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The structure of the nervous system is extraordinarily 
complicated because individual neurons are interconnected to 
hundreds or even thousands of other cells in networks that can 
extend over large volumes. Mapping such networks at the level 
of synaptic connections, a field called connectomics, began 
in the 1970s with a the study of the small nervous system 
of a worm and has recently garnered general interest thanks 
to technical and computational advances that automate the 
collection of electron-microscopy data and offer the possibility 
of mapping even large mammalian brains. However, modern 
connectomics produces ‘big data’, unprecedented quantities 
of digital information at unprecedented rates, and will require, 
as with genomics at the time, breakthrough algorithmic 
and computational solutions. Here we describe some of the 
key difficulties that may arise and provide suggestions for 
managing them.

The sheer complexity of the brain means that, sooner or later, the data 
describing brains must transition from something that is rather easily 
managed to something far less tractable. This transition appears to 
now be under way. The accumulation of ever bigger brain data is a 
byproduct of the development of new technologies that provide digi-
tized information about the structural organization and the function 
of neural tissue. These new collection approaches bring novel data 
into neuroscience, data that bears on many poorly understood aspects 
of the nervous system. Fundamental questions such as how learned 
information is physically stored in the brain, how psychiatric diseases 
affect brain structure and function, how genetic and environmental 
interactions influence brain structure and its variability, and how the 
brain changes over the course of development and aging may be use-
fully addressed in the coming decades as large data sets (perhaps in 
the petabyte range) describing high-resolution brain structure and 
function become available.

Unfortunately, the generation of large data sets is actually the (rela-
tively) easy part. Our own experiences in the nascent field of con-
nectomics indicate that there are many challenges associated with the 
steps after data acquisition, that is, the process of turning raw image 
data into a minable map of neural connectivity. We describe some of 

these challenges and provide a few potential strategies that may help 
overcome the big data difficulties ahead.

Toward a theory of connectomics
The field of connectomics is so new that there is no consensus  
yet about its central aims or even its data acquisition strategies. All 
practitioners would probably agree, however, that connectomics  
will generate large amounts of data that concern the fine details of 
neural circuitry over large volumes; an unprecedented data trove. 
For most neuroscientists, such data is not only quantitatively, but 
also qualitatively, different from the kinds of information they have 
experienced previously. Thus, there is considerable uncertainty about 
what may be learned from this data, and for some researchers, the lack 
of a theory of connectomics is a show-stopper.

From our perspective, the uncertainties speak more to the oppor-
tunities than the shortcomings of connectomics. This point can be 
better understood by looking back several centuries to the efforts of 
the singular genius Galileo Galilei, who designed telescopes to look 
at the night sky. He was in a predicament that seems analogous to  
the one that faces neuroscience today. Many phenomena about the 
heavens were deeply mysterious, and existing theories were impos-
sible to test with the available data. His new imaging technology 
was, at the outset, less than ideal. Moreover, it was not obvious what 
he should look at with his telescope or what kind of data he should 
obtain. And yet, Galileo found ways to use the limited data he could 
collect to refute the hypothesis that the Earth was the center of the 
universe. Ultimately, the value of the telescope was less its refutation 
of an existing theory than that it provided data that went beyond 
known theoretical frameworks. The discovery of galaxies, the expand-
ing universe and many other phenomena were products of telescopes. 
These observations required new theories to make sense of them, and 
these new theories required acquisition of more new data, a virtuous 
cycle that led to the birth of modern astronomy.

To be sure, it would be much easier to figure out what kinds of data 
to obtain, and how to mine it, if we already had a well-developed 
theory of how networks of connections translate into brain function; 
unfortunately, this is not yet the case. Our own view is that, lacking 
a clear idea of what parts of the connectomic data trove will ulti-
mately be relevant, we should err on the side of getting too much data 
rather than just the data that answers a particular question. This view,  
of course, compounds the big data problem by requiring as much 
resolution in the data as we can muster.

