
SSECRETT and NeuroTrace: Interactive Visualization and
Analysis Tools for Large-Scale Neuroscience Datasets

Won-Ki Jeong, Johanna Beyer, Markus Hadwiger, Rusty Blue,
Charles Law, Amelio Vazquez, Clay Reid, Jeff Lichtman, Hanspeter Pfister

Abstract—Recent advances in optical and electron microscopy allow scientists to acquire extremely high-resolution images for neu-
roscience research. Datasets imaged with modern electron microscopes can range between tens of terabytes to about one petabyte
in size. These large data sizes and the high complexity of the underlying neural structures make it very challenging to handle the
data at reasonably interactive rates. To provide neuroscientists flexible and interactive tools for their scientific work we introduce SSE-
CRETT and NeuroTrace, two systems that were designed for interactive exploration and analysis of large-scale optical and electron
microscope images to reconstruct complex neural circuits of the mammalian nervous system.

Index Terms—Neuroscience, connectome, segmentation, volume rendering, implicit surface rendering, graphics hardware.

1 INTRODUCTION

Understanding the function of the human brain is one of the most
challenging research areas in science due to the extremely complex
underlying structures. For example, an adult human brain has more
than 100 billion neurons and 250 trillion neural connections. In ad-
dition, the size of neuronal cells can be extremely small, such as thin
dendritic spines of 50 nanometers in diameter or synaptic clefts of 20
nanometers in size. Connectomics [11] is a field of research to de-
velop methods, from data acquisition to analysis, to reconstruct such
complex and detailed neural connection maps of a nervous system. In
connectomics research, high-resolution imaging plays a central role in
order to identify and resolve nanometer-scale neuronal cells. Optical
and electron microscopes are the imaging techniques commonly used
to acquire high-resolution images in neuroscience. A typical optical
microscope can attain resolutions of 200 nanometers per pixel, while
a modern electron microscope (EM) can attain resolutions of up to
three to five nanometers per pixel.

Although high-resolution imaging has opened the door to the re-
construction of detailed neural connections, this new technology also
poses challenging problems in handling and processing large-scale
datasets that are not well addressed with existing methods. For ex-
ample, with a resolution of five nanometers in the x-y plane and 30
nanometers of slice thickness, the EM scan of a tiny tissue sample of
1 mm3 of brain tissue is about one petabyte of raw data. One immedi-
ate problem is how to store and retrieve such huge datasets efficiently.
Automated scanning devices, such as the ATLUM developed at Har-
vard University, can produce raw image data at a rate of about 11 giga-
bytes per second. The data storage should be able to provide a reliable
mechanism to store streams of raw data and to allow the access of the
data in arbitrary location with a minimal latency.

Another challenging problem is how to process and manipulate
such large datasets to extract scientifically meaningful information in

• Won-Ki Jeong, Amelio Vazquez, and Hanspeter Pfister are with the School
of Engineering and Applied Sciences at Harvard University, E-mail:
{wkjeong, amelio, pfister}@seas.harvard.edu.

• Johanna Beyer is with the VRVis Research Center, Vienna, Austria,
E-mail: johanna.beyer@vrvis.at.

• Markus Hadwiger is with King Abdullah University of Science and
Technology (KAUST), E-mail: markus.hadwiger@kaust.edu.sa.

• Rusty Blue and Charles Law are with Kitware, Inc.,
E-mail:{charles.law,rusty.blue}@kitware.com

• Clay Reid and Jeff Lichtman are with the Center for Brain Science at
Harvard University, E-mail: jeff@mcb.harvard.edu,
clay reid@hms.harvard.edu

a more compact form with reasonable processing time. This data pro-
cessing includes image filtering, segmentation, and visualization. In
particular, processing large-scale EM datasets poses a very challeng-
ing problem because many existing techniques that work well on rel-
atively low-resolution data modalities, such as CT and MRI, just will
not work on high-resolution datasets. For example, existing vascular
segmentation techniques work reasonably well for axon segmentation
on optical microscopy images, but they may not be directly applica-
ble to feature-rich, high-resolution EM images. Similarly, many de-
formable image registration methods developed for CT and MRI may
not work well on large stacks of optical or EM data alignment.

In the past, only little attention has been paid to tackling large scale
biomedical image processing problems. Many well-known image pro-
cessing tools and libraries are not capable of handling extremely large
datasets at interactive rates. Most existing tools and algorithms require
the entire input data to fit into the main memory for processing. In ad-
dition, the current common practice for segmentation in optical and
electron microscopy is a time-consuming and laborious manual pro-
cess. This manual process becomes a major bottleneck in the entire
workflow as data sizes increase.

Therefore, to cope with ever increasing data sizes and to provide
users with more flexible and interactive workflows for neuroscience
research, we have developed two software tools, SSECRETT (Serial
SECtion REconstruction and Tracing Tool) and NeuroTrace [3]. SSE-
CRETT is a 2D slice-based volume exploration and manual axon trac-
ing tool for extremely large-scale neuroscience datasets. It is based
on a client-server architecture where the dataset resides on the server
side and the client can request an arbitrary 2D cross-section view of
the dataset using a socket connection. Our simple solution follows
the standard multi-resolution approach of dynamically loading data on
demand. Since only a small amount of data can be viewed at any one
time, we only load data as it is needed.

