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Summary
Connectomics provides essential nanometer-resolution,

synapse-level maps of neural circuits to understand brain activity
and behavior. However, few researchers have access to the
high-throughput electron microscopes to rapidly generate the
very large datasets needed for reconstructing whole circuits or
brains. To date, machine-learning methods have been used after
the collection of images by electron microscopy (EM) to accelerate
and improve neuronal segmentation, synapse reconstruction and
other data analysis. With the computational improvements in
processing EM images, acquiring EM images has now become
the rate-limiting step. Here, in order to speed up EM imaging,
we integrate machine-learning into real-time image acquisition
in a single-beam scanning electron microscope. This SmartEM
approach allows an electron microscope to perform intelligent,
data-aware imaging of specimens. SmartEM allocates the proper
imaging time for each region of interest – scanning all pixels as
rapidly, but then re-scanning small subareas more slowly where
a higher quality signal is required in order to guarantee uniform
segmentability of the entire field of view but with a significant
time savings. We demonstrate that this pipeline achieves a 7-fold
acceleration of image acquisition time for connectomics using a
commercial single-beam SEM. We apply SmartEM to reconstruct
a portion of mouse cortex with the same accuracy as traditional
microscopy but in less time.

electron microscopy | connectomics | machine-learning | adaptive scanning

Introduction1

Serial-section Electron Microscopy (ssEM) is widely used to2

reconstruct circuit wiring diagrams in entire brains of small3

animals like C. elegans, Drosophila, and zebrafish (White et al.,4

1986; Witvliet et al., 2021; Xu et al., 2020; Hildebrand et al.,5

2017) and brain regions in mammals (Morgan et al., 2016;6

Kasthuri et al., 2015; Bock et al., 2011; Abbott et al., 2020;7

Lu et al., 2023; Song et al., 2023). Comparing the growing8

numbers of connectomes of animals with different genetic9

backgrounds, life experiences, and diseases will illuminate the10

anatomical nature of learning, memory, and developmental11

plasticity, the nature of brain evolution, as well as the nature12

of anatomical abnormalities that cause neuropathology and13

disease (Kornfeld et al., 2020; Shapson-Coe et al., 2021;14

Loomba et al., 2022; Karlupia et al., 2023; Bidel et al.,15

2023). To achieve wide-scale deployment for comparative16

connectomics, data acquisition and analysis pipelines need to17

become more widely available (Swanson and Lichtman, 2016). 18

At present, connectome datasets are mostly acquired by the 19

few laboratories and institutions equipped with specialized and 20

expensive high-throughput electron microscopes such as the 21

TEMCA (Transmission Electron Microscopy Camera Array) 22

or the Zeiss 61- or 91-beam scanning electron microscope 23

(SEM) (Bock et al., 2011; Shapson-Coe et al., 2021). Until 24

recently, dataset acquisition had not been a limiting factor 25

in connectomics (Lichtman et al., 2014). A more significant 26

bottleneck had been data analysis – segmenting serial-section 27

electron micrographs to reconstruct the shape and distribution 28

of nerve fibers, identify synapses, and map circuit connectiv- 29

ity. However, recent improvements in machine-learning and 30

image analysis (Beier et al., 2017; Januszewski et al., 2018; 31

Meirovitch et al., 2019; Sheridan et al., 2023) have dramatically 32

sped data analysis, creating a now urgent need for faster image 33

acquisition. The field needs more electron microscopes to 34

deliver datasets as fast as they can now be analyzed. One 35

way to meet this need is to enable widely-available electron 36

microscopes, like more affordable point-scanning SEMs, to 37

collect connectomic datasets. 38

When using a point-scanning SEM for connectomics, the 39

time budget for image acquisition is mostly the dwell time that 40

the electron beam spends on each pixel. In practice, SEM imag- 41

ing of well-prepared, high-contrast, electron-dense tissue for 42

connectomics usually uses dwell times ⩾∼1000 ns/pixel. By 43

comparison, the time spent moving the beam between pixels is 44

negligible; modern SEMs use electrostatic scan generators that 45

deflect the electron beam to any pixel in an image (Mohammed 46

and Abdullah, 2018; Anderson et al., 2013). To accelerate an 47

SEM for connectomics, one must reduce the total dwell time 48

over all pixels, but without losing information needed to accu- 49

rately determine the wiring diagram. 50

For connectomics, the salient measure of image accuracy 51

is neuronal segmentation – being able to correctly identify 52

each neuron’s membrane boundary and to correctly identify 53

each synapse. In standard SEM, image acquisition is done 54

by specifying a fixed homogeneous dwell time for all pixels. 55

The longer the dwell time, the higher the signal-to-noise per 56

pixel, and the more accurate the segmentation. Thus, there 57

is a fundamental trade-off between SEM imaging time and 58

segmentation accuracy. Previous approaches to improving seg- 59

mentation accuracy with rapidly acquired images have involved 60

post-acquisition image processing such as de-noising (Minnen 61
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et al., 2021) or “super-resolution”/upsampling (Fang et al.,62