Connectomic data
As organ systems go, there is none as physically complicated as the 
brain: it is far more heterogeneous as a tissue than any other organ. In 
part, because of this heterogeneity, the organizing principles and even 
cell types in each part of the brain vary substantially. Understanding 
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the relationship between the brain’s structure and its function also 
requires attending to design principles over both small and large 
length scales1,2. At the small end, describing the cellular connections 
mediating neural signaling requires resolving neural tissue at the scale 
of nanometers. Electron microscopy images at the nanometer level 
reveal all of the synapses and intracellular details such as the numbers 
of synaptic vesicles, the size of postsynaptic densities, etc. The dif-
fraction limit of visible light limits its resolution to several hundred 
nanometers, making standard fluorescence techniques too blurry to 
resolve synaptic connections, especially if one is trying to see all of 
the connections in a tissue sample. Although recent developments in 
fluorescence methods overcome the diffraction limit3, these super-
resolution techniques are not designed to image everything; rather, 
they gain much of their power by selectively labeling a small subset of 
molecules, organelles and/or cells. At some point, it may be possible to 
combine these new optical approaches with methods that label each 
neuron a different color (for example, Brainbow labeling4,5), but there 
are still technical hurdles to overcome along the way6. This is why 
many of the current connectomic techniques use electron microscopy 
instead: the short wavelengths of high energy electrons provide suf-
ficient resolution to see the finest details of synaptic connections and 
the heavy metal stains show all cells and all organelles. Data about the 
biochemistry of the brain would also be very informative (such as the 
receptor subtypes at different synapses or the particular ion channels 
on the membranes of each neuronal process). The only reason that we 
do not add this data to the electron microscopy images is that we do 
not yet know how; efforts are now under way to solve this problem7.

The approach we take is to generate electron microscopy images 
of a consecutive sequence of sections of the brain that are automati-
cally cut as 30-nm-thin slices and picked up on a tape substrate by a 
conveyor belt. Each section is imaged with a scanning electron micros-
cope at a resolution at which each pixel represents a 4 × 4 nanometers 
region of tissue. At this pixel density, a 1-mm2 brain section requires 
acquiring a 62.5 gigabyte image. Obtaining throughput speeds com-
mensurate with processing large volumes (tens of thousands of such 
sections or more) requires that the sectioning and image acquisition 
be carried out automatically with few interruptions. The sectioning 
step is far quicker than the imaging step (see below).

There are several alternative methods we could use for obtaining 
electron microscopy–level connectomic data over large volumes1,8. 
These include block-face methods that use either microtomes9 or 
focused ion beams10 to successively shave a layer of the sample block 
between acquiring images of its face, and transmission electron micros-
copy techniques that use camera arrays11 or single digital detectors12. 
Each imaging approach has particular advantages: block-face tech-
niques give better alignment between sections, saving computation 
time, whereas transmission techniques can provide better lateral reso-
lution, which may aid in identification of fine structural details, and 
focused ion beams give thinner sections, which improve segmenta-
tion. The current methodological diversity means that connectomic 
data is not the same from one laboratory to another, which slows the 
development of analytic tools, as each type of data requires somewhat 
different processing before it is minable.

With the tools we are using, the current throughput of the image acqui-
sition step is about 1 terabyte, or 16 images, 1 mm2 each, per day. This 
translates to about 6 years of image data acquisition to complete a cubic 
millimeter of brain with 33,333 sections that are 30-nm thick. At that 
rate, even a cerebral cortex of a small rodent such as a mouse (112 mm3,  
see ref. 13) could take more than 600 years, and a rat (253 mm3, see 
ref. 14) would take 1,000 years, plus or minus. However, image acqui-
sition rates are undergoing substantial speed-up as a result of, for 

example, new imaging microscopes that use multiple scan beams to 
parallelize image acquisition. The first such device was delivered to us 
this summer from Carl Zeiss. Such speed-up strategies may soon allow 
a microscope to generate in the range of 1,000 1-mm2 sections per day, 
allowing images of 1 mm3 to be completed in a little over a month.

Latent in such images is not only the wiring that connects each 
nerve cell, but also details such as the volume of every synapse, the 
number of synaptic vesicles at each synapse, the location of every 
mitochondrion, the glial cell investment of some synapses, the loca-
tion of every node of Ranvier, etc. However, a number of analytic 
problems stand between the raw acquired digitized images and having 
access to this data in a useful form.

Alignment. For the tape-based method, each successive digitized 
image needs to be aligned with the previous and subsequent images. 
Despite being largely similar, image alignment is challenging because 
the sections are collected by a conveyor belt and each may rotate a few 
degrees, or stretch depending on its thickness. Fortunately, because of 
the high image resolution, alignment is practical, as axons and den-
drites are readily visible in cross-section and can be traced from one 
section to the next. Block-face serial electron microscopy techniques 
have much better section-to-section alignment; thus, although some 
small alignment corrections are made, this step is less challenging 
from a computational standpoint.