On the other hand, NeuroTrace specifically focuses on interac-
tive segmentation and high-quality 3D visualization of high-resolution
electron microscope datasets. The system combines local 2D level
set segmentation with 3D tracking to extract the 3D tubular structure
of neural processes without the burden of processing the entire input
dataset. Our visualization method is based on an on-demand local
image filtering and adaptive volume rendering technique to achieve
interactive performance. NeuroTrace employs an out-of-core multi-
resolution octree data structure for large-scale volume rendering and
a batch processing framework for off-line segmentation of multiple
neural processes. We also utilize the massively parallel processing
capability of modern graphics processing units (GPUs) to accelerate
many time-consuming and computationally demanding tasks.

The proposed two separate tools, SSECRETT and NeuroTrace, fit
nicely into the unified, semi-automatic neural process segmentation

and visualization workflow. SSECRETT provides an intuitive and in-
teractive method for fast inspection of large input data without requir-
ing high computing power on the client side. This is the first stage of
the workflow for the user to find the region of interest quickly with
minimal user time and effort. Once the region of interest has been
selected, NeuroTrace can extract the detailed 3D geometry of neural
process and visualize it using high-quality 3D rendering techniques.

2 PREVIOUS WORK

The most widely used neural image processing tool is Recon-
struct [1]. This tool has a simple 2D slice viewer with basic
paintbrush editing functions to manually draw boundaries of neu-
ronal cells in both optical and electron microscope images. Lu
et al. [7] extend Reconstruct with a region-growing segmenta-
tion method for semi-automatic segmentation. Some other open-
source and commercial software packages, such as the NeuronJ
plug-in for ImageJ (http://rsbweb.nih.gov/ij/), Imaris from Bitplane
(http://www.bitplane.com/) and Amira (http://www.amiravis.com/)
provide automatic segmentation and tracking functions. However,
none of them has the ability to handle arbitrary large data size with
complex 3D neural structures and to support data retrieval over the net-
work as SSECRETT does. Unlike optical microscopy, only a handful
of research efforts have been made for processing electron microscope
images. Jurrus et al. [4] and Macke et al. [8] proposed automated slice-
to-slice segmentation algorithms using deformable models on electron
microscope images. However, they did not discuss the scalability of
their methods to large-scale datasets, and their methods are only ap-
plicable to a certain type of electron microscope images such as serial
block-face scanning electron microscopy (SBFSEM).

Traditional work in scalable volume visualization and processing
has focused mainly on multi-resolution approaches and parallel vol-
ume rendering on clusters. LaMar et al. [6] were one of the first to in-
troduce a hierarchical (octree) bricking scheme for GPU-based volume
rendering. Recently, Gobetti et al. [2] introduced single-pass octree
raycasting on the GPU. At each frame they encode a compact octree
indexing structure into a small texture, and perform stackless octree
ray-casting. Müller et al. [10] introduced a GPU-based cluster system
for volume rendering of large data. The system employs a sort-last
rendering scheme, where the volume is first subdivided into a kd-tree
and distributed to the cluster nodes, which perform GPU-based ray-
casting on the individual bricks. However, most previous approaches
only try to deal with data in the gigabyte range, which is several orders
of magnitude lower than our data requirements.

3 SSECRETT
As data grows to petabyte sizes, it becomes difficult or impossible to
copy or move the data in its entirety. In order to facilitate sharing of
data, we developed SSECRETT as a client-server system so clients
can access data remotely through a socket connection. Our prototype
system is quite flexible and supports distributed connectome databases
and peer to peer data sharing. The connectome volumes can be lo-
cated on the computer that gives the most convenient access and best
network performance. Links can be shared and viewed without ever
needing to know where the data actually resides.

3.1 Preprocessing/Dicing
One of the main challenges in handling large datasets is to format the
input volume so that any part or resolution is quickly and easily ac-
cessible. The volumes are initially stored as a series of large TIFF
images. This format is disadvantageous because it is hard to extract an
arbitrary sub region from a TIFF file, and neighboring pixels along the
z axis are in different files. Also, producing a high-level zoomed out
view requires loading almost all the data.

Therefore, in a preprocessing stage we call dicing, the input vol-
ume is transformed into small three-dimensional blocks. The blocks
are recursively sub-sampled and combined to create a hierarchy of res-
olutions. The structure guarantees that only a small fraction of blocks
need to be loaded for any view, high magnification or low. Another
advantage of having low resolution blocks available is for progressive

updates; low resolution blocks have very fast access and are loaded
first. If there is any wait to load high-resolution blocks, SSECRETT
will first render a low-resolution image to keep the application respon-
sive.

Our current implementation of dicing is still very time-consuming
and I/O bound. For example, it takes about four hours to dice an eight
gigabyte raw file. Most of this time is expended reading the images,
compressing blocks, and writing files. This time can be reduced, and
the algorithm can run in parallel with a distributed file system, but dic-
ing a large volume will still require a significant amount of time. In
order to interactively view new stacks, we extended the prototype to si-
multaneously view multiple volumes at once. A subset of the volume
(a stack of images from just scanned slices) can be relatively small,
can be diced quickly, and once diced can be visualized as a part of the
larger, already processed, volume. This feature has the added advan-
tage that a new stack can be positioned and warped independently, so
alignment and stitching can be integrated with the SSECRETT system.

3.2 SSECRETT Server
The SSECRETT server was written in C++ and makes extensive use
of the Visualization Toolkit (vtk). Its vocabulary, requests from the
client that it recognizes as well as its responses to the client, currently
consists of less than 40 messages. Examples of these include mes-
sages such as LOAD FILE (ask the server to load the indicated file),
REQUEST (a specific image request), and IMAGE (response from the
server to the client indicating the requested image follows). The server
can run on Unix/Linux, Mac, or Windows systems.

