discrete rays. 

In order to get an upper bound for admissible offsets 
we have to understand how steps in non-major direction 
along discrete rays occur. Figure 6 shows the situation 
in 2D. The view vector is split into a dz component 
along the X-axis (d;Jl and dy in 3D) and a unit vec­
tor in direction of the major axis (the Y-axis in Figure 
6). Stepping in direction of the major axis, we add the 
viewing vector to the current sample position at S", in 
order to get the new sample position at S",+l. 

dy=l 

Figure 6: Maximum Offset Estimation. 

Suppose that the addition of dz at point Son leads 
to a step of the discrete rays in ;Jl direction. This step 
can only occur if S .. has a relative z offset with respect 
to the lower left corner voxel of more than 1 - dz for 
positive d;Jl (or less than 1 +dz for negative d;Jl). In 
other words, sample S", was inside the rectangle of size 
d;Jl by 1 shown in Figure 6. However, only the shaded 
region of this rectangle contains sample positions inside 
the para.llelepiped defined by the comer voxels. Taking 
the sma.llest side in major axis as the worst-case, this 
means that in-range samples have a maximal relative y 
offset of no more than 1 - d;Jl for positive d;Jl (no less 
than 1 + dill for negative dz). 

Since we step with a unit vector in the direction 
of the major axis, a.ll relative offsets along the ray are 
determined by the offsets of the first ray samples from 
the base-plane. The above argument easily extends to 
3D, making the maximum a.llowed offset in direction of 
the major axis: 

min(l- dz,l- dy), dz,dy ~ 0 
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min(l + tk, 1 - dy), tk < O,dy ~ 0 

min(l- tk, 1 + dy), tk ~ O,dy < ° 
min(l + tk, 1 + dy), tk,dy < 0, (3) 

where dz and dy are the components of the viewing 
vector in z and y direction, respectively. Notice that 
for 45" viewing angle d;tJ and dyare 1, yielding an offset 
of 0 and bi-linear interpolation as in Figure Sa. This 
fact will be of importance when discussing the results 
in Section 6. 

In our implementation we cast a single ray from the 
origin of the image plane onto the base-plane using uni­
form distance between samples and choose the offset in 
major direction of the first sample after penetration of 
the base-plane. If necessary the offset is iteratively re­
duced until it satisfies the above condition. This leads to 
view dependent offsets in major direction and to varying 
resampling of the dataset. The variation of resampling 
points according to viewing direction is an advantage 
for interactive visualization, because more of the inter­
nal data structure can be revealed. 

Each discrete ray consists of n voxels, independent 
of the viewing direction. Since the maximum viewing 
angle difference with the major axis is not more than 
45 degrees, the volume sample rate is defined by the 
diagonal through the cube and is by a factor of v'3 
higher for orthographic viewing. We found that for ray­
compositing this is not an important consideration due 
to the averaging nature of the compositing operator. 

A more severe problem is the varying size of the 
sample neighborhood (see Figure 4). For parallel pro­
jections, the eight voxels sunounding the sample point 
either form a cube with sides oflength one or an oblique 
parallelepiped as in Figure 4a. For perspective projec­
tions, however, the surrounding voxels may form the 
frustum ofa pyramid with parallel front and back planes 
as in Figure 4b. Due to the divergence of rays to­
wards the back of the dataset, the volume spanned by 
this frustum increases, thereby reducing the precision 
of the hi-linear interpolation. However, we found that 
the distance between neighboring discrete rays at the 
end of the volume never exceeded two voxels for a 2563 

dataset while still achieving a high amount of perspec­
tivity. Furthermore, in typical datasets the samples at 
the back of the volume have little influence on the final 
pixel color due to compositing along the ray. 

The center of projection 0 and the field-or-view 
(FOV) in perspective projections also influence the sam­
pling rate (see Figure 7). The discrete line algorithm 
casts exactly one ray per pixel of the base-plane, or a 
maximum of 2n rays per scanline. In cases where the 
FOV extends across the the dataset (Figure 780) this 
guarantees better sampling than regular image order 
ray-casting, which would cast n rays spanning the FOV 
and send wasteful rays that miss the dataset. However, 
for a small FOV the discrete line stepping yields under­
sampling in the active regions of the base-plane (Figure 

'~~FOV V FOV 

C 
a) Correct Sampling 

c 
b) Undersampling 

c 
c:) Two Base-Plane 

Projec:tioos 

Figure 7: Sampling for Perspective Projections. 