2021). However, image processing that works entirely after the63

completion of image acquisition is limited by the amount of64

original information acquired. No technique unambiguously65

“creates” information that was not acquired in the first place.66

Fast, lossy image acquisition can miss critical information that67

precludes accuracy in any subsequent segmentation.68

Our solution to the problem of missing information in an69

initial rapidly acquired image is to immediately recover infor-70

mation during real-time microscope performance. To do this,71

we developed a “smart” SEM pipeline that rapidly identifies72

error-prone regions as well as high-salience regions (such as73

synapses) in every rapidly acquired image, and immediately74

and slowly re-scans only these regions. We define error-prone75

regions as only those that would confer full segmentation ac-76

curacy to a composite image, which is built from the initial77

rapidly acquired image (adequate wherever segmentation is ac-78

curate at short dwell time) and fused with long dwell time re-79

scans (necessary wherever segmentation is error-prone). When80

error-prone and high-salience regions are relatively few in num-81

ber and small in size, re-scanning adds little to the total image82

acquisition time budget while fully restoring segmentation ac-83

curacy. We sought an image acquisition pipeline that achieves84

the accuracy of uniform long dwell time acquisition with nearly85

the speed of uniform short dwell time acquisition.86

We implemented smartness in the pipeline with machine-87

learning algorithms running within SEM computer hardware.88

This pipeline, called SmartEM, can be applied in any context89

where images exhibit high spatial heterogeneity in segmenta-90

tion accuracy as a function of imaging time – a fundamental91

characteristic of brain images where nerve fibers and synapses92

can vary in size and density from region to region. Unavoidable93

spatial heterogeneity in any specimen is why a smart selection94

of which regions to collect at short dwell times and which re-95

gions to re-scan at long dwell times can achieve full segmenta-96

tion accuracy but with much less total dwell time. Applied to97

connectomics, the SmartEM pipeline yields a substantial 7-fold98

speedup for a widely available point-scanning SEM, allowing99

the microscope to be used for connectomics solely by imple-100

menting our machine-learning algorithms in the GPU-equipped101

SEM support computer. Spatial heterogeneity characterizes nu-102

merous SEM applications, and SmartEM can thus be applied to103

speed reconstruction of other specimens in biology, in material104

sciences and in electronic circuit fabrication.105

Results106

Suitability of adaptive dwell times for connectomics107

To establish the rationale for our connectomics pipeline by108

point-scanning SEM – automatically applying short dwell times109

to most brain regions that are “easy” to segment and long dwell110

times to fewer brain regions that are “hard” to segment – we111

quantitatively tested how spatial heterogeneity in representative112

mammalian brain images affects segmentation accuracy with113

different dwell times. To perform these tests, we used a recent114

high-quality sample comprising 94 sections of mouse visual115

cortex (Karlupia et al., 2023). We re-imaged these 94 sections116

at 4 nm pixel resolution using a point-scanning Verios G4 UC117

SEM from Thermo Fisher Scientific and a range of fixed dwell 118

times from 25 to 1200 ns/pixel. 119

We note that when these images were originally acquired in 120

a previous study using standard point-scanning SEM, the dwell 121

time was 800 ns/pixel (Karlupia et al., 2023). This dwell time 122

was determined by a “rule-of-thmb” and is close to the 800 – 123

1000 ns/pixel needed for maximal segmentation accuracy for 124

this dataset (Figure 1A, 1B). 125

Our segmentation algorithm – mapping EM images to 126

membrane predictions (EM2MB) followed by a standard 127

watershed transform – provided an objective assessment of 128

segmentation accuracy of images collected with different 129

dwell times. We adapted EM2MB to SEM images taken with 130

different dwell-times (see Supplement). We automatically 131

segmented 256 randomly selected 2000×2000 pixel regions 132

taken from the 94-section sample with different dwell times. 133

Automatic segmentation with ultrafast dwell times (25 ns/pixel) 134

produced frequent merge and split errors compared to auto- 135

matic segmentation of the same regions with overly slow dwell 136

times (1200 ns/pixel) (Figure 1A). As dwell times increased, 137

segmentation errors gradually disappeared. 138

To quantify segmentation accuracy, we calculated the Vari- 139

ation of Information (VI; Meila (2003)) between each automat- 140

ically segmented region at each faster dwell time and the seg- 141

mentation obtained at the slowest dwell time (Figure 1B). Seg- 142

mentation accuracy increased with slower dwell times, and sat- 143

urated at 800-1000 ns/pixel, consistent with the rule-of-thumb 144

practice in choosing the dwell times for connectomics. With 145

>1000 ns dwell times, segmentation accuracy using EM2MB is 146

saturated. At 25 ns/pixel, acquisition speed is 40× faster than 147

at 1000 ns/pixel, but with lower accuracy. 148

Brain tissue is typically heterogeneous in the difficulty of 149

segmentation across image regions (Figure 1C, 1D). Thus, seg- 150

mentation accuracy varied substantially from region to region. 151

For slow dwell times (1000 ns), segmentation accuracy was nar- 152

rowly distributed around small VI, indicating less segmentation 153

errors. For ultrafast dwell times (25 ns), segmentation accuracy 154

was broadly distributed. Some regions exhibited the same low 155

VI with both ultrafast and slow dwell times (“easy” to segment 156

regions). Some regions exhibited drastically higher VI for ul- 157

trafast dwell times than slow dwell times (“hard” to segment 158

regions) (Figure 1C). For each region, we determined the mini- 159

mum dwell time to reach the same segmentation accuracy as the 160

slowest dwell time (see Supplement: Determination of max- 161

imal segmentation quality). We observed a broad distribution 162

of minimum dwell times across pixel regions. Most 2000×2000 163

pixel regions are accurately segmented with dwell times <150 164

ns, but a small number (∼25%) required longer dwell times. 165

Minimum dwell times exhibited a broad-tailed distribution from 166

50 – 1200 ns/pixel (Figure 1D). 167

Challenges in smart microscopy 168

We sought a SmartEM pipeline to identify and adapt to spa- 169

tial heterogeneity in the segmentation accuracy of brain tissue 170

for connectomics when imaged at different dwell times. To im- 171

plement this pipeline with a point-scanning SEM, we needed 172

to solve several challenges. The SEM needs to automatically 173
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Figure 1. The effect of the beam’s dwell time on the ability to segment the EM into neuronal elements. A. Scanning the same EM tile with different dwell times. Short dwell time
scans result in segmentation errors (red squares) that are resolved by longer scans (green squares). Increasing the dwell time improves the segmentation accuracy of short dwell
time images (25 ns/pixel and 75 ns/pixel) but does not improve the segmentation accuracy of sufficiently long dwell time images (800 ns/pixel). B. The segmentation quality of the
same images used in (A) are represented by x markers, alongside the distribution of segmentation qualities of 256 images (scatter and boxes) for 13 dwell times, from 25 ns to
1000 ns, calculated relative to a reference image taken at 1200 ns/pixel. Segmentation error is quantified by variation of information (y-axis). VI drops rapidly with increased dwell
times, saturating with dwell times near 800 ns. Wide distributions indicated by whiskers at each dwell time indicate that some image tiles can be segmented at any dwell time. C.
Segmentation of neuronal tissue has varying quality due to tissue heterogeneity: taking an image at 25 ns could lead to an image that can be segmented at high quality (bottom
image) or low quality (top image), compared to taking the images slowly (at 1000 ns). D. The majority of image regions (greens areas add up to 1.00) can be segmented at faster
dwell times (75 ns to 125 ns), while some regions require longer dwell times (between 400 ns to 800 ns) to reach the segmentation quality criterion. Thus, adapting dwell time for
different regions would save imaging time without reducing segmentation quality.
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Figure 2. Smart microscope challenges. A. An erroneous segmentation of a rapidly
acquired image (25 ns/pixel) with a red arrow indicating the location of a merge error
between two neurons (N1, N2). Slowly acquiring the same image at 1200 ns/pixel
captures the neuronal boundary (middle). The output of the ERRNET neural network
that was trained to predict segmentation errors from EM is shown on the right. Blue
indicates the location where the network predicts a possible merge or a split error.
The yellow outline is a window around the predicted error to provide further context
needed for downstream correction. B. The SEM readily captures any part of an image
at different dwell times, homogeneously at short dwell times (left), homogeneously at
long dwell times (middle), or homogeneously at short dwell times with a sub-region
taken at long dwell times (right). Here, the yellow outline for the long dwell time sub-
region contains a synaptic cleft. C. Predicting neuronal borders from fused EM images
using FUSED2MB.

identify error-prone locations in an initial rapidly acquired brain174

image. The SEM needs to immediately re-scan pixel neigh-175

borhoods around error-causing locations to guarantee accurate176

segmentation. After image acquisition, the pipeline needs to ac-177

curately segment composite images built from the initial rapidly178

acquired images fused with re-scanned error-prone regions. We179

review solutions to these challenges that we incorporate in the180

smart microscopy pipeline described below.181

Detecting error-prone regions by an SEM. To identify error-182

prone regions in initial rapidly acquired images, we developed183

a machine learning (ML) algorithm to run on the microscope’s184

support computer. Figure 2A shows a rapidly acquired image185

tile and its segmentation containing a merge error (red arrow186

in left panel); the slowly acquired image tile that would not187

produce an error (middle panel); the prediction of a neural188

network (ERRNET, see below) that identifies error-causing189

locations in the rapidly acquired image (corresponding to cell 190

membranes associated with the merge error, highlighted in 191

blue in right panel); and the specification of error-prone region 192

to be re-scanned that would remedy segmentation errors in 193

post-processing (yellow outline in middle and right panels). 194

ERRNET operates in real-time within SEM computer hardware 195

that is equipped with a high-performance GPU, and is much 196

faster than initial image acquisition – per pixel processing for a 197

single commodity GPU is <100 ns/pixel; N GPUs operating in 198

parallel require < 100/N ns/pixel. A related idea where EM 199

acquisition is guided based on uncertainty measures estimated 200

by neural network models was described in Shavit et al. (2021). 201

SEM re-scanning any sub-region. To use the prediction of error- 202

prone regions during real-time SEM operation, we modified the 203

scanning procedure of the microscope to re-scan error-prone 204

regions at slow dwell times right after the fast scan. In addi- 205

tion to re-scanning error-prone regions, neural networks can be 206

trained for data-aware re-scan of additional regions of interest 207

like synaptic clefts for applications in connectomics. Figure 2B 208

depicts data-aware re-scan where the microscope is guided to 209

re-take regions around synaptic clefts that are predicted from an 210

initial fast scan image of a section of mammalian cortex. SEM 211

microscopes with electrostatic scan generators are able to con- 212

duct efficient and rapid re-scan without wasted time in moving 213

the electron beam (Mohammed and Abdullah, 2018; Anderson 214

et al., 2013). When ERRNET and re-scan software are seam- 215

lessly integrated within SEM computer hardware (see below), 216

the total time spent acquiring an image is the total number of 217

pixels × the short initial dwell time plus the total number of 218

re-scanned pixels × their long dwell time. 219

Segmentation of multi-dwell time images. After image ac- 220

quisition, a smart microscopy pipeline generates a complete 221

rapidly acquired image and set of slowly re-scanned regions 222

of each sample. When pixels from the re-scanned regions are 223

substituted into corresponding locations in initially rapidly 224

acquired images, composite images are produced with pixels 225

of multiple dwell times. Previous segmentation algorithms 226

for connectomics have dealt with a single pre-fixed dwell 227

time (Januszewski et al., 2018; Meirovitch et al., 2019; 228

Sheridan et al., 2023) – these algorithms generalize poorly 229

to homogeneous images taken at different dwell times or to 230

heterogeneous images composed of regions taken at different 231

dwell times. The smart microscopy pipeline demands new 232

algorithms to accurately segment composite images where 233

different regions are obtained at different dwell times. We 234

developed a data augmentation training procedure technique 235

for a neural network with a U-Net (Ronneberger et al., 2015) 236

architecture (FUSED2MB) to accurately detect membranes 237

in an image with heterogeneous dwell times as well as if the 238

image was taken with a single uniformly applied dwell time 239

(see Supplement). Figure 2C shows an example of an image 240

that has multiple dwell times (slow scanning arbitrarily within 241

an S-shaped region surrounded by fast scanning). The predicted 242

membranes by FUSED2MB are unperturbed when crossing 243

between regions taken with different dwell times. 244

Thus, the challenges in building a smart microscopy 245
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Figure 3. Traditional versus ML-based image acquisition. A. Traditional microscopes
acquire images without real-time adaptation to the data itself. Acquired images are
often processed off-line using machine learning algorithms that might enhance the ex-
isting information content (e.g. using super resolution, de-noising and in-painting ML
techniques). B. The SmartEM pipeline uses dataset-specific machine learning algo-
rithms to guide image acquisition in real-time to increase information content.