The current SSECRETT system is designed to support many simul-
taneous users. It does this by starting a dedicated server for each user.
This is the most stable approach but is not the most memory efficient.
If multiple users are viewing the same volume, each server will load
its own copy of the data. Fortunately, the architecture does not pre-
clude more memory efficient options. A single server can very easily
be extended to connect to multiple clients. Another option that takes
advantage of modern multi-core processors is to have multiple servers
share a single cache that uses system shared memory. Either of these
approaches would be useful for collaboration between multiple remote
users viewing and discussing the same volume.

The server can be run locally (automatically started up when the
client is started up), or remotely, as discussed above. At Harvard,
we typically have a server launcher running on several different plat-
forms (with access to different diced datasets), waiting for a client to
connect and request a server on that machine. The server launcher
acknowledges the client’s request (confirming the request has been re-
ceived), starts a server process, confirms the server is running, and
finally passes the connection info to the client. The client can then
connect directly to the server to request a dataset, and the visualiza-
tion and/or analysis of the dataset commences. Meanwhile, the server
launcher returns to its listening state, waiting for another client to con-
nect.

The SSECRETT client has the ability to display arbitrary off-axis
resampled images. In order to minimize the amount of data sent via
the socket, the server resamples the volume and sends just compressed
two-dimensional images to the client. This approach avoids sending
larger three-dimensional blocks to the client. Additionally, the server
does not read or send more information than the client will display
given a request. If the client requests an 800×600 image of the entire
top slice of a volume, which might be 20k×20k, the server will only
read low resolution blocks from disk, only delivering higher resolution
when the client can make use of the information.

The prototype has the option to compress the images with JPEG
to make them smaller for transmission. The computational cost of
compressing images is significant, so compression is skipped when
the client is local to the server and network bandwidth is not an is-
sue. With the client in Albany, NY, and the server running in Boston,
MA, we can get about 5 frames per second with an 800×600 viewing
window (requiring a bandwidth of only 165 KB/s). The frame rate
varies considerably as the viewing window size changes; as the win-
dow size increases, the frame rate decreases. By comparison, viewing

Fig. 1: Three different viewing options in the SSECRETT client. Left: A 2D slice view. Middle: A 2D slice view with a 3D view of the slice
within the volume. Right: Three orthogonal slice views with a 3D view.

of off-axis images results in negligible degradation in frame rate.

3.3 SSECRETT Client

We have created a simple C++ prototype client viewer, built using
FLTK (Fast Light Toolkit; a cross-platform C++ GUI toolkit) and vtk.
Our vision is that a variety of clients will connect to the server to re-
quest blocks of the volume. SSECRETT manages communication be-
tween the client and server via a vocabulary that allows any indepen-
dent segmentation application to easily access the central server. We
regularly run the client on both Mac and Windows systems.

Our prototype client provides a simple manual tracing capability
whereby the user drops “breadcrumbs” in the volume via the mouse
or keyboard. These “breadcrumbs” are connected to give a track or
skeleton tree representing axons or other structures. Tracks can have
multiple branches, can be merged with other tracks, and can also in-
clude notes associated with the track in general or at specific locations
along a track. Furthermore, the notes are easily searchable, so that one
user might label regions in the dataset as “weird” or “check this out”,
and save the information to a database managing information about the
dataset (or just email the tracks file, a small compact format describing
just the tracks and notes, to another user). Another user could then pull
up the work from the previous researcher, search for the word “weird”,
and quickly iterate through the areas in question. Furthermore, a note
acts much like a bookmark, saving the camera orientation when the
note is created so that returning to a note gives the user an option of
viewing it from the same perspective.

The client provides several view options, including a 2D slice view
(Figure 1, left), a 2D slice view that includes a small 3D view of the
slice within the entire volume (Figure 1, middle), and also a view that
gives 3 orthogonal slice views (in addition to a 3D view indicating lo-
cation of slices within the volume) very similar to the format seen in
MRI or CT viewing software (Figure 1, right). In the near future we
plan to implement the client using Qt instead of FLTK, which will give
the client a more polished feel, as well as allowing greater flexibility
and functionality in the interface. This will also enable direct integra-
tion of the SSECRETT clinet into the NeuroTrace GUI. Like FLTK,
Qt is a cross-platform C++ GUI toolkit.

3.4 Results and Discussion

We have tested the SSECRETT prototype system on several confocal
and electron microscope images. Figure 2 shows a full view of an
electron microscope slice as well as a zoomed in view, whose loca-
tion is indicated by the red outline on the full view. The SSECRETT
system can progressively transmit coarse-to-fine resolution images per
request, and on our local network zooming in and out through stacks
of images runs at interactive rates. We have also traced multiple myeli-
nated axons in electron microscope images using the manual tracing
capability provided by SSECRETT as shown in Figure 3. Each color
segment represents the cross-section of the tube created based on the

Fig. 2: Zoom capability of the SSECRETT system. Left: A full view
of a slice. Right: Zoom in view of the region marked as a red rectangle
on the left image.

Fig. 3: Manually traced axons using the SSECRETT system.

breadcrumbs dropped by the user, denoting the center axis of the seg-
mented axon. Figure 1 right shows a similar axon tracing result on a
stack of confocal microscope images.

