
Supplemental Material for
SparseLeap: Efficient Empty Space Skipping

for Large-Scale Volume Rendering
Markus Hadwiger, Ali K. Al-Awami, Johanna Beyer, Marco Agus, and Hanspeter Pfister

1 PSEUDOCODE

In this supplementary material, we give detailed pseudocode for the
main algorithms in SparseLeap. We list the algorithms in chronologi-
cal order as they are being called, including the occupancy histogram
tree management, ray segment list generation, and ray-casting.

1.1 Occupancy Histogram Tree
The occupancy histogram tree comprises a spatial subdivision of the
volume, i.e., each tree node corresponds to a specific region of space.
Our occupancy histogram tree is implemented as an octree, i.e., the
spatial region corresponding to each node is an axis-aligned box.

1.1.1 Occupancy Histogram Propagation
Occupancy histograms are computed by propagating the occupancy
class information of leaf nodes up the tree (see Alg. 1).

1 function PropagateOccupancyHistograms(nodeType node, nodeClass
parentClass)

2
3 node.classCount[NON_EMPTY, EMPTY, UNKNOWN] = 0;
4 for all child nodes n
5 PropagateOccupancyHistograms(node.children[n]);
6 node.classCount[NON_EMPTY, EMPTY, UNKNOWN] +=
7 node.children[n].classCount[NON_EMPTY, EMPTY, UNKNOWN];
8
9 node.class = majority vote of NON_EMPTY, EMPTY, UNKNOWN;

Alg. 1. Propagation of occupancy histograms is done recursively (depth
first, post-order), pulling the node classes from the leaves up the tree.

1.1.2 Occupancy Geometry Generation
For a given occupancy histogram tree, the corresponding view-
independent occupancy geometry is computed by traversing the tree,
determining for each node whether its bounding box should be emit-
ted. The occupancy histogram tree is traversed in breadth first order,
visiting child nodes in a fixed order (not in visibility order). The result-
ing occupancy geometry therefore always stores larger boxes (coarser
tree levels) before smaller boxes (finer tree levels). See Alg. 2.

1.1.3 Occupancy Geometry Visibility-Ordering
The occupancy geometry is view-independent. However, the raster za-
tion of ray segment lists needs to be performed in visibility order with
respect to the current view point. Therefore, whenever the view point
changes, we compute a visibility-sorted index array that references
the already generated occupancy geometry. We traverse the occupancy
histogram tree in depth first order, visiting child nodes in front-to-back

• Markus Hadwiger, Ali K. Al-Awami, and Marco Agus are with King
Abdullah University of Science and Technology (KAUST), Thuwal,
23955-6900, Saudi Arabia. E-mail: {markus.hadwiger, ali.awami,
marco.agus}@kaust.edu.sa.

• Johanna Beyer and Hanspeter Pfister are with the John A. Paulson School
of Engineering and Applied Sciences at Harvard University, Cambridge,
MA, USA. E-mail: {jbeyer, pfister}@seas.harvard.edu.

1 function TraversalOccupancyGeometryGeneration(nodeType root)
2
3 nodeQueue queue;
4 queue.push(root, parent=INVALID);
5
6 while (!queue.isEmpty())
7
8 nodeType node = queue.popNode();
9 if (node.class != node.parent.class)

10 EmitOccupancyGeometryAndOccupancyClass(node,
node.parent);

11
12 for all child nodes n
13 queue.push(node.children[n], node);

Alg. 2. Occupancy geometry generation. Breadth-first extraction of boun-
ding box geometries whenever a node’s class is different from its pa-
rent’s class. We emit the geometry, the class, the parent’s class.

visibility order. In contrast to a standard tree traversal in visibility or-
der, we do not only emit indexes for leaf nodes, but for all non-leaf
nodes as well. See Alg. 3.

1 function TraversalIndexOrder(nodeType node)
2
3 if (node.isLeaf())
4 if (node.class != node.parent.class)
5 EmitOccupancyGeometryIndex(node, FRONT_FACE);
6 EmitOccupancyGeometryIndex(node, BACK_FACE);
7 else
8 if (node.class != node.parent.class)
9 EmitOccupancyGeometryIndex(node, FRONT_FACE);

10
11 int octant = ComputeViewpointOctant(node);
12 for all child nodes n
13 int vis_n = visibilityOrderOctantIndexPermutation[octant][n];
14 TraversalIndexOrder(node.children[vis_n]);
15
16 if (node.class != node.parent.class)
17 EmitOccupancyGeometryIndex(node, BACK_FACE);

Alg. 3. Occupancy geometry ordering. Depth-first extraction of bounding
box indexes in visibility order. Each index is emitted twice: First in pre-
order (before the child nodes), flagged for front face rasterization. Then
again in post-order (after the child nodes), for back face rasterization.
Leaf nodes also need to emit their index twice (front, and back).