pipeline are met by extensively using machine learning in both246

guiding image acquisition and image analysis. As illustrated247

in Figure 3, our pipeline differs from previous applications248

of machine learning in electron microscopy, where image249

analysis using neural networks was only used to improve image250

appearance after image acquisition.251

The smart microscopy pipeline252

We built an integrated smart pipeline that meets the above chal-253

lenges, Figure 4A shows an example of our smart microscopy254

pipeline run on a small tile from the mouse cortex dataset255

(Karlupia et al., 2023). The components of the SmartEM are256

outlined in Figure 4B and their design and implementation are257

described below in detail.258

Determining the standard dwell time needed for high accuracy259

segmentation. The goal of the SmartEM pipeline is to reach260

the segmentation accuracy of standard SEM with uniform slow261

scanning, but in much less time. To fairly assess the improve-262

ment of SmartEM over standard SEM, we needed first to deter-263

mine the shortest dwell time for standard imaging that leads to264

accurate segmentation (800 – 1000 ns/pixel in the example in265

Figure 1B).266

We also needed an objective metric for assessing accurate267

segmentation. In the example shown in Figure 1B, the micro-268

scope automatically estimates 800 ns as the minimal dwell time269

needed for accurate segmentation. This estimate was based on270

the output of automatic membrane prediction by a neural net-271

work (Pavarino et al., 2023).272

To accomplish this, we trained a neural network called273

SLOWEM2MB to perform automatic membrane prediction274

using long dwell time images. We acquired a small and diverse275

subset of long dwell time images from random locations in a276

specimen, typically twenty 5×5 µm EM tiles, and performed277

manual segmentation by an expert to create training data for278

SLOWEM2MB.279

Next, we used SLOWEM2MB to train a separate neural net-280

work called EM2MB that was capable of predicting membranes281

with long or short dwell time images. The single-beam SEM al-282

lowed repeatedly re-imaging the same region at different dwell283

times. In this way it was possible to guide the microscope to284

collect a large sample of EM images from different random285

locations in the specimen, using different dwell times ranging 286

from 25 to 2500 ns/pixel as shown in Figure 4. SLOWEM2MB 287

was applied to the long dwell time image at each location to au- 288

tomatically create segmentations that we could use as “ground 289

truth” to train EM2MB to predict segmentations with long or 290

short dwell time images. Both SLOWEM2MB and EM2MB 291

were implemented using a U-net architecture. 292

SLOWEM2MB and EM2MB calculated the trade-off be- 293

tween pixel dwell time and segmentation accuracy. EM2MB 294

was used to automatically segment all dwell time images (e.g. 295

from 25 to 1000 ns/pixel for the mouse cortex dataset) and com- 296

pare them to a reference automatic segmentation correspond- 297

ing to the longest dwell time image (e.g. 1200 ns/pixel im- 298

age). Thus, it was possible to identify the shortest dwell time 299

for which mean accuracy across tiles was not further improved 300

by longer dwell time imaging. This minimum dwell time was 301

defined by SmartEM as the required dwell time to achieve max- 302

imum segmentation accuracy at a defined spatial resolution. 303

Learning to detect error-causing locations in short dwell time 304

images. To further reduce imaging time we adjusted pixel dwell 305

time based on segmentation accuracy. Most image regions can 306

be segmented with full accuracy after scanning with a short 307

dwell time. Additional dwell time is only selected for those 308

regions that require longer imaging to segment properly. This 309

selection was accomplished via a neural network (ERRNET) 310

that learned what regions required longer dwell time after scan- 311

ning whole images with short dwell time. ERRNET learns the 312

features of error-causing locations in raw short dwell time im- 313

ages that produce segmentation differences – erroneous merges 314

or splits – in comparison to long dwell time images. 315

To assemble “ground-truth” to train ERRNET, the micro- 316

scope first takes a large set of images from random locations 317

in the specimen at multiple dwell times (e.g. from 25 to 1200 318

ns/pixel). These images are segmented to distinctly label ev- 319

ery contiguous neuron cross section. Automatic labeling can be 320

done using membrane probabilities, a seeding procedure, and 321

a standard region-growing algorithm such as watershed (Vin- 322

cent and Soille, 1991). Segmented images at all dwell times are 323

compared to reference segmented images taken with the longest 324

dwell time (1200 ns/pixel for the mouse cortex dataset in Fig- 325

ures 1A, 1B, longer than needed for fully accurate segmenta- 326

tion with SLOWEM2MB). To automatically learn segmenta- 327

tion discrepancies between short and long dwell time images, 328

we developed a method to produce a binary error mask that de- 329

fines the morphological differences between two segmented im- 330

ages based on the variation of information (VI) clustering metric 331

(Meila, 2003) (See Supplement for details). We trained ERR- 332

NET to predict error-causing regions in short dwell time im- 333

age as shown in Figure 4. We used the VI metric to detect 334

objects that are morphologically different between segmenta- 335

tions of short and long dwell time images, and then mapped the 336

borders that differ for these objects (described in Supplement) 337

(Meila, 2003). We noted that all segmentation errors in short 338

dwell time images can be repaired (i.e. leading to identical seg- 339

mentation as long dwell time images) by selectively replacing 340

only regions surrounding discrepancy-causing locations in short 341

dwell time images with corresponding regions taken from long 342
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segmented (top). In the SmartEM pipeline, the sample is first scanned at a short dwell time, error-prone regions are detected and re-scanned and then segmented. B. The
learning and acquisition phases of SmartEM. Left: For training, SmartEM requires aligned stacks of high-quality (long scan) images and low-quality (short scan) images. A
membrane detector, FUSEDEM2MB (blue), is trained on this dataset to re-produce the high quality results of a membrane detector that runs only on the long scan images. Once
FUSEDEM2MB is trained, the membrane predictions between the short and long dwell times is compared (topology comparison) and a binary error map featuring the differences
between the two predictions is produced. A second network, ERRNET (red) is trained to predict this error map from the membrane predictions of the short dwell time images.
Right: The two trained networks FUSEDEM2MB and ERRNET are used for smart acquisition. First a short scan is performed and the membrane prediction is generated from
FUSEDEM2MB. This prediction serves as an input to ERRNET to generate an error map. The error map is processed and used to guide a long dwell time re-scan. For verification,
the composite image of the two dwell times is segmented.
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dwell time images.343