In order to test the scalability of the SSECRETT prototype, we sim-
ulated a petabyte volume by duplicating an 8 gigabyte volume 50 times
along each axis. Although the files were not actually duplicated on
disc, the prototype read them as if they were separate files. As ex-
pected, the system performed as well on this test as it did on smaller
volumes. It is possible that the operating system cached files making
the read process more efficient, but using off axis sampling reduced

the significance of this effect.
The prototype uncovered two areas where performance of the sys-

tem can be improved. The first is the time it takes to load and generate
the highest-resolution image for a new slice. When no blocks are in
cache, it can take up to ten seconds to load all the blocks necessary
to generate the full resolution slice. We are considering several ways
to deal with this issue. First, we can use smaller leaf blocks. When
blocks are small, less data needs to be loaded to generate an image.
Second, we could implement a more sophisticated caching algorithm
that pre-fetches blocks and anticipates future requests. Third, a dis-
tributed database could be run in parallel to take advantage of parallel
disk input/output.

The second performance issue we found was that the rendering be-
came slower than desired for very large viewing windows. Viewing
of full slices (as shown in Figure 2) with an 800×600 window can be
done at a little over 5 frames per second, but that drops to closer to 2
frames per second when using a 1000×1000 window (and is 8 frames
per second for a 500×500 window). Performance can be improved by
increasing the JPEG compression ratio, but this introduces obvious ar-
tifacts. An alternative solution is to use a video compression algorithm
like MPEG4 to get better compression because of correlation between
successive frames.

The biggest challenge encountered so far is efficiently accessing the
original volume to reformat into the multi-resolution diced files. The
original data was arranged in a series of 20k×20k TIFF images. We
processed slabs of 50 images at a time. This approach is reasonably
efficient but breaks down when images are too large. When the size of
50 images overwhelms the memory available on the dicing computer,
we switch to dicing 50×50 rows of pixels. This approach, while ad-
dressing memory limitations, requires opening and closing each image
file many times, and thus still takes too long to process large volumes.
The delay is especially pronounced when the raw input files are on a
remote file system. The combination of opening files multiple times
and the fact that the cubes overlap each other one pixel, causes dic-
ing time to be much longer than a single read of the data. Processing
multiple subvolumes helps, but we are working toward an image based
dicing strategy that reads and processes images one image at a time.

4 NEUROTRACE

The main goal of NeuroTrace is to provide high-quality 3D volume
visualization with user-controllable semi-automatic segmentation ca-
pability. Our approach maintains the scalability of the system to large-
scale datasets and high-performance parallel computing architectures.
An earlier version of NeuroTrace was described in [3]. In this paper,
we also discuss the recently added out-of-core volume rendering and
batch processing capabilities of the system.

4.1 NeuroTrace Framework
We have implemented NeuroTrace in C++, OpenGL, NVIDIA CUDA
and Qt. We use CMake as a cross-platform make tool to be able to
easily port the existing application to different operating systems. At
the moment, we have built NeuroTrace for Windows and Linux.

The NeuroTrace framework consists of four main conceptual mod-
ules:

• NeuroTrace Core: This module is the core of the NeuroTrace
framework and responsible for data handling and storage, includ-
ing out-of-core data loading, octree generation and cache man-
agement (see Section 4.5).

• NeuroTrace Segmentation Module: This module implements the
segmentation functionality of NeuroTrace, in our case the active
ribbon segmentation algorithm (see Section 4.2).

• NeuroTrace Visualization Module: This module is responsible
for 3D visualization, including direct volume rendering of EM
data, on-demand de-noising and edge-detection, and implicit sur-
face ray-casting of segmented processes (see Section 4.4).

• NeuroTrace GUI: This module provides the user interface to the
entire application which is completely decoupled from the actual
core, segmentation and visualization modules.

Data management is handled in the core. We use a separate loader
thread for opening and loading datasets. Whenever the thread has fin-
ished loading a new block of data it is interactively added to the vi-
sualization. This streaming approach allows us to speed up the initial
startup time of the volume renderer by loading and displaying low-
resolution blocks first, while the loader thread in the background still
reads in the higher resolution blocks. The encapsulation of all data ac-
cess functions into our data management layer will allow us to switch
from local data storage to a network-based file system without any
changes in the visualization and segmentation modules.

The segmentation module accesses the original data via the Neuro-
Trace core module. The segmentation results get propagated back and
passed on to the interactive visualization system. The segmentation
module is treated as a black box by the NeuroTrace framework, mean-
ing that the actual implementation of the segmentation algorithms is
not known outside of the module.

The visualization module also accesses the data via the NeuroTrace
core module. It offers 2D slice and 3D rendering at interactive frame
rates, transfer functions, clipping planes, etc. In the case of binary
segmentation information, the visualization module also offers two-
level volume rendering for segmentation masks.

The user interface was developed with the Qt framework. We have
implemented a flexible layout using dockable views, which can indi-
vidually be adjusted by the user, depending on his/her primary require-
ments. We have implemented a transfer function editor for 1D as well
as for 2D transfer functions. Additionally, we offer several adjustable
2D slice as well as 3D views which can be individually activated or
hidden, depending on user preferences. We have intentionally kept the
user interface decoupled from the rest of the application to be able to
switch from one GUI framework to another, if necessary in the future.