7b). Figure 7c shows a case where two base-plane im­
ages contribute to the final view image. The worst case 
in 3D is the generation of three base-plane projections 
for a single perspective image. 

Section 6 presents comparisons between image or­
der ray-casting using a view independent sampling rate 
along the rays, tri-linear interpolation employing equa­
tion 2 using the correct voxels, and the proposed sheared 
tri-linear interpolation among discrete rays. The next 
section describes methods for gradient estimation using 
samples on neighboring rays. 

4. ABC Gradient Estimation 

To approximate the surface normals necessary for 
shading and classification we use the gray-level gradient 
which is computed by the differences between the values 
of the cunent sample and its immediate neighbors [5]. 
In order to evaluate the gradient at a particular point, 
we form central differences between the tri-linearly in­
terpolated values of rays on the immediate left, right, 
above and below, as well as the values of the current ray. 
Since this amounts to storing three consecutive planes 
of ray samples, we call this method ABO gradient es­
timation for the above, below, and cunent ray sample 
buffers. 

The simplest approach, shown in Figure 8 for 2D, 
is to use the 6-neighborhood gradient, which uses 
the differences of neighboring sample values along the 
ray, p(n,m+1) - P(n,m-l) in base-plane direction and 
P(n+l,m-l) - P(n-I,m+1) in the ray direction. Although 
the left, right, above and below ray samples are in the 
same plane and orthogonal to each other, the samples 
in the ray direction may be slanted. A more critical 
problem occurs during a switch of base-plane. Figure 
880 shows the situation for almost 45° viewing direction, 
where an image is projected onto the horizontal base­
plane. For any angle greater than 45° a switch of base­
planes occurs, and the values of P(n+l,m) - P(n-l,m) are 
used instead to calculate the gradient in the base-plane 
direction. This leads to intolerable temporal aliasing. 

We also simulated the use of a 26-neighborhood gra­
dient (Figure 9). Instead offetching sample values from 
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Figure 8: 6-neighborhood Gradient. 

four neighboring rays, 26 interpolated samples from 8 
neighboring rays are fetched. Each sample is assigned a 
weight factor corresponding to the inverse Manhattan 
distance in the interpolated buffer to the center sample. 
For example, sample P(n,m-l) in Figure 9a has a weight 
of 1, whereas sample P(n+l,m-2) has a weight of t. In 
3D we also get weight factors of ~ for the corner sam­
ples of the 26-neighborhood. However, to simplify the 
arithmetic we use powers of 2, so that these samples are 
multiplied by a weight of ~. The gradient is estimated 
by taking weighted sums of ray samples and differences 
between opposite sample planes. For the 2D example 
in Figure 9a this corresponds to: 

1 1 
[ip( ..+l.m) +PC..,m+l) + iP(..-l.... H») ­

1 1
[i P( .. +1,m.-2) + PC...--l) + iP(n-l.m)] 

1 	 1 
G",.'J = [iJt..+1.m-2) + p("+l,m-l) + iP('A+1.m)] ­

1 1
[iJt..-1,m) +P(..-l,m+l) + iP( ..-l,mH)l (4) 

This method leads to better overall image quality 
when compared to the 6-neighborhood gradient, but the 
switching of major axis is still noticeable (com pare Fig­
ure 9a and 9b). 

·x·······')1(··..··.,··.···..··•·..,····.. ····, n+2 
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n+2 

)i(i······!)G·····!)G,.·· .... ·, ..·••·•·..·1 0+1 

11-1 
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(a) 26-neighborbood, 	 (b) 26-neighborbood, 
Horizontal Base-Plane Vertical Base-Plane 

Figure 9: 26-neighborhood Gradient. 

To circumvent this problem we take a similar ap­
proach to the 6-neighborhood method but use an ad­
ditional linear interpolation step to resample the rays 

on correct orthogonal positions. Figure 10 shows how 
the round samples on the left and right ray are used to 
linearly interpolate the correct square samples. We call 
this approach the 10-neighborhood gradient estimation 
for the 3D case, since 10 voxels participate in the com­
putation. It adequately solves the problem of switching 
the major axis during object rotations and yields high 
image quality. The linear interpolation weights are con­
stant along a ray and correspond to a shift ofall samples 
in the viewing direction. Section 6 presents a direct 
comparison between the 6-, 10- and 26-neighborhood 
gradient methods. 