Reconstruction. A second challenge is that, once the image data is 
aligned, the sectioned objects must be individuated. In these data sets, 
the objects are neurons and other cellular entities that are interwoven 
in the three-dimensional space of the sample tissue. The reconstruc-
tion of neural processes as they pass from one section to the next is 
directly related to the computer vision problem of obtaining a seg-
mentation of an image series, that is, the labeling of pixels in the 
images according to which neuron or glial cell they belong to.

Although considerable progress has been achieved in computer-
based image segmentation in the last few years, reliable automatic 
image segmentation is still an open problem. Automating the seg-
mentation of connectomic data is challenging because the shapes 
of neural objects are irregular, branching, non-repeating and inter-
twined. Moreover, the actual number of different objects and their 
synaptic interconnections in a volume of brain tissue is unknown and, 
at the moment, even difficult to estimate or bound. Segmentation of 
a standard electron microscopy image is further complicated by the 
fact that the range of pixel intensity values of cell membranes overlaps 
with that of other organelles. Thus, simple thresholding to find cell  
boundaries does not work. Finally, in electron microscopy, imaging 
the lateral resolution of a section is sometimes several-fold finer than 
its thickness1. This anisotropy means that moving in the z axis between  
sections causes an object’s membrane outline to move a greater  
distance than tracing it out in a section (the x or y axis).

The process of segmentation is easiest to appreciate by looking 
at an electron microscopy section. Figure 1a shows a small part 
of a 30-nm-thick section of cerebral cortex. This section contains  
the cross sections of many different axons, dendrites and glial cell 
processes. Using an automatic segmentation algorithm15, all of these 
cross sections can be ‘colored in’ to form a saturated reconstruction 
(Fig. 1b). The quality of the automatic segmentation can be appreci-
ated by comparing a computationally generated image (Fig. 1c) with 
a human-traced segmentation of the same section (Fig. 1d). Although 
many objects are segmented similarly by both methods, it is obvious 
that, in the automatic method, objects are segmented into multiple 
objects (split errors) or erroneously combined (merge errors) where 
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a human tracer would not make the same mistakes. At present, the 
error rates of automatic segmentation are on the order of one merge or 
split mistake per cubic micrometer of tissue volume, which is clearly 
inadequate for reliable segmentations. Further algorithmic work is 
needed, as well as perhaps new tissue preparation, tissue labeling 
and imaging strategies that provide better raw image data to work 
with. Notably, two phenomena mitigate the seriousness of most of 
the errors. First, errors of omission are more common than actual 
crossed wires. Second, the errors are mostly confined to the finest 
terminal processes of axons (terminal single-synapse branches) and 
dendrites (single spines).

The greatest challenge facing connectomics at present is to obtain 
saturated reconstructions of very large (for example, 1 mm3) brain 
volumes in a fully automatic way, with minimal errors, and in a rea-
sonably short amount of time. The human visual system has little 
trouble identifying objects and tracing them in subsequent sections. 
Indeed, attempts to use human segmentation to do connectomic work 
can succeed provided a large number of people (thousands) can be 
persuaded to work on a data set1,16. Our own efforts suggest that 
human tracers rarely disagree (<0.1% of connectivity) when trac-
ing the same data set independently and quickly reach consensus  
when results are compared (N. Kasthuri and D. Berger, unpublished 
data). This consensus, of course, does not mean that human tracing  
is without error; it is just that, at this moment in time, we have no 
way to detect the inaccuracies. However, even if human tracings 
were perfect, the data size would eventually require the equivalent of  
millions of human tracers17, and the rapid data acquisition rates that 
will soon be available will make it necessary to do the reconstruction 
at the acquisition rate of the microscope and to keep the computa-
tion close to where the data is being acquired, which will require new 
computational strategies.

There is currently some difference of opinion as to how close 
research is to generating fully automatic segmentation with accuracies 
that approach that of human tracers. For example, some experts believe 
that the gap between human-based segmentation and machine-based 
approaches “is unlikely to close soon”17. They liken the problem to 
that of recognizing human cursive handwriting by machine18. Because 
no two handwriting styles are identical, very large training sets from 
many individuals are typically required for automatic methods, and 
these methods do not yield good results in the end.