Additionally, we keep two tables of all visualization parameters that
can be changed in the GUI. One table at the user-interface side, and
one table at the renderer-side. This allows us to synchronize the two
tables at an arbitrary time in a thread-safe way. Using a separate
thread for the user interface keeps the application responsive, even
during time-consuming processing tasks. In the future we want to ex-
tend NeuroTrace to a client/server application, further extending our
scheme of decoupled user-interaction and processing.

4.2 Neural Processes Segmentation
The segmentation method in NeuroTrace combines 2D neuron cross-
section segmentation and 3D center point tracking to reconstruct a 3D
tubular surface of neural processes. The major benefit of this approach
is that the method uses only a small fixed-size 2D subregion of the 3D
input data so that it scales well to arbitrarily large datasets. We can
treat the subregion retrieval process as a black box using a high-level
API (Application Programming Interface), integrated into the Neuro-
Trace core, without knowing the actual implementation details. For
example, we can retrieve a 2D region through the network if the data
is located on a server.

For 2D neuron cross-section segmentation, we use the modified ac-
tive ribbon model originally proposed by Vazquez et al. [12]. The
model consists of two deformable interfaces (i.e., level sets) that push
or pull against each other based on various internal and external forces
until they converge to the inner and outer wall of the cell membrane
respectively (Figure 4, φ1 and φ2), which makes the method more ro-
bust in noisy and feature-rich electron microscope images than other
level set approaches. Some of the forces we use are: the data depen-
dent force to move the interfaces toward the membrane boundary; the
ribbon consistency force to keep constant distance between two level
set interfaces; the curvature force to maintain the smoothness of the in-
terfaces; and the image correspondence force to robustly initialize the
location of the interfaces on subsequent slices. Figure 5 shows several
steps of deformation of the active ribbon.

To segment arbitrarily oriented neural processes in 3D space, we
have implemented a 3D tracking algorithm that follows the center line

Fig. 5: An example of neural cell membrane segmentation using the active ribbon. From left to right: A user-drawn initial active ribbon (green)
is shrinking to the correct membrane boundary.

φ2

1φ

Fig. 4: Active ribbon model consisting of two deformable interfaces
(φ1 and φ2) interacting each other.

of the neural process. The main assumptions behind our 3D tracking
method are that neural processes are topologically equivalent to 3D
tubes, and that the center of each tube cross section lies on the center
line of the 3D tube. Therefore, once we find the membrane of the cell
cross-section using active ribbon segmentation, we can trace the cen-
ter of the neural process in 3D space by connecting the center point of
each cell cross-section. We propose a two-step method that consists
of estimation and correction steps. In the estimation step, the tangent
direction Vt at the last center point is computed using a one-sided fi-
nite difference method. We also keep the previous tracking direction
Vp. The new tracking direction is then the weighted average between
those two vectors: V = ωVp +(1−ω)Vt (Figure 6 left). The weight
ω controls the amount of history used to determine the current track-
ing direction to provide smoother transitions between slices. Once
we have a new tracking direction, a temporary new center position of
the next slice can be estimated by simple extrapolation, and the local
frame of the previous slice is then projected onto the new plane de-
fined by the temporary new center and the tracking direction. A new
2D region-of-interest is sampled from the input data for the segmen-
tation process. Finally, in the correction step, the temporary center is
replaced by the correct center of the segmented neural membrane. Fig-
ure 6 right shows a real example of 3D centerline tracking and axon
segmentation using our 3D centerline tracking method.

To speed up the time-consuming active ribbon segmentation pro-
cess, we have implemented the GPU multiphase level set solver using
NVIDIA CUDA. The GPU level set solver employs an iterative, adap-
tive level set PDE solver using a block-based update scheme. The
implementation minimizes the communication between the CPU and
GPU and reuses the data on the GPU by safely updating each active
block multiple times without updating the active block list. In order to
maintain the correct ribbon topology, we need to recompute the signed
distance field for each level set when the active block list is updated.
To compute image correspondence force, we use a GPU-accelerated
deformable image registration method to find a 2D vector field that
maps one image to another. More details of this method can be found
in [3].

V

pV

Vt

Fig. 6: 3D center line tracking. Left: Weighted extrapolation for neu-
ron cross section center point tracking. Right: Traced axon using Neu-
roTrace. Green rings are the segmented active ribbons in 2D slices, the
red line is the center line of the traced axon.

4.3 Batch and Parallel Processing for Multiple Neural Pro-
cess Segmentation

Because there are a huge number of neural processes in the dataset and
our segmentation method can run automatically without user interven-
tion, we have implemented batch processing for the segmentation of
multiple neural processes. The idea is that the user can draw multiple
initial level sets, one per neural process, and then let them run sequen-
tially. Once the batch processing ends, the user can examine the result
and make any necessary edits to re-run the segmentation to improve
the result.

To implement batch processing, we treat each neural process seg-
mentation as an independent process that keeps track of the current
status variables and dynamically allocates memory to store the seg-
mentation result. Each segmentation process is then stored on disk
as a cache and only the current segmentation process is loaded into
main memory. Therefore, a large number of segmentation processes
can be launched concurrently as long as each segmentation result can
fit into main memory. Batch processing is implemented by switching
between segmentation processes and performing the segmentations se-
quentially.

Another benefit of storing each individual segmentation process is
the ability to save the entire workspace and to restore it back later.
Due to the enormous data size and numerous neural connections, a
complete segmentation of neural processes in a reasonably large input
dataset may require days or even weeks of work. To be able to con-
tinue the segmentation work for a longer period of time, NeuroTrace
provides a way to save the snapshot of the current segmentation on
disk. This is done by saving all cached segmentation processes and
some additional information, such as a pointer to the input data, the
labeled volume, and the current segmentation process index.