Detecting error-prone regions in short dwell time images,344

re-scanning, and producing fused images. In real-time opera-345

tion, the SEM microscope must take an initial rapidly acquired346

image, execute ERRNET to detect error-prone locations, define347

a re-scan mask by padding error-prone locations to capture348

enough context to improve segmentation accuracy, and then349

immediately re-scan all error-prone regions using slow dwell350

times.351

Unifying and enhancing images. The final output of the pipeline352

are images where some pixels are captured with slower dwell353

times than others. Although the raw appearance of rapidly cap-354

tured regions (high pixel noise) and slowly captured regions355

(low pixel noise) does not degrade segmentation accuracy, it356

does create visually unappealing contrasts (Figure 3B). To stan-357

dardize the SmartEM image for human interpretation, we also358

built an algorithm that translates the style of the SmartEM im-359

ages to look like standard EM images with homogeneous dwell360

times. A similar technique was described in Shavit et al. (2021,361

2023). This stylized output does not supplant, but is saved in362

addition to, the raw composite SmartEM images. We note that363

stylized images often retain the correct details of the ultrastruc-364

ture seen in homogeneous long dwell time images (Figure S8).365

Technique Evaluation366

We developed our SmartEM pipeline to expedite connectomic367

reconstruction on our widely available point-scanning SEM, the368

Verios G4 UC from Thermo Fisher Scientific. Here, we quanti-369

tatively estimate the practical improvement in quality and speed370

offered by this pipeline for connectomics.371

Improving accuracy. One premise of the smart microscopy372

pipeline is that automatically detecting error-prone regions373

and replacing them with slower dwell time pixels will reduce374

segmentation errors. To attempt to validate this premise, we375

compared the accuracy of a segmentation pipeline trained376

to deal with short dwell time images (FASTEM2MB at 100377

ns/pixel) to a SmartEM pipeline trained to deal with composite378

images made from short and long dwell times (FUSEDEM2MB379

at 100 ns/pixel and 2500 ns/pixel). The performance of these380

networks was compared to the standard segmentation pipeline381

with slow image acquisition (SLOWEM2MB at 2500 ns/pixel).382

For fair comparison, we used the same long dwell time for the383

re-scanning in the smartEM pipeline and for the uniform scan384

in the standard pipeline. We found that using these dwell times,385

SmartEM pipeline is ∼5× faster than the standard segmentation386

pipeline with slow image acquisition and ∼2-3× more accurate387

(based on VI) than the standard pipeline operating quickly (100388

ns/pixel) (Figure S2). Thus, fusing long dwell time pixels into389

a rapidly acquired image can improve segmentation accuracy.390

Another premise of the SmartEM pipeline is that given the391

additional time spent in re-scanning part of an image, the im-392

provement in segmentation accuracy is superior to the improve-393

ment that would be obtained by giving the same amount of extra394

time to a standard pipeline that somewhat more slowly acquires395

all pixels at the same dwell time. To attempt to validate this396

premise, we used a FastEM pipeline by choosing competitively 397

fast settings for the standard pipeline, with pixels taken homoge- 398

neously at 75 ns. We compared the performance of FastEM with 399

a SmartEM pipeline tuned to take the same average time when 400

combining both the initial scan and the smart re-scan. The ini- 401

tial SmartEM scan dwell time was set to 25 ns, the re-scan dwell 402

time to 200 ns, and a portion of the 12.5% most "error suscepti- 403

ble" regions were adaptively selected per tile for re-scan, so as 404

to provide an exact average of 75 ns/pixel. We compared the 405

variation of information of N=64 segmented 2048×2048 pixel 406

image tiles of fastEM and SmartEM to a reference slowEM and 407

found that the SmartEM had less error (non-parametric paired 408

sample test; p<0.05 and p<0.025 for 38 tile devoid of cell bod- 409

ies). 410

Estimating speed-up. We considered two scenarios for the 411

large-scale collection of a connectome dataset. The first 412

involves a fixed imaging time budget to acquire a selected data 413

volume at the selected pixel resolution. Here, the task is to 414

intelligently allocate the imaging time to optimize segmentation 415

accuracy. We note that this optimization is not feasible with a 416

standard EM pipeline that would fix the homogeneous dwell 417

time to fill the time budget. The second scenario involves set- 418

ting the pipeline quality according to the quality of a standard 419

EM imaging pipeline. Here, the task is to determine SmartEM 420

parameters that maintain this quality while minimizing the 421

required imaging time per volume. Below we analyze both 422

scenarios. 423

Scenario 1: Optimized accuracy with fixed imaging time 424

budget We fix the total imaging time budget for a given speci- 425

men. From this requirement the pixel dwell time is determined 426

after subtracting overhead factors (such as image focusing, 427

astigmatism correction, and mechanical stage movement) from 428

the total budget. For example, the user might need to image a 429

given specimen – 100×100×100 µm tissue, cut in 30 nm thick 430

sections, imaged at 4 nm spatial resolution – within 5 days 431

of continuous EM operation. These constraints determine the 432

average dwell time per pixel 433

(5 ·24 ·3600 sec)(42 ·30 nm3)
(100µm)3 = 207.36 ns.

For a standard EM pipeline, 207.36 ns becomes the homo- 434

geneous pixel dwell time. For the SmartEM pipeline, the initial 435

scan and re-scan of all error-prone regions should sum to an av- 436

erage of 207.36 ns/pixel. This average dwell time, which we 437

call effective dwell time, can be achieved with different combi- 438

nations of initial fast dwell time, re-scan slow dwell time, and 439

percentage of re-scanned pixels: 440

Teffective = Tinitial +α ·Tre-scan

where T represents dwell times. 441

For example, an effective average dwell time of 207.6 ns is 442

achieved with an initial dwell time of Tinitial = 100 ns, re-scan 443

rate of α = 5%, and re-scan dwell time of Tinitial = (207.36 − 444

100)/0.05 = 2147.2 ns. These parameter settings correspond to 445

a specific segmentation accuracy (VI) relative to the reference 446

homogeneous long scan image. SmartEM considers a grid of 447
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Figure 5. SmartEM acquisition time. In the first imaging scenario A-C, the imaging time is constrained by a time budget, which for a fixed volume and pixel resolution, provides the
average dwell time (beam time). The task is to intelligently determine the SmartEM parameters that optimize segmentation accuracy. A For every targeted smart time (effective
dwell time) the smartEM parameters that optimize segmentation accuracy are determined, including the standard (homogeneous) dwell time achieving that segmentation accuracy
(y-axis). The longer the smart time is, the longer homogenous time is needed to achieve the same accuracy, with an asymptote around smart dwell time of 200 ns/pixel, equivalent
to a homogeneous dwell time of about 800 ns/pixel. Error bars represent 1 s.d. B The speed up of the curve in A. The maximal speed up is achieved around the inflection point
in A, around 125 ns/pixel - longer smart imaging up to 200 ns/pixel will still improve segmentation accuracy but with smaller speed up. C The data in A and B is shown for a fixed
volume of 1 TB at 4nm per pixel and a slice thickness of 30 nm. D The variation of information of SmartEM compared to slowEM is calculated for each effective dwell time by
optimizing the pipeline’s parameters and the average VI across tiles is depicted. This allow calculating the two dwell times in the SmartEM (blue) versus standard (red) settings
that produce the same accuracy (on average and per tile). E In the second imaging scenario, the quality of the EM is set in advance in terms of a desired dwell time of a standard
pipeline, and the task is to find smart EM parameters that would provide that quality in a minimal amount of imaging time per volume. Maximal information for segmentation is
achieved with around 140 ns/pixel for SmartEM and with around 800-1000 ns/pixel for standard EM.

parameter settings and calculates the Tinitial, Tre-scan and α set-448

tings that produce maximal accuracy (minimal VI) compared449

to the segmentation of reference tiles, while guaranteeing the450

effective dwell time (see Supplement).451

Figure 5A presents the results of parameter optimization452

for different effective dwell times (smart imaging time) and453

image tiles. This optimization links any effective dwell time454

(achieved by optimizing the VI for different Tinitial, Tre-scan) to455

an accuracy-equivalent standard homogeneous dwell time. For456

example, an effective dwell time of 200 ns (blue arrow) already457

attains the maximal quality using a specific set of initial,458

re-scan dwell times, and re-scan rates that are determined per459

tile. This quality is comparable to standard homogeneous scan460

at 800 ns/pixel. 461

Figure 5B depicts the time saved by SmartEM compared to 462

standard microscopy. For the mouse cortex dataset, the maxi- 463

mal saving compared to standard EM is achieved when smart 464

EM is used at an effective dwell time of ∼125 ns/pixel, which 465

corresponds to the inflection point in Figure 5A, leads to an 466

accuracy akin to ∼725 ns/pixel by the standard pipeline. This 467

effective dwell time produces images with nearly maximal pos- 468

sible segmentation accuracy (Figure 1). Figure 5C estimates 469

the time to replicate the accuracy of SmartEM using standard 470

microscopy using 1TB of mouse cortex (where 1 Byte corre- 471

sponds to 1 pixel at 4×4×30 nm3). The SmartEM microscope 472

running for 60 hours of continuous imaging achieves the same 473
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quality as a standard pipeline running for 250 hours.474