..•• , ••.••.••• , ••.•.•.•• , D+2 

DIG-····,.·,··.. ·······: n+1 

o 

0·1 

'--_'--___....;;1(_......::.:" 0-2 

)1(........*.........,..........,,.......... n+2 

.••..:,........... n+l 

...... 
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r-······r····· n-l 
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m-2 m-I m m+1 m+2 m·2 mol m m+l m+2 

(a) IO-neighborhood, 	 (b) to-neighborhood, 
Horizontal Base-Plane Vertical Base-Plane 

Figure 10: 10-neighborhood Gradient. 

In the case of perspective projections, the front of 
each PRP is uniformly sampled with n rays one unit 
apart. As the rays diverge towards the back of the vol­
ume, the distance between rays increases, and the gradi­
ent estimation becomes less accurate. However, because 
of the usually small distance between rays and due to 
the averaging nature of shading, classification and com­
positing, these effects do not influence image quality for 
typical datasets.· 

With the gradient estimation and light vector di­
rections, the sample intensity can be generated using 
a variety of shading methods (e.g., using lookup tables 
[10]). Opacity values for compositing are generated us­
ing a transfer function represented as a 2D lookup table 
indexed by sample density and gradient magnitude [11]. 

The next section shows how the presented sheared 
tri-linear interpolation and ABC gradient estimation 
are supported in the Cube-3 architecture in order to 
achieve real-time 4D visualization. 

5. Cube-S Architecture 
Cube-3 is a special-purpose real-time volume visu­

alization system that allows for the display of high­
resolution 5123 16-bit per voxel datasets at frames rates 
over 20 Hz. It contains a large CFB memory to hold the 
volumetric dataset and performs base-plane projections 
according to user controlled parameters. A host com­
puter, connected to Cube-3 and containing the frame 
buffer for the final image display, runs the user inter­
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face software and performs the final 2D image warp onto 
the viewing plane. Real-time acquisition devices such 
as a confocal microscope, microtomograph, ultrasound, 
or a computer running a simulation model are tightly 
coupled to the Cube-3 memory using high-bandwidth 
optieallinks for the input of dynamically changing 3D 
datasets. 

The Cube-3 architecture is highly-parallel and 
pipelined [16]. Figure 11 shows a block diagram of the 
overall dataflow. The CFB is a 3D memory organized in 
n dual-access memory modules, each storing n 2 voxels. 
A special 3D skewed organization enables the conflict­
free access to any beam ofn voxels [7]. PRPs are fetched 
as a sequence of voxel beams and stored in consecutive 
2D Skewed Buffers (2DSB). A high-bandwidth intereon­
nection network, the Fast Bus, allows the alignment of 
the diserete rays on the PRP parallel to a main axis in 
the 2DSB modules. 

RP Parallel Beam Fetch Discrete Ray Fetch 

, ~ 
. ast~ ---­. '~I 111*1111' 

CubiC Frame Buffer 2D Skewed Buffer TRILIN 
(CFB) (IDSB) Tri-Linear I 

~ ;~j......­
Projection 

2DWarping 


Frame Buffer 	 Ray Projection ABC Shading 
Cone(RPC) Units 

Figure 11: Cube-3 System Overview. 

Three 2DSBs are used in a pipelined fashion to sup­
port sheared tri-linear interpolation. Aligned discrete 
rays from 2DSBs are fetched conflict-free and placed 
into special purpose Tn-Linear Interpolation (TRILIN) 
units. The resulting continuous projection rays are 
placed onto ABC Shading Units, where the gradients 
are estimated and each ray sample is converted into 
both an intensity and an associated opacity value ac­
cording to lighting and data segmentation parameters. 
These intensity/opacity ray samples are' fed into the 
leaves of a Ray Projection Cone (RPC). The RPC is 
a folded binary tree that generates in parallel and in 
a pipelined fashion the final pixel value using a variety 
of projection schemes on the cone nodes. The result­
ing base-plane pixel is transmitted to the host where 
it is post-processed (e.g., post-shaded or splat ted) and 
2D transformed (warped) onto the viewing plane. The 
result is stored in the 2D frame-buffer. 