7 8 9

2 3 4 5

6 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1

1 2 3 6 7 25.....

(a)

0.6

−0.7

0.5

−0.5 0.5 0.5

−0.5 −0.5

−0.7

−0.7

0.3

0.3

(b)

Fig. 7: Compact representation of the active ribbon. (a) Two floating
point images (left) are converted into a binary image (middle), and
only the pixels within two level sets, i.e., on the active ribbon, are
stored as a list of indices (right). (b) A zero level set defined by a
signed distance image (left) is converted into a binary image (middle)
and then it is restored back to a floating point distance image, which
results in a slight shift from the original zero level set location (right).

To minimize the disk and memory usage, we convert two floating
point images of the level set results into a simple but compact rep-
resentation as shown in Figure 7a. The main idea is that we create a
binary image that each pixel value represents either inside or outside of
the active ribbon. Then we store only the list of indices for the inside
pixels so that we can restore a full binary image later by marking the
corresponding pixels as inside. From the recovered binary image, we
can restore floating point level set images by assuming that the level
set passes through the center of the zero-crossing edge (Figure 7b).
This approach may cause a slight shift from the original zero level set,
but it does not make a big difference in a realistic setup because we
are only interested in pixel-level segmentation results.

To run multiple segmentation processes in parallel, we can dis-
tribute processes across different GPUs. The GPUs take care of the
assigned processes in parallel. Each GPU accesses the main data
server to retrieve the 2D subregion image to run the level set segmen-
tation, but it does not need to store the entire input dataset. Therefore,
our parallel segmentation process can easily scale to various hardware
configurations and data sizes, such as multi-GPUs in a shared memory
system for small and medium size datasets or a GPU cluster system
using a fast network for extremely large datasets. The implementa-
tion of such a client-server heterogeneous cluster system is subject for
future work.

4.4 Volume Visualization
The volume visualization system of NeuroTrace is based on CUDA,
NVIDIA’s C-like programming environment for GPU programming.
We have implemented single-pass raycasting [5] where we use
OpenGL for rasterization and CUDA kernels for the actual raycasting.
CUDA is a very versatile platform for scientific computing because
it enables full utilization of the huge parallel programming power of
today’s graphics hardware. This allows us to render the volumetric
dataset, display the ongoing segmentation, and perform on-the-fly fil-
tering on the visible parts of the volume, while still achieving inter-
active frame rates. For large data visualization we have integrated
support for octree rendering into our raycaster. The required memory

management layers are described in Section 4.5.
In NeuroTrace we visualize high-resolution EM data which is ex-

tremely dense, heavily textured, and has a low signal-to-noise ratio. To
be able to visualize the complex structure of interconnected nerve cells
we have added support for on-demand filtering and edge detection of
visible parts of the volume. Additionally, we are able to display the
results from the neural process segmentation by combining direct vol-
ume rendering with implicit surface ray-casting in a single rendering
pass. To reduce the required memory footprint, we store the segmen-
tation result in a very compact way.

4.4.1 On-demand Filtering and Edge Detection
Our on-demand filtering and edge detection approach was designed to
be able to quickly explore the volume and highlight regions of interest
(e.g., myelinated axons). Figures 9a, b, and c show some results in
an example EM dataset. For noise removal, we have implemented
Gaussian, mean, non-linear median, bilateral and anisotropic diffusion
filters in 2D and 3D with variable neighborhood sizes. For EM data,
bilateral and diffusion filtering were found to be the most useful. To
modulate the opacity of the EM data during volume rendering we us
a local histogram-based edge metric [3]. We calculate the histogram
difference of two histograms in a voxel’s neighborhood several times
along different directions to find edges [9]. A high difference between
histograms is a good indicator for a large change in brightness, i.e., an
edge.

To be able to cope with large datasets our algorithm is based on
a hierarchical blocked volume representation (an octree), and a dy-
namic caching system in GPU and CPU memory. We start by creating
a list of all visible blocks for the current viewpoint. In the next step
a CUDA kernel performs the filtering on all visible blocks and saves
the results in a cache directly in GPU memory. During a final ray-
casting step the filter/edge values are combined with the original data
values to highlight important regions and enhance boundaries in the
volume. Less important tissue and more homogeneous regions, on the
other hand, are suppressed. To store the on-the-fly computed blocks
from the noise-removal or edge-detection pass we allocate two caches
directly on the GPU. After all visible blocks for the current viewpoint
have been determined, our cache management system automatically
decides which blocks actually need to be computed. Blocks that are
already present in the cache do not need to be recomputed. Blocks
that have already been computed but are not visible in the current
viewpoint are kept in the cache for later reuse until the cache reaches
its maximum capacity. If cache memory gets low, unused blocks are
flushed from the cache in LRU order.

4.4.2 Visualization of Segmented Neural Processes
We concurrently visualize the original EM volume data together with
the segmented neural processes in a combined volume rendering. The
segmented axons or dendrites are displayed as semi-transparent iso-
surfaces, which are rendered in the same raycasting pass as the direct
volume rendering of the original data. Keeping our large dataset sizes
in mind, we store the segmentation results in a very compact format
to circumvent memory restrictions, where each axon is represented
as a simple list of elliptical cross-sections. During standard front-to-
back raycasting, we compute implicit surfaces from the set of ellipses
on-the-fly. At each sample along the ray we test for potential inter-
sections with iso-surfaces. If an intersection is detected, the color and
opacity of the iso-surface is composited with the previously accumu-
lated volume rendered part, and volume rendering is continued behind
the iso-surface. If the segmentation of the neural processes is per-
formed interactively with user assistance, the axons are continuously
updated in the 3D view. This enables the user to stop and adjust the
segmentation process whenever necessary. Figure 9d displays several
segmented axons in a 3D volume rendering.