Scenario 2: Minimizing imaging time with fixed image475

quality In the second scenario a certain volume needs to be476

segmented, and SmartEM is asked to minimize imaging cost.477

Imaging time is not determined in advance, but the quality478

of the smart EM has to meet a quality standard. SmartEM479

needs to acquire the volume in a way that leads to comparable480

segmentation to standard EM but in significantly less time.481

First, the operator determines the dwell time that is needed482

to achieve a specific quality with standard homogeneous483

scanning. This dwell time can be obtained from the SmartEM484

pipeline estimate of a minimum homogeneous dwell time485

(Figure 1). Once the image quality is effectively determined486

by selecting a reference dwell time for uniform scanning,487

SmartEM needs to acquire the volume in a way that leads to488

comparable segmentation accuracy, but in considerably shorter489

time.490

To analyze the expected imaging time of SmartEM in the491

mouse cortex dataset, we first segmented images taken at ho-492

mogeneous dwell times from 25 to 1200 ns uniform dwell times493

from the same areas. We did the same for each image and each494

effective dwell time, where each effective dwell time is derived495

from the maximally accurate parameter set of initial and re-scan496

dwell times and re-scan rate (Figure 5D). In all experiments497

we used the same error detector (ERRNET) and the same neu-498

ral network model to predict membrane from composite images499

(FUSEDEM2MB). To match each standard homogeneous dwell500

time to an effective smart dwell time, we calculated the shortest501

smart dwell time that produces segmentation that is statistically502

indistinguishable from the standard dwell time across tiles (see503

Supplement). Figure 5E depicts the relation between the tar-504

geted standard dwell time and the smart time that yields the505

same accuracy. The highest possible quality of standard EM506

at 1000 ns/pixel (see Figure 1) is attained by a smart effec-507

tive dwell time of ∼140 ns/pixel. This ∼7.1× speed-up from508

standard to SmartEM is achieved by selecting the percentage509

of re-scanned pixels in each image tile, and letting ERRNET510

determine re-scan locations.511

In Figure S9 we tested the speed-up achieved by SmartEM512

when re-scan rates are fixed in advance and only one pair of513

initial and re-scan dwell times are used for imaging. These con-514

straints allow direct comparison of the initial and re-scan dwell515

times that optimize imaging time. As effective dwell time in-516

creases, the time spent on re-scan also increases – the longest517

dwell time for re-scan, with the equivalent segmentation accu-518

racy as uniform dwell time (at 800 ns), is 1000 ns (initial dwell519

time at 200 ns and effective dwell time at 300 ns). Efficiently520

correcting errors in comparison to standard imaging with slower521

dwell times also requires slower re-scan rates. Maximally slow522

re-scan dwell times can be needed even when producing sub-523

optimal segmentation (i.e. faster than 800-1000 ns of homoge-524

nous dwell time). A re-scan dwell time of 2-3× longer than the525

homogeneous dwell time can yield optimal speed up. As the ef-526

fective dwell time is allowed to exceed 500 ns and come closer527

to the homogeneous dwell time, SmartEM no longer requires a528

specific value for the initial scan dwell time (blue curve in Fig-529

ure S9) which becomes an arbitrary choice while the re-scan530

rate is maximal and only the percentage of re-scan is increased 531

to correct remaining errors. 532

Image acquisition with widely available point-scanning 533

SEM is now a limiting factor in connectomics. This evaluation 534

indicates that the SmartEM pipeline can yield >7× speed up 535

compared to standard image acquisition with a point-scanning 536

SEM without compromising quality and, at standard fast 537

acquisition ( 75ns-200ns), smartEM offers better quality. 538

Imaging mouse cortex with SmartEM 539

Figure 6 shows the outcome of SmartEM. A volume of size 540

60×68×3 µm3 (Figure 6A) and a section size 205×180 µm2
541

was imaged at 4 nm pixel resolution. For volume acquisition, 542

we used an initial dwell time of 75 ns/pixel, re-scan of 800 543

ns/pixel, and re-scan rate of 10% providing an effective dwell 544

time of 545

Effective dwell time = 75+0.1 ·800 = 155 ns/pixel.

With optimal settings, this average dwell time will corre- 546

spond to a standard dwell time of ∼1000 ns. To test the pipeline 547

on larger sections, we acquired a 205×180 µm2 composed 548

of 30×30 individual tiles with the same pixel resolution. For 549

the SmartEM parameters, we used an initial dwell time of 75 550

ns/pixel and a rescan of 600 ns/pixel and a rescan rate of 10% 551

providing an effective dwell time of 552

Effective dwell time = 75+0.1 ·600 = 135 ns/pixel.

As mentioned above, this effective dwell time corresponds 553

to the maximal possible speed up of SmartEM for this dataset, 554

producing images with segmentation quality akin to standard 555

EM at ∼1000 ns/pixel. We depict the segmentation of pipeline 556

outputs in Figure 6B, 6C, 6D using segmentation code that was 557

deployed on the microscope’s support computer using exist- 558

ing tools (Pavarino et al., 2023). This 2-dimensional segmen- 559

tation can be used as input to a 3D-dimensional agglomera- 560

tion algorithm (Karlupia et al., 2023) to produce high quality 561

3-dimensional neuron reconstruction. 562

We also assessed the ability to detect synapses on short 563

dwell time images (from 25 ns to 1000 ns) and applied this 564

detection to the above initial scan of 75 ns/pixel with excellent 565

results that are comparable to slow scan imaging as shown in 566

Figure 6E, 6F, S7. In Figure 6G, 6H we show the ability 567

of SmartEM to detect and exclude regions of no interest, 568

where cytoplasm far from membrane is detected from initial 569

scan, allowing SmartEM to force the skipping of the long 570

dwell time scanning from these regions. In Figure 6I, 6J, S8 571

we demonstrate the ability to translate the fused images to a 572

uniform looking EM tiles with quality akin to long dwell time 573

imaging. 574

Discussion 575

The future and flexibility of SmartEM 576

Data analysis for connectomics is rapidly becoming faster, 577

easier, and cheaper thanks to rapid improvements in machine- 578

learning and the broadening availability of cloud-based tools 579
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Figure 6. Segmentation of a mouse cortex volume using SmartEM. A. Stitched and aligned SmartEM volume of size 60×68×3 µm3. B. Segmentation of SmartEM volume using
FUSEDEM2MB and watershed transform. C. Location of the highlighted region in B with respect to the total volume. D Detailed depiction of segmentation in the boxed region in
B (rotated). E,F. Automatic detection of synapses from short dwell time images. G,H. Automatic detection of regions to be excluded from short dwell time images. I,J. Images
stylized from composite dwell times to appear akin to homogeneous dwell times.
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and computational power. Data acquisition speed is now580