We believe that the problem of segmenting the wiring of, say, the 
cerebral cortex of an adult mouse, may be more constrained. Using the 
handwriting metaphor, deciphering neural wiring in one species may be 

closer to deciphering the cursive script of one individual, as opposed to 
that of coming up with a generic solution for all individual writing styles. 
As complicated as it may seem, the neural wiring of one species, at one 
age and maybe in one part of the nervous system, has a limited and ulti-
mately identifiable set of geometries, and many constraints. To be sure, 
there will probably always be places that do not fit the general pattern, 
and more computationally intensive techniques may need to be used in 
such instances (see below). However, we suspect that the exceptionally 
difficult parts will be a small fraction of the overall data set.

Our optimism at getting automatic solutions to segmentation is 
deeply rooted (ironically) in our view about how human brains go 
about solving difficult tasks. Once the arduous task is learned (riding 
a bicycle, reading, etc.), the brain does its work with little cognitive 
effort: the ‘automatic’ solutions become efficiently embedded in the 
structure (probably the wiring diagram) of the brain.

Feature detection. In addition to segmentation, another computer 
vision challenge in connectomics is the detection of important subcel-
lular features such as mitochondria, synaptic vesicles, and the pre- and 
postsynaptic specializations at various kinds of synapses. Although 
the automatic detection of cellular boundaries is a necessary part 
of image segmentation, additional methods need to be employed to 
detect these subcellular features. Recently developed synapse detec-
tion approaches19 show promise, but, as with segmentation, error 
rates and analysis time need to be reduced for practical use in big 
data volumes.

Graph generation. Finally, the reconstructed data needs to be turned 
into a form that represents the wiring diagram. The scientific value of the 
resulting connectivity graph may depend on how much of the original 
data is retained. For example, anatomical details such as the location of 
synapses along a dendrite, sizes of synapses or the caliber of nerve cell 
processes may be valuable in using the connectivity data to simulate 
function in a circuit. On the other hand, to make the connectivity easily 
minable, some substantial data reduction must occur (see below).

Figure 2 shows an example of what a wiring diagram resulting from 
the reconstruction process might look like. The image on the left is 
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Figure 1 Segmenting brain images. (a) Shown is an electron micrograph 
of a small part of a 30-nm-thick section of mouse cerebral cortex. Even 
though the region shown is only 40 × 20 µm and less than 1,000th of 
the area of 1 mm2, it contains the cross-sections of more objects than 
are practical to identify by the human eye. (b) Automatic computer-
based methods, however, can attempt to completely segment such data 
(that is, saturate the segmentation). The result of the segmentation is 
shown as an image overlay with a distinct color (ID) for each cellular 
object. In subsequent sections (not shown), the same color is used for 
the same objects. (c,d) Higher magnification image of a small part of the 
automatically segmented image from a subsequent section (c) shows that 
the automatic method makes errors when compared to human tracing (d). 
The white arrow labeled S in c shows that a vesicle-filled axonal profile is 
split into several compartments, whereas the same axonal profile in d is 
labeled correctly as one object (compare the white arrow pairs in c and d). 
The black pair of arrows labeled M in c show two objects that have been 
merged into one by the automatic segmentation algorithm, whereas the 
objects are correctly labeled as separate in d (compare the black arrow 
pairs in c and d).
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a schematic depiction of two neuronal objects reconstructed from a 
serial electron microscopy data set. For the purpose of illustration, we 
include four synaptic junctions between the neurons. The neurons, 
after reconstruction, were transformed into a layout graph representa-
tion whose nodes are dendritic or axonal branches, with associated 
information such as their three-dimensional coordinates, diameter, 
cell type, etc., and edges between them that could be marked with  
the direction of signal flow, etc. The edges also contain lists of  
associated synaptic junction nodes, each with information such as 
three-dimensional location, number of vesicles, etc. Synaptic junction 
nodes can have one or more incoming or outgoing edges connecting 
them to the corresponding synaptic junction nodes of other neurons. 
Finally, from the layout graph, we can generate a connectivity graph  
whose nodes are neurons and whose edges represent synaptic  
junctions between them. The edges can be tagged with informa-
tion such as connection strength or delay time, which are derivable  
from the layout graph given biophysical knowledge about neural  
signaling. Obviously, with serial electron microscopy, we only extract 
static information, but nothing prevents the incorporation of dynamic 
properties collected from other modalities. Ultimately, such a graph 
would contain a listing (ontology) of the types of things the data con-
tains. This list is an essential feature for analysis of the regularities in 
the data. An example of this kind of analysis for the 302 neurons in the 
worm C. elegans hints at the way these kinds of data will look20.