The parallel conflict-free memory architecture of 
Cube-3 reduces the memory access bottleneck from 
O(n8 ) per projection to O(n2) and allows for very high 
data throughput. For a dataset size of 5128 IS-bit vox­

els we estimate a performance of up to 30 frames per 
second. Such a system would require 8 boards and a 
custom fabricated backplane. 

Cube-3 is a scalable and flexible architecture that 
allows the user to interactively control the following 
parameters: viewing angle from any parallel and per­
spective direction, control over shading and projection 
(e.g., first opaque, maximum value, x-ray, composit­
ing), color segmentation and thresholding, control over 
translucency, sectioning and slicing. It will provide a 
rendering performance that is an order of magnitude 
higher than that of previously reported systems and 
thereby revolutionize the way scientists conduct their 
studies. 

6. Results 

We implemented the different interpolation and gra­
dient estimation methods in software and conducted 
several experiments. The first program, Vo1B.en imple­
ments traditional image order volume rendering. Rays 
are cast from the image plane into the volume and sam­
pled at uniform steps. The hi-linear interpolation is 
performed according to Equation 2 using the correct 8­
neighborhood around sample points. The gradient is 
estimated using central differences of tri-linear interpo­
lated values in a 6-neighborhood around each sample. 

The second program, True3D, uses our real-time dis­
crete ray-casting method, but instead of performing 
sheared tri-linear interpolation it fetches the exact 8­
neighborhood around each sample point. The last pro­
gram, Sheared3D, implements the same algorithm but 
with the proposed sheared tri-linear interpolation. Both 
TrueSD and Sheared3D can use any of the 6-, 26- or 
lO-neighborhood gradient methods for comparison pur­
poses. For the implementation of these algorithms we 
used the VolVis volume visualization system, developed 
at the State University of New York at Stony Brook 
[2, 1]. (The source code of VolVis is freely available by 
sending email to volvisOcs.sunysb.edv..) 

6.1. Tri-Linear Interpolation Comparison 

First we compare images resulting from Sheared3D 
to results obtained from Vo1B.en and TrueSD. The gra­
dient approximation method used for Sheared3D and 
TrueSD was the proposed lO-neighborhood gradient es­
timation. 

The dataset, a CT study of a cadaver head of size 
256 x 256 x 225 voxels at 8-bit per voxel, was taken on 
a General Electric CT Scanner and provided courtesy 
of North Carolina Memorial Hospital. All programs use 
the same shading model and an opacity transfer func­
tion that maps voxel values below 80 to Q = 0, has a 
linear ramp for Q from 0 to 0.75 for values between 80 
and 100, and assigns Q = 0.75-to values above 100. We 
chose this particular transfer function to classify bone 
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Figure 12: Dataset rendered with sheared tri-linear interpolation (left) and the difference image to traditional volume 
rendering (right) for 45° rotation angle. This is the worst case for sheared tri-linear interpolation. 

in the dataset as opaque in order to try to ma..ximize 
the display of aliasing effects on the forehead of the CT 
skull. 

For the experiments we rotated the dataset by 70° 
around the horizontal axis with respect to the world 
coordinate system, and during animations we rotated it 
around a vertical axis between 0° and 90° in steps of 5°. 
As error measure between the resulting images we use 
the average Euclidean distance of RGB values between 
conesponding pixels. Figure 12 shows the dataset ro­
tated by 45° around the vertical axis. The left image 
was generated using Sheared3D and the image on the 
right is the difference image, mapped to gray-scale, com­
paring the corresponding Sheared3D and VolRen im­
ages for this rotation angle. 

Figure 13 shows the relative Euclidean enor in per­
centage between images from Sheared3D and VolRen 
and between Sheared3D and True3D, respectively. The 
comparison with VolRen (top curve) shows how the er­
ror raises towards 45° rotation angle and reaches a min­
imum at 0° and 90°. The peak at 45° is due to the dif­
ferent sampling distance along the ray, which is by v'3 
bigger for discrete line stepping (see Section 3). fur­
thermore, due to the offset 'considerations explained in 
Section 3, our algorithm performs only bi-linear inter­
polation as opposed to the the tri-linear interpolation 
in VolRen. 