becoming a bottleneck, rate-limited by the availability and581

speed of microscope hardware. High-throughput electron582

microscopes, like the Zeiss multibeam SEM, are not commonly583

available. This SmartEM pipeline – because it is entirely584

implemented in accessory computer hardware – can make585

existing, widely available point-scanning SEMs usable for586

connectomics with modest cost and modification.587

The implementation of the three tools of the SmartEM588

pipeline are designed so they can be altered depending on use589

case from user to user or preparation to preparation.590

Tool 1 allows an SEM to identify error-prone regions in any591

rapidly acquired image, but this concept can be implemented592

with different underlying component algorithms. As described593

above, Tool 1 is built by training the ERRNET neural network594

to detect error-prone regions on the basis of segmentation dif-595

ferences that arise with fast and slow dwell times. Training the596

ERRNET network allows a choice about what segmentation al-597

gorithm to use to train the network. We used our recently devel-598

oped two-dimensional segmentation algorithm (Pavarino et al.,599

2023; Karlupia et al., 2023), but different laboratories will likely600

have their own preferred segmentation algorithms. ERRNET601

can be trained with any reliable segmentation algorithm. Be-602

cause ERRNET is trained before image acquisition, the speed603

or performance of the segmentation algorithm used to train ER-604

RNET has no effect on pipeline performance. Tool 2 allows605

an SEM to perform the slow re-scan of any region within an606

initially rapidly acquired image in real-time during microscope607

operation. This slow scan can be done with any point-scanning608

SEM with electrostatic scan generators that deflect the electron609

beam to any pixel in an image much faster than the fastest dwell610

time per pixel (>25 ns) (Mohammed and Abdullah, 2018; An-611

derson et al., 2013). Electrostatic scan generators are common612

to modern SEM systems built by most manufacturers. Tool 3613

that performs segmentation of multi-dwell time images is used614

off-line after image acquisition. The method that we imple-615

mented to train Fused2MB can be extended to other segmen-616

tation algorithms that work with fixed dwell times. Users could617

adapt their own segmentation algorithms to work with the multi-618

dwell time images that emerge from the SmartEM pipeline.619

Diverse use cases for SmartEM620

The underlying concept of SmartEM with a point-scanning621

SEM can improve the efficiency and accuracy of image acqui-622

sition in any context where it makes sense to adapt the time623

spent on different regions, much like the human eye, which624

rapidly captures most of a visual scene with low-resolution625

(non-foveal) imaging and dwells on selected parts of the visual626

image to remove ambiguity with high-resolution (foveal)627

imaging (Thorpe et al., 1996). Point-scanning SEM is used in628

materials science and manufacturing to assess samples that vary629

in the spatial density of information content. Any application630

where regions of high information content can be predicted (but631

not accurately reconstructed) with an initial rapidly acquired632

image can benefit from immediate re-scan of those regions,633

guided by our SmartEM approach. Imaging approaches that634

take advantage of electron beam sensitive materials, such635

as cryo-EM would benefit from the selective re-scanning of 636

SmartEM. The objects of interest that are sparsely distributed 637

in the specimen, such as a specific mixture of molecules, will 638

be identified from the rapid initial scan and slowly re-scanned. 639

Here, we focused on re-scanning for connectomics to 640

capture information in error-prone regions with respect to 641

neuronal segmentation. But re-scanning could also be used 642

to capture information that is salient in other ways. As 643

we showed, we can also perform re-scanning to selectively 644

capture high-quality images of every chemical synapse in a 645

connectome, thereby providing high-quality morphological 646

reconstructions of salient structures in an image volume in 647

addition to resolving the problem of error-prone regions, while 648

still providing substantial pipeline speedup. SmartEM can be 649

adapted to other applications in cell biology or pathology by 650

recognizing and re-scanning other sparse cellular structures of 651

interest (e.g., mitochondria and other organelles). 652

The SmartEM pipeline can not only be “taught” to capture 653

the most salient features of an image, but can also be used to 654

neglect regions without interest. In most connectomics of larger 655

brains, nearly all objects in the field of view will be neural struc- 656

tures. But in small invertebrates, neural tissue might constitute 657

only a small part of the field of view. The C. elegans nerve 658

ring (brain) is <10% of the total volume of the body, and wraps 659

around the pharynx. Any two-dimensional brain section of the 660

C. elegans nervous system will also include substantial non- 661

neural tissue. To date, connectomic datasets have been acquired 662

by carefully designating the region-of-interest for each image. 663

The SmartEM pipeline may simplify and speed image acquisi- 664

tion by allowing the microscope to spend the time budget for 665

each image section on neurons instead of non-neuronal tissue 666

without needing the user to laboriously specify each region of 667

interest. 668

Adaptability of SmartEM for other microscopes and 669

other applications 670

Tape-based serial-section sample collection, where specimens 671

are stored permanently and can be re-imaged at any time, is 672

suited to SmartEM because any information that is lost dur- 673

ing imaging can be recovered. When specimens are imaged 674

for the purpose of connectomics, the SmartEM pipeline might 675

gloss over features that might eventually be of interest to other 676

scientists for other applications (e.g., cell biology). Because 677

serial-sections stored on tape can be safely archived for years, 678

they can be revisited at any time. 679

Instead of collecting serial sections on tape, one can use 680

block face imaging with serial tissue removal. One block face 681

approach, Focused Ion Beam SEM (FIB-SEM), has distinct ad- 682

vantages over tape-based serial-section sample collection, in- 683

cluding thinner tissue layers (4-8 nm) and better preservation of 684

image alignment (Knott et al., 2008). The principal disadvan- 685

tage of FIB-SEM has been the slow pace of traditional point- 686

scanning SEM with >1000 ns dwell times. This can be prob- 687

lematic when the microscope is used to collect extremely large 688

specimens, and must be continuously operational for days or 689

weeks without technical glitch. However, a FIB-SEM that im- 690

plements the SmartEM pipeline would be able to operate much 691
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faster, increasing the likelihood of capturing an entire specimen692

in single long runs. SmartEM is expected to provide greater693

speed up on block face imaging because the imaging component694

is a larger part of the entire acquisition pipeline compared to695

serial-section SEM. Similar benefits will be obtained with other696

block face imaging approaches such as Serial Block Face SEM697

(SBF-SEM) where a diamond knife slices the specimen (Denk698

and Horstmann, 2004). The downside of block face approaches,699

whether with traditional imaging or the SmartEM pipeline, is700

that each section is destroyed by ablation after being imaged,701

forbidding revisiting the sample to capture any information that702

was inadvertently lost.703

Improvements for SmartEM704

The performance of this software pipeline that runs in real-705

time during microscope operation should improve further as706

machine learning algorithms perform segmentation of rapidly707

acquired images more accurately, a trend that can be expected708

as more imaging is performed to generate training data for neu-709

ral networks and as neural networks themselves improve over710

time. We expect gradual improvement in how rapid the ini-711

tial rapid image acquisition can be, and gradual improvement in712

how many error-prone regions need to be re-scanned. A further713

order-of-magnitude improvement in the SmartEM pipeline may714

make point-scanning SEM systems comparably fast as more ex-715

pensive multibeam systems. We note that current multibeam716

SEM systems cannot be sped up with this SmartEM strategy,717

because their multiple beams are coordinated and cannot be in-718

dependently controlled, a fundamental requirement of this ap-719

proach.720

Summary721

All components needed to implement the SmartEM pipeline722

on the ThermoFisher Verios G4 UC will be provided as723

open source software. The basic conceptual workflow of the724

SmartEM pipeline is adaptable to other microscope platforms.725

Code Availability726

Machine learning software and all models will be made avail-727

able upon publication and are currently available on request.728
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FastEM2MB borders

SlowEM2MB borders Information 
Discrepancy(Net1,Net2)

TRAIN

VI

Figure S1. The discrepancy between segmentation with long dwell time (using
SLOWEM2MB) and short dwell time (using FASTEM2MB) is defined based on VI. VI
is the sum of individual error terms contributed by each object in the two segmented
images. The most variable objects are flagged. Image processing is used to delin-
eate specific borders that appear in only one segmented image. Yellow represents
segmented objects that are uniquely predicted in the long dwell time image. Red rep-
resents segmented objects that are uniquely predicted in the short dwell time image.
A neural network (ERRNET) is trained to predict all red and yellow discrepancies only
using short dwell time images. This is possible because variation occurs where mem-
brane predictors are uncertain and often with typical, at times biologically implausible,
membrane prediction.