The layout graph itself could be stored using data structures for 
representing three-dimensional data. Such data structures, such as 
Skip Oct-trees21, allow representation of the locations of objects in 
three dimensions so that they can be queried quickly. They can, for 
example, be used to answer queries such as how many neuronal somas 
are located in the volume defined by the dendritic arbor of a given 
neuron or which dendritic spines are within a certain distance to 
a given axonal branch. The software implementations of these data 
structures will be highly ‘concurrent’, that is, allowing multiple proces-
sors to share the data to do searches or analysis simultaneously and 
with little overhead22.

In all of these steps, from tissue sectioning, image acquisition, 
alignment, segmentation, feature detection and graph analysis, a 
central mantra is ‘dehumanizing’ the pipeline, in the sense that all of 
these steps will scale and be more efficient when there is less human 
involvement. Although we are making progress in getting humans out 
of the workflow, we still have much more to do. One of the ironies 
of connectomics is that humans are especially good at these kinds of 
tasks (ones that require manual dexterity such as ultrathin sectioning 
or image analysis such as segmentation) because of the way our brains 
are wired. If we knew how brains worked, it might be far easier to 
develop the tools that would allow us to automate all these processes 
and learn how brains are wired!

Big data challenges of connectomics
In the eyes of many, the term big data is synonymous with the storage 
and analysis of massive collections of digital information. The term 
big refers to the size of the input sets, typically ranging in the tens or 

even hundreds of terabytes, and their arrival rates of several tens or 
hundreds of gigabytes per second.

Data size. In connectomics, the size of the input set is at the high 
end of the big data range, and possibly among the largest data sets 
ever acquired. As already mentioned, images at resolutions of sev-
eral nanometers are needed to accurately reconstruct the very fine 
axons, dendrites and synaptic connections. Thus, acquiring images 
of a single cubic millimeter of a rat cortex will generate about 2 mil-
lion gigabytes or 2 petabytes of data. A complete rat cortex, including 
some white matter, might require 500 mm3 and would produce about 
an exabyte (1,000 petabytes) of data at the aforementioned resolution. 
This amount is far beyond the scope of storage that can be handled 
by any system today (as a reference point, consider that the database 
system of the Walmart department store chain, one of the largest 
in the world, manages a few petabytes of data). A complete human 
cortex, ~1,000-fold larger that of a rodent, will require a zetabyte 
(1,000 exabytes) of data, an amount of data approaching that of all 
the information recorded globally today.

Data rate. The new electron microscope that we have started using 
will have a staggering throughput approaching several terabytes of 
data per hour, placing it at the far end of the big data rate spectrum. 
This rate, if matched with appropriate reconstruction algorithms (still 
a big if), will allow us to process a cubic millimeter of rodent brain 
in about 800 h (2,000 terabytes, 2.5 terabytes per h). However, at this 
rate, a complete mouse cortex will still require at least a decade if 
only one machine is doing the imaging, and it will take a professional 
lifetime to complete a rat cortex. That speed could be multiplied if 
the task were distributed to multiple labs with imaging microscopes 
working in parallel; ten multibeam microscopes working in parallel 
could do a mouse cortex in a year at this high resolution. This leads 
us to two conclusions.

The first is that, without further speed-up in image acquisition, it 
will not be possible to acquire the complete connectome of a human 
cortex, and although reconstructing a small mammalian cortex is not 
out of the question, it will be a major undertaking. We must therefore 
consider the possibility of reconstructions of neuronal substructures 
as opposed to whole brains and hope that testing these substructures 
will reveal enough modularity and regularity to allow deduction of 
interesting general organizational principles and overall function.