4.5 Out-of-core Data Management
The out-of-core data management system of NeuroTrace is comprised
of a memory hierarchy that consists of three distinct levels. This hier-
archy is illustrated in Figure 8. The first level, the GPU cache main-

GPU cache

CPU cache

Octree
cache

Current working set
GPU cache
manager

CPU cache
manager

Octree manager

Full
resolution
octree

Superset of
current working set

Cache HierarchyData
Management

Cache Storage

Fig. 8: Three different data management layers are responsible for memory management and caching. The lowest level is the GPU cache, which
holds the current working set of blocks. The CPU cache contains a superset of the blocks currently resident on the GPU. The highest level is the
octree cache, which stores the entire octree hierarchy in local or network storage.

(a) (b)

(c) (d)

Fig. 9: (a) On-demand edge-detection in an EM dataset. (b) Opacity
modulation based on the local-histogram based edge metric. (c) De-
noising and edge enhancement. (d) 3D visualization of segmented
neural processes.

tained by the GPU cache manager, consists of a large 3D cache tex-
ture that is always resident in GPU memory and contains all blocks
of the volume that are currently needed for raycasting. The cache is
managed using a least-recently-used (LRU) scheme, and can freely
mix and match blocks of different resolution levels of the volume oc-
tree. The second level, the CPU cache maintained by the CPU cache
manager, consists of a large pool of blocks that is a superset of the
blocks that are resident in the GPU cache. Blocks in this cache are
only flushed when there is not enough space in the cache and other-
wise kept as long as possible to enable fast re-downloading of blocks
that have been flushed from the GPU cache. This cache is also man-
aged using a LRU scheme. The CPU cache manager can further pre-
fetch blocks from disk that might be needed shortly, so that they are
promptly available to the GPU cache manager when requested. The
third level, the out-of-core octree cache maintained by the octree man-
ager, consists of all octree nodes that comprise the entire volume and

its multi-resolution hierarchy. All octree nodes of all resolution levels
are stored on disk in a single huge binary file. The octree manager
is both responsible for initially creating the octree cache when it is
not yet available, as well as for loading specific blocks on-demand as
they are requested by the CPU cache manager. Loading of requested
blocks proceeds in the background using a separate thread, so that the
raycaster can proceed while more data are being loaded. While octree
nodes are currently loaded from local disk storage, the memory hierar-
chy we use is conceptually independent of whether blocks are loaded
from disk or over the network. We are currently working on extend-
ing the octree manager for requesting and loading blocks on-demand
over a network connection. All other components of the system will
be completely unaware of the load location of the octree nodes.

4.6 Results and Discussion

To evaluate the usability and accuracy of NeuroTrace we have con-
ducted an informal user study, which can be found in [3]. The applica-
tion was very well received by novice as well as expert users because
of its ease of use and accuracy of the automatic segmentation function.
Batch processing functionality has added greater flexibility to the ex-
isting workflow. Figure 9d shows an example segmentation result.

We achieve interactive frame rates for our on-demand filtering and
edge-detection implementation. In the future, however, we would like
to extend our on-demand filtering framework. We are currently work-
ing on a general multi-resolution histogram framework which would
allow us to interactively compare the histograms of different bricks
in different resolutions to further enhance our opacity modulated EM
data rendering.

A big issue in high-resolution EM data is their high anisotropy, due
to the large z-slice distance. This is quite challenging for high-quality
visualization of the data. Using multi-resolution approaches, however,
we can alleviate this problem by first downsampling along the x and y
dimensions of the volume only. After a few downsampling steps, the
volume becomes isotropic and we can proceed by downsampling in all
three dimensions.

Figure 10 shows a top-down view of a volume that consists of 43 gi-
gabytes of raw data. The entire octree cache for this volume consists
of a single file of roughly 75 gigabytes in size, which includes all res-
olution levels and the duplication of neighbor voxels between adjacent
blocks in order to avoid interpolation artifacts at block boundaries. In
contrast to only viewing 2D cross sections, viewing the entire volume
allows one to perceive 3D structures more easily. In Figure 10, it is
also clearly visible that the individual scanned EM slices that consti-
tute the volume are layered on top of each other by the alignment pro-
cess. Therefore, a full volume is only defined in an interior region of
the whole scan, whereas at the borders the originally unaligned slices
cover varying regions after alignment. This is an unavoidable side-
effect of the acquisition process. The fully defined volume can be cut
out easily using axis-aligned clipping planes. However, we usually

Fig. 10: Interactive overview using semi-transparent volume rendering
of a large hippocampus data set comprised of about 43 GB of raw data
(resolution 14176× 10592× 308). The process that properly aligns
the original scanned 2D slices places them in correct relation to each
other in 3D, which can clearly be seen at the borders of the volume
where varying regions are missing in different slices.

enable the entire unclipped volume, which allows one to view all ac-
quired image data and also allows for visual inspection of alignment
accuracy.