The comparison to True3D shows zero error for 45° 
because both algorithms perform bi-linear interpolation 
and use the same gradient estimation technique. The 
relative enor in percent compared to VolRen stays be­

low 1.3%, and compared to True3D it stays below 0.3%. 

Sheared Tri-Linear Interpolation 
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Fig1l1'e 13: Sheared Interpolation Percentage Error. 

6.2. ABC Gradient Estimation Comparison 

For the comparison ofthe different ABC gradient es­
timation techniques we use a voxelized model ofa sphere 
as dataset. The sphere is scan-converted using the vol­
ume sampling method described in [19]. The surface 
intersection points are obtained by thresholding, i.e., as 
soon as a certain voxel valu~ is exceeded we calculate 
the gradient at that point. Each gradient is compared 
to the true geometric surface normal. As error measure 
we use the magnitUde of angular difference between two 
vectors. All differences are aCcumulated and averaged 
over all surface intersection points. 
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Figure 14: Error magnitude of comparing surface normals of 10- (Top) and 26-neighborhood gradients (Bottom) to 

the true analytic normal of the voxelized sphere. Notice the jump of regions of high error for the 26-neighborhood 

gradient between 4S'" and 50° rotation angle. 

Dark: 0° ::; lei < 8.5"', Medium: 8.5° ::; lei < 20°, Light: 20°::; lei < 31.So, White: lei;::: 31.5°. 

Rotation angles (left to right): 30°, 3S"', 40"', 4S"', SO"', 55"',60"'. 


Figure 15 shows the results of rotating the sphere 
around a vertical axis between 0° and 90" in steps of 5°. 
The top two curves compare the analytic normal with 
the 26- and the 6-neighborhood gradient, respectively. 
The error increases towards 45'" rotation angle due to 
the non-orthogonality of the gradient directions which 
reaches a maximum at 45°. Although the 26-gradient 
shows a little higher error magnitude, the dift'erence be­
tween these two methods is not significant. 

magnitude, light shaded regions indicate higher error 
magnitudes. The top row shows the 10-neighborhood 
gradient method with a fairly regular error transition 
from left to right during a switch of base-planes at 45° 
(center sphere). The bottom row, depicting the 26­
neighborhood gradient method, shows a generally larger 
error magnitude. Additionally, the region of largest er­
ror jumps from the right side of the sphere to the left 
during the switch of base-planes. This jump leads to 
noticeable changes in image intensity during object ro­
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Figure 15: Average Error Magnitude for ABC Gradient 
Estimations Compared to the Analytic Normal. 

The curve on the bottom in Figure 15 shows 
the comparison of the analytic normal with the 10­
neighborhood gradient estimation. The error magni­
tude is significantly smaller than for the other gradient 
methods. The error also increases towards 45'" rotation 
angle. This is due to the dift'erent distances between 
samples that are used for the gradient calculations in 
the three orthogonal directions. 

Figure 14 shows how the error propagates around 
the sphere for rotation angles from 30" to 60° in steps 
of 5"'. Dark shaded regions indicate regions of low error 

tation, an effect that we described as temporal aliasing 
in Section 4. 

1. Conclusions 
In order to achieve the goal of real-time visualiza­

tion of dynamic datasets we developed Cube-3, a scal­
able architecture that exploits parallelism and pipelin­
ing. In this paper we presented the underlying real-time 
ray-casting approach that allows for a mapping of ray­
samples onto voxels that is one-to-one. Using templates 
and shearing/de-fanning of beams, we fetch 2D planes 
from the volume dataset and perform sheared tri-linear 
interpolation between discrete neighboring rays. Us­
ing the resulting interpolated ray samples from above, 
current and below planes, we described novel ways of 
gradient estimation using coherency between rays. 

Using software simulations we compared the pro­
posed methods to traditional image order ray-casting. 
The error of using sheared tri-linear interpolation in­
stead of performing image order ray-casting is be­
low 1.3% relative dift'erence in Euclidean distance of 
the resulting image pixels. . We showed that use of 
the proposed 10-neighborhood instead of a 6- or 26­
neighborhood gradient approach reduces both the av­
erage error compared to analytically computed normals 
and the temporal aliasing tha.t arises from switching 
base-planes during object rotations. We presented both 
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methods in the context of Cube-3, a special purpose ar­
chitecture aimed at real-time 4D visualization of high­
resolution volumetric datasets. 
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