The second is that whatever algorithm is used to extract the connec-
tomics graph from the image data will eventually have to work on the 
fly, at the pace of the microscope that generates this data. For starters, 
storing and processing the data later will require storage of the size 
of the input data, which is petabytes in size even for 1 mm3. This is 
because a smaller storage buffer, less than the size of the whole data, 
would eventually overflow1. One can store 2 petabytes of data in a rack 
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Layout graphSegmented neurons
Figure 2 Transformation of segmented data into a connectivity graph. 
Left, in this schematic, the segmented axon of the dark gray neuron is 
found to establish four synapses on the dendritic spines of the light gray 
neuron (a–d). Middle, the segmented data is transformed into a layout 
graph that keeps notation of the location of every axonal and dendritic 
branch point and every synaptic junction. The layout graph has far less 
data than the segmented images that were used to generate it. Circles 
of different sizes and shading represent identification tags (IDs). Right, 
ultimately, the connectivity can be graphed quite simply, as shown here.
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of disk drives, or a wall of tapes, but this approach does not seem to 
scale well (a few cubic millimeters will require a room, a mouse brain 
will require a dozen rooms). The bigger problem is that even if we 
do store the data for later processing at a slower rate, how much of a 
slowdown can we reasonably tolerate? If the data were generated in a 
month, a tenfold slowdown would mean processing it in about a year. 
Perhaps this is reasonable for the first cubic millimeter, but seems 
unreasonable as a general technological approach, as researchers will 
want to apply it to a growing number of samples without spending a 
year of their life waiting for each (for example, generating connectiv-
ity graphs for 10 1-mm3 regions in a cortex would take a laboratory 
a decade of computation to complete).

Computational complexity. The goal of many big data systems is 
more than to simply allow storage and access to large amounts of 
data. Rather, it is to discover correlations within this data. These cor-
relations, the desired outputs of big data algorithms, are typically 
many times smaller than the original input sets that they are derived 
from and, notably, can often be extracted without computing on the 
entire data set.

In computer science, this relation between the sizes of the input 
and output of a computational problem is captured using the notion 
of asymptotic complexity. Consider the computational problem of 
determining, in a given country, the correlation between the life 
expectancy of a smoker and the decade of their life when they began 
smoking. Whether we are talking about Andorra, with a population 
of N = ~105, Cyprus with N = ~106 or India with N = ~109, the cor-
relation, that is, the output of the computation, would remain ten 
pairs of numbers; these outputs do not grow as N, the size of the 
input set, grows. In computer science terms, one says that the size of 
the output set is asymptotically constant in (that is, compared to) the 
size of the input set.

For many big data correlation problems, the asymptotic size of the 
output is constant, implying that there is no limitation to developing 
algorithms on the basis of sampling approaches. These algorithms 
select a subset of the input set, either randomly or based on some 
simple-to-test criteria, and then compute an approximation of the 
output on the basis of this smaller subset. For our above example, 
there are statistical tests, based on small population samples, that 
quite accurately estimate the degree of correlation between the life 
expectancy and age of smoking onset.

In connectomics on the other hand, the graph we need to extract 
from the microscope images grows in direct proportion to the size of 
this data set because we are not sampling; rather, we are extracting a 
representation of the entire data set. In computer science terms, one 
says that the size of the output graph, and thus the computation to 
extract it, are at best asymptotically linear in (that is, compared to) the 
size of the input set. In this sense, our problem is much harder than 
many traditional big data problems and implies that, as we improve 
our microscopy techniques and increase the rate of data generation, 
we will have to proportionally increase the pace of our reconstruc-
tion computation.

Parallel computing. Fortunately, there is also some good news. 
Consider the cortex of a small mammal. It may contain about  
20 million neurons and perhaps 10,000-fold more synapses. In a 
straightforward graph representation, these 20 million neurons would 
require 20 million nodes and 200 billion edges, representing the  
synapses. We should think of the overall graph data structure, even 
with additional data, as being proportional to the number of edges. 
Thus, assuming that each annotated edge or node requires about  

64 bytes (a couple of ‘cache lines’ of data), we are talking about  
8 terabytes of data to represent a small mammal’s complete corti-
cal connectome graph. Such a graph can be wholly contained in  
the memory of today’s server systems. This data reduction is  
essential: operations executed in the computer’s memory are orders 
of magnitude faster than those requiring access to disk, implying that, 
once the graph is in memory, it can be analyzed and used for simula-
tions efficiently. The initial target of collecting a cubic millimeter,  
one thousandth of small mammalian cortex, would only require  
8 gigabytes of memory, so graphs of even 10 or 20 such volumes  
would be quite easy to store in memory and analyze extensively.