Performance for volume rendering using the data set and transfer
function depicted in Figure 10 is between 10 and 30 frames per sec-
ond on a NVIDIA Geforce GTX 285, for a viewport resolution of
800x600. Table 1 gives performance results for different zoomed-in
top-down views, which are rendered using the corresponding octree
levels that roughly yield a one to one mapping of rendered voxels to
displayed pixels. The table also lists what percentage of the displayed
octree level and the entire tree, respectively, are actually inside the
view frustum. Using a one to one mapping of voxels in the octree to
pixels in the output image bounds the amount of memory needed for
any given view very effectively. For example, in a top-down view of
level 0 of the octree, less than 0.5% of the nodes in this level are ac-
tually inside the view frustum. The visible percentage is very low for
all zoomed-in views and only increases when the view is zoomed out
so much that most or all of the volume becomes visible. The volume
is subdivided into blocks of 323 voxels. For the 14176×10592×308
hippocampus volume, the octree is comprised of 10 levels, from a sin-
gle 323 block for the entire volume at the root of the tree (level 9), to
443×331×10 blocks for the highest-resolution level (level 0).

5 CONCLUSIONS

Large-scale image processing and visualization using scalable algo-
rithms and parallel architectures is of immediate interest to neurosci-
entists to study the connections in the human brain. We have shown
that SSECRETT and NeuroTrace introduced powerful solutions using
a client-server system and out-of-core data management for efficiently
handling large neuroscience datasets. These tools can greatly improve
the current data analysis practice that uses manual segmentation and
limited visualization functions available in commonly used software
tools.

Although we introduce two independent software tools in this ar-
ticle, we envision that both tools will eventually merge into a single
program in the near future. Our first step in that direction is to inves-
tigate a common data API based on the current out-of-core data man-
agement system implemented in NeuroTrace. The common API we
are designing will work on different systems and arbitrary data scales
seamlessly. We are also working on high-quality 3D volume visualiza-
tion on a GPU cluster system using a distributed raycasting method.
Finally, developing a realtime large-scale neuroscience data acquisi-

level fps # 323 blocks vis. of level vis. of tree
0 10 443×331×10 - 0.5% - 0.4%
1 19 222×166×10 0.4 - 1.1% 0.1 - 0.2%
2 26 111×83×10 2 - 2.3% 0.1%
3 30 56×42×5 11 - 55% 0.1 - 0.3%
4 30 28×21×3 76 - 100% 0.1%

Table 1: Performance of top-down views of the 43GB hippocampus
volume. The view depicted in Figure 10 is a top-down view of octree
level 4, which renders at 12 frames per second. Viewport is 800x600.

tion and processing system will be our ambitious long-term research
goal.

6 ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation
under Grant No. PHY-0835713, the Austrian Research Promotion
Agency FFG, Vienna Science and Technology Fund WWTF, the Har-
vard Initiative in Innovative Computing (IIC), the National Institutes
of Health under Grant No. P41-RR12553-10 and U54-EB005149, and
through generous support from Microsoft Research and NVIDIA.

REFERENCES

[1] J. C. Fiala. Reconstruct: a free editor for serial section microscopy. Jour-
nal of Microscopy, 218(1):52–61, April 2005.

[2] E. Gobbetti, F. Marton, and J. Guitan. A single-pass GPU ray casting
framework for interactive out-of-core rendering of massive volumetric
datasets. The Visual Computer, 24:797–806, 2008.

[3] W.-K. Jeong, J. Beyer, M. Hadwiger, A. Vazquez, H. Pfister, and
R. Whitaker. Scalable and interactive segmentation and visualization of
neural processes in EM datasets. IEEE Transactions on Visualization and
Computer Graphics (Proc. of IEEE Visualization ’09), 2009. to appear.

[4] E. Jurrus, M. Hardy, T. Tasdizen, P. Fletcher, P. Koshevoy, C.-B. Chien,
W. Denk, and R. Whitaker. Axon tracking in serial block-face scanning
electron microscopy. Medical Image Analysis (MEDIA), 13(1):180–188,
February 2009.

[5] J. Krüger and R. Westermann. Acceleration techniques for GPU-based
volume rendering. In Proceedings of IEEE Visualization, pages 287–292,
2003.

[6] E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for inter-
active texture-based volume visualization. In Proc. of IEEE Visualization,
pages 355–362, 1999.

[7] J. Lu, J. C. Fiala, and J. W. Lichtman. Semi-automated reconstruction of
neural processes from large numbers of fluorescence images. PLoS ONE,
4(5):e5655, 05 2009.

[8] J. H. Macke, N. Maack, R. Gupta, W. Denk, B. Schölkopf, and A. Borst.
Contour-propagation algorithms for semi-automated reconstruction of
neural processes. Journal of Neuroscience Methods, 167(2):349–357,
2008.

[9] D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image
boundaries using local brightness, color, and texture cues. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(1):530–549,
2004.

[10] C. Müller, M. Strengert, and T. Ertl. Optimized Volume Raycasting for
Graphics-Hardware-based Cluster Systems. In Eurographics Symposium
on Parallel Graphics and Visualization (EGPGV06), pages 59–66. Euro-
graphics Association, 2006.

[11] O. Sporns, G. Tononi, and R. Kötter. The human connectome: A struc-
tural description of the human brain. PLoS Computational Biology,
1(4):e42+, September 2005.

[12] A. Vazquez-Reina, E. Miller, and H. Pfister. Multiphase geometric cou-
plings for the segmentation of neural processes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2020–2027, 2009.