Supplemental Information868

Segmenting composite images869

The smart microscope should be able to analyze images870

composed from multiple dwell times (see Figures 1C, 2B, 2C,871

4A, 6A-6D). We tested whether replacing error-prone regions872

in a short dwell time image with regions taken from long dwell873

time images improves segmentation outcomes. Figure S2874

depicts the segmentation outcome of a short dwell time image875

taken at 100 ns/pixel segmented with a dedicated 100 ns876

network FASTEM2MB (S2A,S2E), and by FUSEDEM2MB877

(S2B,S2F). The segmentation quality of these networks are878

similar (top panel; VI=0.025 and VI=0.022). In most scenarios,879

the network trained to deal with fused EM (FUSEDEM2MB)880

produces better results than networks trained to handle a fixed881

dwell time, even if the input to the two networks consists of882

a single homogeneous dwell time. Figures S2C, S2G depict883

the segmentation of an image where the error-prone regions884

were detected by an error detector and replaced with long885

dwell time pixels (2500 ns). The error level is typically and886

substantially cut by ∼ 3-4 ×. The 2500 ns reference image887

and its segmentation are shown in Figures S2D, S2H. All error888

estimates based on VI shown in Figure S2 are presented as the889

sum of the merge error term and split error term.890

Imaging procedure891

The SEM is automated to acquire acquire images of individual892

tiles of every specimen section that are eventually stitched and893

aligned to form a total image volume Figure 4. The microscope894

navigates through multiple specimen sections held on tape and895

defines every specimen region of interest (S-ROI). Each S-ROI896

is captured at high spatial resolution by multi-tile acquisition. 897

To identify the S-ROI and automate stage position and rota- 898

tion control, we used SEM Navigator, a custom interface akin 899

to earlier WaferMapper software (Hayworth et al., 2014). The 900

list of S-ROIs is exported into a text file, which is subsequently 901

processed by the SmartEM pipeline (coded in Python/Matlab) 902

using the Thermo Fisher Scientific Autoscript (Thermo Fisher 903

Scientific, 2018) package. The SmartEM pipeline controls the 904

Verios (Thermo Fisher Scientific, 2020) microscope, moves to 905

S-ROI and individual tile positions, controlling the entire acqui- 906

sition sequence. 907

For all image acquisitions, we used the Verios UHR (Ul- 908

tra High Resolution) imaging mode with 4nm/pixel spatial res- 909

olution and ∼ 4 mm working distance. Image contrast was 910

obtained using a back-scattered electron detector with 2000 V 911

stage bias. The initial short dwell time scan was obtained using 912

the full frame acquisition Autoscript interface. The subsequent 913

long dwell time re-scan utilized the standard interface of Auto- 914

script patterning 915

To optimize image quality and tuning time for both 916

short movements between neighboring tiles and long move- 917

ments neighboring sections, we customized sequences of 918

various autofunctions. These autofunctions included auto- 919

contrast/brightness (ACB), auto-focus (AF), auto-stigmation 920

(AS), auto-focus/stigmation (AFS), and auto-lens (AL) 921

alignment. 922

Because we used different interfaces for the initial short 923

dwell time scan and long dwell time re-scan, an additional 924

alignment procedure was necessary to achieve pixel-resolution 925

precision in the re-scan. The basic system configuration for the 926

re-scan acquisition is described in Potocek (2021). 927

When the re-scan long dwell time was shorter than ∼ 500 928

ns/pixel, an unavoidable artifact due to limited system response 929

of the electron deflection system occurred at the edge of re-scan 930

regions. We excised this artifact by omitting a 1-pixel boundary 931

from every re-scan region. 932

Segmentation quality metric 933

To compare the segmentation quality of different samples we 934

used a variation of information (VI) metric (Meila, 2003). 935

In principle all comparisons that we made in this study can 936

be accomplished with other metrics of segmentation quality 937

as long as they can be applied to 2-dimensional images. We 938

expect the choice of segmentation metric to have little effect 939

as long as any metric assesses similar topological attributes 940

as VI (i.e., whether objects are split or merged). Our im- 941

plementation of the VI running on CPU/GPU is available at 942

https://pypi.org/project/python-voi/. 943

Using VI to build ERRNET. To train the error detectors we 944

needed to locate the specific regions that contribute to the 945

largest segmentation differences between image pairs, which is 946

not provided by the VI metric. VI combines split and merge 947

errors. The two error measures are defined by comparing the 948

entropy of three segmented images (Meila, 2003), S1 ∈ LN
1 , 949

S2 ∈ LN
2 and S1 × S2 ∈ LN

1 × LN
2 for two N -pixel labeling 950

(instance segmentation) S1 and S2 that needs to be compared, 951

where the Ls represents the sets of pixel labels. The segmented 952
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Figure S2. Composite EM images fusing short and a long dwell time regions are better segmented compared to short dwell time images. We tested whether replacing error-prone
regions harms the ability to segment. Composite images tend to be segmented with dramatically higher accuracy.

image S1 × S2 is labeled by concatenating the labels from S1953

and S2 for each pixel. The VI is then the sum of two error954

terms VImerge and VIsplit955

VImerge = H(S1 ×S2)−H(S1),
VIsplit = H(S1 ×S2)−H(S2), (1)

VI = VImerge + VIsplit.

Due to the additivity of the entropy measure (Meila, 2003),956

VImerge and VIsplit can be broken into individual constituents,957

representing the amount of error contributed by each individ-958

ual label in each segmentation. We could thus rank objects in959

each segmentation according to the amount of variation they960

contribute to overall VI (Figures S5). The error contributed by961

the set of pixels that are both in segment s1 ∈ S1 and s2 ∈ S2962

(i.e. the error contributed by a segment in S1×S2) is963

W (s1 ∩s2)−W (s1)

and964

W (s1 ∩s2)−W (s2),

for the split and merge errors, respectively, where W (A) =965

− |A|
N · log |A|

N , |A| is the number of pixels in A and N is the966

number of pixels in the image.967

Once the significantly incompatible objects are detected in968

each segmentation, we used image processing to delineate the969

borders that are responsible for the topological differences be-970

tween the two segmented images (Figure S1). We then pro-971

duced binary masks from these errors and trained neural net-972

works (ERRNET) to detect them directly from membrane prob- 973

ability maps, themselves produced by another neural network 974

(FASTEM2MB). Detecting borders allows our technique to dis- 975

regard small “cosmetic” variations between two segmentations 976

that do not cause meaningful topological differences. 977

Determination of maximal segmentation quality. We developed 978

an unbiased estimate for the minimal dwell needed for 2D seg- 979

mentation. We compared segmentations from N images for 980

each pair of dwell times d1 < d2 and an overly slow dwell 981

time dref. We asked whether the VI of the d2 images was sig- 982

nificantly smaller (p <0.05) than d1 images compared to dref 983

images. When two dwell times were not sufficiently different, 984

we call these dwell times equivalent. We defined the minimum 985

dwell time with near maximal segmentation ability as that dwell 986

time beyond which VI does not improve. 987

Forcing fast scan imaging of desired regions 988

The acceleration of SmartEM depends on the quantity of 989

re-scanned pixels. Since the re-scanning mask is learned rather 990

than calculated through a fixed process, regions irrelevant to 991

the connectomics task may contain error-prone regions and 992

appear in the re-scan map, potentially reducing speedup. To 993

exclude irrelevant regions from slow re-scan, we built another 994

neural network module (MUSTEXCLUDE) to calculate what 995

regions should be excluded from any re-scan, even if they 996

might be flagged as error-prone by ERRNET. Developing a 997

separate MUSTEXCLUDE module (rather than adding this 998

capability to ERRNET) conferred additional flexibility to the 999

SmartEM pipeline by allowing us to adaptively choose what 1000

regions should be excluded from re-scan without retraining 1001

ERRNET. Bypassing irrelevant pixels (e.g., cell nuclei, blood 1002
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vessels) during re-scan boosts efficiency by conserving time1003

and computational resources.1004

Here, we implement MUSTEXCLUDE to exclude regions1005

that are sufficiently far from any cellular membranes. To do1006

this, we utilize the Euclidean distance transform on input binary1007

membranes. This transform calculates the shortest Euclidean1008

distance from each zero pixel (background) to any non-zero1009

(foreground) pixel in the image. To train MUSTEXCLUDE,1010

we binarize the distance transform with a fixed threshold (Fig-1011

ure S13). The features of irrelevant regions we learned as a1012

semantic segmentation task using paired EM images and their1013

binary masks (see Neural network models). The SmartEM1014

pipeline applies MUSTEXCLUDE in real-time on short dwell1015

time images and precludes re-scanning irrelevant regions that1016

might have been predicted by ERRNET. To assess the perfor-1017

mance of different modules in the SmartEM pipeline, we ex-1018

clude MUSTEXCLUDE from speedup tests shown in Figure 5.1019

For the cytoplasm exclusion described above, the average ex-1020

clusion proportion is about 23% as shown in Figure S13. The1021

speedup tests shown in Figure 5 would improve with the imple-1022

mentation of MUSTEXCLUDE.1023

Identifying additional high-interest regions for slow re-1024

scan1025

ERRNET identifies regions susceptible to segmentation errors1026

and re-scans them at a higher quality to improve segmentation1027

accuracy. The same strategy can be re-formulated, not only1028

to identify error-prone regions, but to identify additional1029

image-specific regions of special interest, such as synapses or1030

any sub-cellular component of biological interest. Here, we1031

built an additional neural network module (MUSTINCLUDE)1032

to re-scan regions identified as synapses, because of their1033

high relevance to connectomics. Mouse cortex typically1034

contains ∼1-1.5 synapses per µm3 (Kasthuri et al., 2015), or1035

∼2-3 synapses per field of view when image tiles are ∼8×81036

µm2. Because of synapse sparsity, the re-scan time does not1037

substantially increase. We trained MUSTINCLUDE with a set1038

of manually-annotated long dwell time SEM images.1039

To train MUSTINCLUDE, we first trained a neural net-1040

work to detect synapses using manual annotations of long1041

dwell time images (SYNAPSENET). The high performance1042

of SYNAPSENET is shown in Figure S7. We paired short1043

dwell time images with the binary masks for synapse locations1044

predicted by SYNAPSENET (which had used long dwell time1045

images to make the predictions). This procedure created ground1046

truth to train MUSTINCLUDE. A snapshot of the synapse1047

detection and re-scan mask generation pipeline is shown in1048

Figure S11. The hyper-parameters and training details of1049

MUSTINCLUDE are similar to MUSTEXCLUDE.1050

Optional image homogenization1051

The SmartEM pipeline produces composite image with pixels1052

acquired at different dwell times. A human observer will note1053

contrast differences at interfaces between pixels with different1054

dwell times. To increase human image interpretability, we built1055

an image translator component that homogenizes SmartEM im-1056

ages to look like standard EM images with uniform dwell times.1057

Generator

G G

D

Translated

EM

Slow/Translated?

L1 Loss

Discriminator

Slow

EM

Fused

EM

Adversarial Loss

Figure S3. Image Translation Model. G: generator . D: discriminator. The generator
takes a composite EM as input and produces a translated EM that looks similar to slow
EM. The discriminator takes both composite EM and translated EM (or slow EM) as
input and aims to distinguish translated from slow.