So how does one tackle such a big input set with an output that 
grows linearly with the set? We think the first goal is coming up 
with a way of extracting the graph (along with the previous steps 
of alignment, segmentation and feature detection) at the speed of 
the microscope’s image acquisition, that is, at a rate of terabytes per 
hour. We are hopeful that we can do this with a moderately sized sys-
tem that parallelizes the most costly steps, segmentation and feature 
extraction because these computations are what are sometimes called 
embarrassingly parallel. To understand this term, consider that the 
speed-up obtained by parallelizing a given computation is governed 
by Amdahl’s Law23, which says that the time savings attainable by 
parallelization are limited only by the fraction of code that remains 
sequential (because it is hard or even impossible to parallelize). The 
sequential steps are mostly involved with inter-processor coordina-
tion and communication. Fortunately, image computations, such as 
segmentation and feature detection, can be divided among many dif-
ferent processors, each dedicated to a small contiguous image region 
in a prefixed grid and requiring little communication or coordination 
between the processors. It is therefore embarrassingly easy to reduce 
the sequential part of the code to a fraction small enough to allow a 
speed-up proportional to the number of physical processors applied 
to the computation.

Compute system. But speed-up is not just about computation. One 
must also take into account the time to move the data into the com-
puter before computing on it. Although our multiprocessor machines 
have sufficient input/output bandwidth to receive the data, there is 
a question as to how the data will be moved from the microscope to 
the machines. At an image collection rate of 2.5 terabytes an hour, at 
present at least, it is infeasible to reliably transmit the data to a remote 
computation site. Placing the computer system near the microscope 
solves this transfer bandwidth bottleneck, allowing us to move the 
immense volume of data onto processors at the rate that it is being 
collected. Unlike many other big data problems, in our case, the data 
is also being processed in real time, and thus moving the computa-
tion to the data, that is, in the vicinity of the microscope, becomes 
absolutely essential.

We estimate that 500 standard 4-core processors, each operating 
at 3.6 GHz, would be adequate to keep pace with the data genera-
tion of the microscope. At this pace, the system can deliver about 
10,000 computational instructions2 per image pixel coming off the 
microscope. If we equip each processor with 16 gigabytes of local 
memory, we would have a total of 8 terabytes memory capacity, that 
is, sufficient memory for about 3 h worth of microscope traffic. This 
amount of memory would more than suffice to store and analyze 1 h  
worth of image data while simultaneously inputting new data and 
outputting the raw image data as backup onto disk (and eventually to 
tape). The whole computer infrastructure would likely cost less than 
$1 million. Adding more machines to speed up the computation is 
only a matter of money.
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A heterogeneous hierarchical approach. Our goal is to complete  
the alignment, segmentation, feature detection and graphing  
within a budget of ~10,000 instructions per pixel (again, we note  
that increasing this budget is a matter of money). The automatic 
reconstruction is likely the most costly of these steps. For example, 
we have experimented with deep learning algorithms that deliver 
improved accuracy in segmentation results. However, such algorithms 
require on the order of 1 million instructions per pixel and therefore 
cannot be applied to the workflow as described. Moreover, the results 
of these programs are still inadequate because they require human 
proofreading to correct mistakes (Fig. 1).

Instead, we consider a heterogeneous hierarchical approach that 
will combine bottom-up information from the image data, with 
top-down information from the assembled layout graph, to dynami-
cally decide on the appropriate computational level of intensity to be 
applied to a given sub-volume. This approach mimics the way humans 
go about segmentation, constantly looking forward and backward 
across sections, and with different resolutions. This approach might 
initially apply the lowest cost computations to small volumes to derive 
local layout graphs. These sub-graphs will be tested for consistency 
and merged at the graph level. If discrepancies are found, then more 
costly computation on the image data will be applied locally to resolve 
the inconsistencies so as to allow merging. The more extensive com-
putation will involve, among other things, using information from 
the layout graph and its failed consistency tests to better segment the 
problematic region. This process will continue hierarchically, grow-
ing the volume of merged segments and continually testing at the 
layout graph level.

We believe that establishing a set of rules that constrain the results 
at both the lower (segmented image data) and higher (layout graph) 
levels will be useful to detect and ultimately resolve errors in the  
wiring diagram. This correction method could potentially occur  
without having to apply the most time-consuming computations to 
entire large volumes. For example, a typical problem that a human 
easily detects is a split error where a neural process changes ID (that is, 
color) from one section to the next (Fig. 1c,d). Our higher level graph 
checking techniques could flag the sites at which such an error may 
have occurred, allowing us to apply more costly, but accurate, segmen-
tation approaches to small sub-volumes of the data set. Computers are 
exceptionally good at detecting inconsistencies in high-level layout 
graphs, for example, detecting orphaned neural processes or merge 
errors. Once detected, time-consuming and computer-costly segmen-
tation techniques could then be applied locally to resolve the wir-
ing issue. The combination of top-down graph rules and bottom-up 
image segmentation properties could allow a fully automatic suite of 
methods to reduce the image data to an accurate network graph. To be 
sure, we are far from this ideal. But as we have argued above, the only 
hope for large connectomic volumes would seem to be the continued 
improvement of fully automated techniques. Perhaps this is unwar-
ranted optimism, but we believe that technology always improves 
with time and that this set of problems is no different from any other 
technical challenge.