1.2 Ray Segment List Generation
For each new view, the occupancy geometry is rasterized into per-pixel
linked lists that store a sequence of successive segments (1D intervals)
for each ray, the so-called ray segment list.

Given the occupancy geometry and the computed visibility order,
we can now rasterize this geometry to create the ray segment lists.
The occupancy geometry array is rasterized in a single rendering pass.
For each fragment that is generated during rasterization, the fragment
shader that is illustrated in Alg. 4 is invoked. The more detailed pseudo
code for merging/deleting events on the fly is given by Alg. 5.

1.3 Ray-casting
Actual volume rendering is performed via ray-casting. Instead of di-
rectly iterating over samples, an additional outer loop iterates linearly

1 function RaySegmentListGenerationFragShader(fragmentType frag)
2
3 raySegList segList = GetRaySegmentList(frag.x, frag.y);
4
5 boundingBoxType boundingBox = frag.boundingBox;
6 flagType flagFrontBack = boundingBox.flagFrontBack;
7
8 if (frag.isFrontFacing()) // is fragment from front or back face?

9 if (flagFrontBack == FRONT_FACE) // do we want the front face?

10 AddRayEvent(frag.depth, EVT_ENTRY, boundingBox.class);
11 else
12 if (flagFrontBack == BACK_FACE) // do we want the back face?

13 AddRayEvent(frag.depth, EVT_EXIT, boundingBox.parent.class);

Alg. 4. Ray segment list generation is performed by rasterizing the
occupancy geometry into a linked list of ray events for each pixel. The
type of event being added in the fragment shader depends on whether
the fragment comes from a front face or from a back face, and whether
the bounding box is flagged for front face or for back face rasterization.

1 raySegList segList;
2 function MergeRayEvents(float depth, eventType type, nodeClass class)
3
4 rayEventType eventPrev = segList.getPrevEvent();
5 rayEventType eventPrevPrev = segList.getPrevPrevEvent();
6
7 if (isEqual(eventPrev.depth, depth))
8
9 if (eventPrev.eventType == type) // 2x ENTRY or 2x EXIT

10 segList.overwritePrevEvent(depth, class, type); // keep last only

11 else if (type == EVT_EXIT) // ENTRY, EXIT

12 segList.deletePrevEvent(); // remove the coinciding pair

13 else if (eventPrevPrev.class == class) // EXIT, ENTRY

14 segList.deletePrevEvent(); // merge the two same-occupancy segments
15
16 if (isClose(eventPrev.depth, depth) && eventPrev.class == EMPTY)
17
18 if (class == NON_EMPTY)
19 if (eventPrev.eventType == type) // start non-empty earlier

20 segList.overwritePrevEvent(eventPrev.depth, type, class);
21 else
22 segList.deletePrevEvent(); // remove small empty gap
23
24 else if (class == UNKNOWN) // start previous segment later

25 segList.overwritePrevEvent(depth, type, class);
26
27 function AddRayEvent(float depth, eventType type, nodeClass class)
28
29 MergeRayEvents(depth, type, class);
30
31 if (no merging or deletion done)
32 segList.appendEvent(depth, type, class); // default

Alg. 5. Ray event creation and merging/deletion. Before a ray event is
added, it is checked for possible on-the-fly merging and deletion of
events to reduce the overall depth complexity.

1 function RayTraversalForImagePixel(int x, int y)
2
3 raySegList segList = GetRaySegmentList(x, y);
4
5 rayEventType eventSegBegin = GetNextRayEvent(segList);
6 while (!segList.empty())
7
8 rayEventType eventSegEnd = GetNextRayEvent(segList);
9 if (eventSegBegin.class != EMPTY)

10
11 SampleRaySegment(eventSegBegin, eventSegEnd);
12
13 if (rayEventSegBegin.class == UNKNOWN)
14 ReportCullCacheMiss(eventSegBegin);
15
16 eventSegBegin = eventSegEnd;

Alg. 6. Ray-casting. The outer loop iterates from ray segment to ray
segment (each segment is bounded by two ray events). Segments that
are non-empty or unknown are densely sampled. The latter additionally
generate occupancy misses. Empty segments are simply skipped.

from ray segment to ray segment. Empty segments are skipped over,
and non-empty, as well as unknown, segments are sampled as in stan-
dard ray-casting. Unknown segments will additionally generate occu-
pancy misses in order to enable output-sensitive culling. See Alg. 6.

	Pseudocode
	Occupancy Histogram Tree
	Occupancy Histogram Propagation
	Occupancy Geometry Generation
	Occupancy Geometry Visibility-Ordering

	Ray Segment List Generation
	Ray-casting

