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Computational Time
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Fig. 1. The computational costs for our algorithm empirically follow a linear runtime
on the FIB-25 dataset with an average throughput of 111,105 voxels per second.
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Proposed

Fig. 2. Here is a side-by-side comparison of our proposed method compared to our
two baselines on a neuron fragment from the FIB-25 dataset. Our method guarantees
endpoints only at synapse locations. The TEASER and isthmus thinning methods
introduce new endpoints (purple circles) and miss others (red circles).
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Proposed

Fig. 3. The two baseline strategies fail to connect any of the synapses to the skeleton
in this segment from JWR. Under the proposed strategy, there is a path between each
synapse and the center-line.
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Fig. 4. Two additional examples from the JWR dataset (rat). For both neurons, we
also zoom in to one location to show the finer details.
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Fig. 5. Two additional examples from the FIB-25 dataset (fruit fly). For both neurons,
we also zoom in to one location to show the finer details.
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Fig. 6. Two additional examples from the J0126 dataset (zebrafinch). For both neurons,
we also zoom in to one location to show the finer details.
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