Data management and sharing. There are many reasons why the 
original image data should be maintained. One obvious reason is that 
the needs of different investigators might mean that the extraction of 
a layout graph for one will not suit the needs of another, whereas the 
original image data had information that will. This requires solving 
two problems: the maintenance of the original data despite its large 
size and the developing of means for sharing it among laboratories 
that are geographically distributed.

For both of these problems, one must be aware of the data transfer 
rates available today. For connectomics, we would argue that online 
data transfer rates today are simply too slow to allow moving the data 
to remote laboratories far from the data source. Current achievable 
data rates between distant sites are, at best, 300 megabits per second  
(a commercially available optical fiber connection), which would 
translate to about 1.75 years to transfer 2 petabytes of data.

Given this limitation, when planning the storage of data at the peta-
scale level, there are few viable options: store it locally on disk or on 
tape, or transfer it to a remote mass-storage site piecemeal, via disk 
or tape delivered by a courier. As can be expected, each approach has 
its own technical drawbacks and cost limitations. None of them seem 
to scale in a way that would make them viable beyond the first few 
peta-bytes of data.

Genomics shows how powerful it is to provide investigators access to 
sequence data that they had no part in acquiring. In connectomics, the 
same is true. Online accessibility is therefore the obvious approach to 
sharing data in this day and age. But given the above-mentioned online 
transfer rates, sharing is relegated to either transferring online only the 
output of the data analysis (that is, layout graphs) or defaulting to non-
online transfer in the form of disks or tapes to central sharing sites.

In the end, storing petabytes of image data requires large capital 
investments that may be hard to justify unless there is commercial 
value in the data. The much smaller reconstructed layout graph is 
easier to deal with. However, at the moment, there is no consensus 
on what data such a graph should keep and what can be spared (for 
example, do you want the location of glia in the connectomic data?). 
Imagine, however, a data repository that is connected by fast local 
lines to a powerful image processing computer system that can gener-
ate segmentation and layout graphs. This opens up the possibility that 
scientists ‘order-up’ a layout graph that has the features they particu-
larly are interested in studying. For this to work, there would have to 
be unprecedented cooperation and coordination between laboratories 
and sufficient capital investment and cost-sharing strategies to keep 
such an effort going. One such effort that is already under way is the 
Open Connectome Project24.

Conclusions
Connectomics is a nascent, data-driven field with parallels to the far 
more developed biological discipline of genomics25 that serves both 
to test existing hypotheses and generate new ones. In connectomics, 
both the petabytes of original image data and the terabytes of recon-
structed layout graphs can be considered to be digital versions of the 
brain26. The prospects for the success of this field depend on how 
easily this digital brain can be mined.

One of the biggest obstacles to many high-minded projects is 
money, and connectomics is no exception. Generating, storing and 
transforming brain tissue into layout graphs is very expensive. It 
is possible that this field will succeed only if a clear commercial or 
human health application becomes evident. The catch here is that a 
significant investment must be made before it will be possible to know 
the value of this data to society or business. Fortunately, there are 
potentially many avenues of commercial value in connectomics, rang-
ing from treating brain diseases to applying the lessons learned from 
connectome graphs to making computers smarter. Already there are 
efforts under way to generate neuromorphic hardware and software 
and to apply lessons from cortical circuits to machine learning. Our 
foray into this effort suggests that, at this point in time, success will 
absolutely require biologists, engineers and computer scientists, work-
ing on an equal footing through the many challenges of transforming 
real brain into a useful digital form.
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Lastly, it is important not to forget the challenges that are beyond 
the horizon. The outputs of our big data effort will be connectome 
graphs, which, even for the cortex of a small mammal, can reach 
several terabytes in size. It is perhaps poetic that in analyzing these 
smaller graphs, we will find ourselves once again faced with another, 
completely uncharted, big data problem.
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