Figure S8 shows a specific example, a fused EM image that is 1058

a mosaic of sub-images with different dwell times. To mitigate 1059

dwell time contrasts and produce a visually coherent image, we 1060

applied a conditional generative adversarial network (IMAGE- 1061

HOMOGENIZER, cGANs) (Mirza and Osindero, 2014). Pre- 1062

vious studies used deep learning to improve the quality of mi- 1063

croscopy images (Fang et al., 2021; Wang et al., 2019; Weigert 1064

et al., 2018; Mi et al., 2021), de-noise EM images (Minnen 1065

et al., 2021), and perform image reconstruction across different 1066

modalities (Li et al., 2023). IMAGEHOMOGENIZER contains 1067

two convolutional neural networks (CNN): a generator and a 1068

discriminator (Isola et al., 2016). Training data are a composite 1069

image and a uniformly long dwell time image, where the com- 1070

posite image is generated by randomly combining pixels from 1071

short dwell time and long dwell time images in different propor- 1072

tions (Figures 6B,6C,6D where the composite images consist 1073

of 75 ns and 600 ns pixel dwell times). As shown in Figure S3, 1074

during the training process, the generator translates the sim- 1075

ulated composite images to resemble long dwell time images, 1076

and the discriminator attempts to distinguish the translated im- 1077

ages from real long dwell time images. The training process 1078

utilizes L1 loss and adversarial loss. After image homogeniza- 1079

tion by the generator, the fused EM images are more suitable 1080

for human inspection and retain the visual details of fine ultra- 1081

structure Figure S8. 1082

Neural network architectures 1083

For all neural network models, we strove for simple archi- 1084

tectures that would allow straightforward reproducibility of 1085

results. A U-Net like architecture (Ronneberger et al., 2015) 1086

was used to train membrane detection of homogeneous dwell 1087

time EMs (SLOWEM2MB, FASTEM2MB), any dwell-time 1088

EM (EM2MB), and composite EM where each image fuses 1089

more than one dwell time (FUSEDEM2MB). We found that 1090

FUSEDEM2MB, once trained, could be used for all membrane 1091

prediction tasks without compromising quality. The same U-net 1092

architecture was also used to train ERRNET, SYNAPSENET, 1093

MUSTINCLUDE, and MUSTEXCLUDE. We tried the U-net 1094

architecture for image homogenization, but achieved better 1095

results with conditional GANs. 1096

Architecture for FUSEDEM2MB and ERRNET. The selected 1097

architecture, similar to the UNET(Ronneberger et al., 2015), 1098

shown in Figure S14 has 3 sets of 2D-Convolution, Batch- 1099

Normalization(Ioffe and Szegedy, 2015), ReLU in each layer. 1100

We use residual connections(He et al., 2016) adding the output 1101
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of the first convolution to the last one in each layer. This1102

architecture showed the highest segmentation accuracy when1103

varying the number of CBR (Conv-BatchNorm-ReLU) in each1104

layer (2∼4), the usage of residual connections, and the type of1105

residual connections (concatenation or addition).1106

U-Net architecture for MUSTEXCLUDE. We trained a fully con-1107

volutional UNET model over 200 epochs, employing a learning1108

rate of 0.01. The model was configured with five layers of depth1109

and filter sizes progressively sequenced as 32, 64, 128, 256, and1110

512. To introduce non-linearity and manage potential negative1111

inputs, we incorporated a leakyReLU activation function.1112

Image Normalization and Augmentation. To train the FUSE-1113

DEM2MB network, we used the CLAHE (Pizer et al., 1990)1114

normalization with clipLimit=3 to bring all images to a com-1115

mon color space. We used on the fly rotation, flip, translation1116

to augment the images in the training set. Although images1117

are naturally 2048×2048, we sub-sampled 256×256 squares1118

to train the network. To allow the network to deal with images1119

with multiple dwell times, we randomly replace patches at1120

random locations with different dwell times. Specifically, each1121

sample was generated by choosing a baseline image at a single1122

dwell time and replacing up to 30 patches with a maximum1123

size of 11×11 pixels with the corresponding pixels of an image1124

with longer dwell time.1125

To train ERRNET, we normalized membrane probabilities1126

to [0,1] as an input to the network. We used the same procedure1127

for on the fly translation and rotation but did not replace patches.1128

Training Procedure. We used the Pytorch framework (Paszke1129

et al., 2019) to implement and optimize the network. The Adam1130

optimizer (Kingma and Ba, 2014) with learning rate 0.001 was1131

used to update the network parameters. We used a batch size of1132

16 images. We trained the FUSEDEM2MB network for 500001133

gradient steps. We evaluated validation loss every 1000 steps1134

over 100 batches. The network converged after ∼35000 gra-1135

dient steps. The same procedure was used to train ERRNET.1136

ERRNET converged after ∼8000 gradient steps.1137

Image Translation Networks. IMAGEHOMOGENIZER uses a1138

conditional GAN called pix2pix (Isola et al., 2016), consisting1139

of a generator CNN and discriminator CNN. The generator in-1140

cludes an encoder and decoder that downsamples and then up-1141

samples the input image. The discriminator tries to discriminate1142

between slow EM and translated EM. At the training stage, we1143

use a batch size of 1 and randomly crop 128 × 128 image tiles1144

from a larger composite EM image. The model is first trained1145

with a constant learning rate of 0.0002 for 100 epochs and then1146

for another 100 epochs, during which the learning rate decays1147

to zero. At the inference stage, the whole composite EM image1148

is passed to the model without cropping.1149

Image stitching and alignment1150

The stitching and alignment of the sample volume was per-1151

formed on composite dwell time images. After applying a band-1152

pass filter to raw images, we used conventional block matching1153

technique (Saalfeld et al., 2012) to obtain matching points be-1154

tween neighboring images, from which elastic transformations1155

Figure S4. Dwell-time re-scan data augmentation. Rows 1-5 show different locations
in the EM sample. Columns 1-4 show different augmented composite images that
were taken at different dwell times; short dwell time pixels in blue, representing 25 ns
scans; long dwell time pixels in red, representing 1200 ns pixels. Column 5 shows
the groundtruth classes for each region that were obtained from the long dwell time
neural network (SLOW2EM). The aim of FUSEDEM2MB is to classify membrane pixels.
Additional augmentations such as translation, rotation, and flip are used during training.

mapping the raw data to the aligned volume were computed by 1156

mesh relaxation. Code for stitching and alignment is available 1157

at Stitching and alignment code. We applied the same stitch- 1158

ing and alignment transformations to the fast, composite, and 1159

homogenized images to produce three sets of final volumes. 1160

Statistical tests 1161

All statistical tests were done using the Wilcoxon signed-rank 1162

test for paired samples. The test was used to assess the cases 1163

where two dwell times produce similar segmentation quality by 1164

comparing the variation of information of individual samples to 1165

a single reference taken at a longer dwell time. 1166
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A

B

C

Figure S5. Ranking objects of two segmented images based on contribution to variation of information. A. Segmentation of long dwell time image at 1000 ns. B. Segmentation
of short dwell time image at ∼ 100 ns overlaid on 1000 ns EM. Some large errors are indicated with red arrows. C. Objects that vary between the two segmented images. Red
heatmap indicates contribution to variation of information (Meila, 2003) where variable objects come from either of the two segmented images. The largest variation is captured by
the three objects indicated by red arrows.
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Figure S6. Data-aware imaging of synapses at long dwell time. SmartEM takes a short dwell time image (50 ns/pixel), predicts locations that contain synapses, and re-scans these
regions at long dwell time (1200 ns/pixel). The blue overlay presents synapse predictions by MUSTINCLUDE. Yellow outlines represent locations for re-scan based on dilation of
MUSTINCLUDE predictions.
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Figure S7. Synapse detection in ultrafast (25 ns), fast (75 ns) and slow (800 ns) dwell time. SYNAPSENET works at multiple dwell times.
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Figure S8. Examples of image homogenization by IMAGEHOMOGENIZER. Left column: composite EM with two dwell times (75 ns/pixel and 600 ns/pixel). Middle column:
homogenized EM from composite EM, exhibiting similar visual coherence compared to slow EM. Right column: slow EM (600 ns/pixel). Red arrows indicate the locations with
slow dwell time of 600 ns/pixel in composite EM.
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Figure S9. Globally fixed SmartEM parameters and their respective speedup compared to traditional EM.
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Figure S10. A. The process of generating the MUSTEXCLUDE ground truth. B. The paired Fast EM and the MUSTEXCLUDE mask generated are used to train the network which
is deployed to generate the portions of EM to exclude in real time.
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Figure S11. Synapse detection and rescan mask generation pipeline
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Figure S12. A cubical 3 µm portion of an aligned smart EM output from 94 serial
sections.
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Figure S13. Percentage of EM that can be excluded in a 60×68×3µm3 section. On
average, around 23% of the volume can be excluded from rescanning.
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Figure S14. CNN architecture used for the FUSEDEM2MB and ERRNET. The architecture is similar to U-Net (Ronneberger et al., 2015), but has 3 layers of (Convolution, Batch–
Normalization, ReLU) in each layer and has additional residual connections (He et al. (2016)). The architecture is fully convolutional and for both FUSEDEM2MB and ERRNET the
input dimension is 1, respectively for the grayscale image and the membrane probability. In both cases the output dimension is 2, respectively for 0:not-membrane,1:membrane
and 0:no-error,1:error
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