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This is the Table I Want! Interactive Data
Transformation on Desktop and in Virtual Reality

Sungwon In, Tica Lin, Chris North, Hanspeter Pfister, Fellow, IEEE, and Yalong Yang

Abstract—Data transformation is an essential step in data science. While experts primarily use programming to transform their data,
there is an increasing need to support non-programmers with user interface-based tools. With the rapid development in interaction
techniques and computing environments, we report our empirical findings about the effects of interaction techniques and environments
on performing data transformation tasks. Specifically, we studied the potential benefits of direct interaction and virtual reality (VR) for
data transformation. We compared gesture interaction versus a standard WIMP user interface, each on the desktop and in VR. With
the tested data and tasks, we found time performance was similar between desktop and VR. Meanwhile, VR demonstrates preliminary
evidence to better support provenance and sense-making throughout the data transformation process. Our exploration of performing
data transformation in VR also provides initial affirmation for enabling an iterative and fully immersive data science workflow.

Index Terms—Immersive Analytics, Data Transformation, Data Science, Interaction, Empirical Study, Virtual/Augmented/Mixed Reality

✦

1 INTRODUCTION

Data transformation is a data science process that converts
a data set into the desired format to enable subsequent data
science tasks, like visualization and modeling [1]. It is well
recognized that data scientists need to spend an excessive
amount of time doing data transformation, making it essen-
tial but also the most tedious and time-consuming aspect
of a data science project [2], [3]. Using a programming
language, like SAS, R, or Python, is the standard way of
performing data transformation. However, as data science
becomes ubiquitous and exposed to people with limited
programming knowledge, the prerequisite of knowing to
program makes data science inaccessible to a large group of
professionals whose workflows involve data [4], which we
called non-technical data workers. As a result, the back-and-
forth communications caused by data science’s iterative and
open-ended nature can heavily inhibit insight discovery and
decision-making.

In response, like in many other data science processes,
there is an increasing trend of providing user interface
based (UI-based for short) tools for data transformation
(e.g., Tableau [5] for visualization and AutoML [6], [7] for
modeling). These UI-based tools lower the entry barrier for
data science and also help reduce errors [8]. However, even
though there exist several commercial UI-based data trans-
formation tools (e.g., Tableau Prep Builder [9], Trifacta [10],
and Alteryx [11]), the field lacks an empirical understanding
of people’s experiences in using these tools and the con-
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siderations in designing them. Moreover, while the WIMP
(windows, icons, menus, pointer) metaphor is typically used
for constructing UI-based tools, modern interaction tech-
niques that allow direct manipulation of the visual elements
in the same space (named embedded interaction) [12], [13]
were found to be more time-efficient in specific scenarios,
like manipulating visualizations [14], [15]. Most notably,
Kandel et al. [2] and Nandi et al. [16], [17], [18] found their
UI-based tools to be more efficient in low-level data transfor-
mation tasks. However, it is unclear if their findings can be
generalized to more realistic and complicated scenarios. Our
first goal is to investigate the potential benefits of embedded
interaction techniques over traditional WIMP interfaces in
more realistic data transformation tasks.

On the other hand, in addition to interaction tech-
niques, the rapidly evolved display and interaction environ-
ments (e.g., virtual and augmented reality or VR/AR) offer
tremendous opportunities for creating innovative human-
computer interaction experiences. Specifically, there is a
growing interest in using VR/AR for data analysis, bringing
an emerging research topic — Immersive Analytics [19],
[20]. From recent studies, there are two most frequently
reported motivations for using VR/AR in analytics: large
display space [21], [22], [23], [24] and embodied interaction [25],
[26], [27]. We believe there is great potential to explore
whether those identified benefits can be generalized in
improving the data transformation workflow. On the other
hand, standard mid-air methods in VR/AR are not suitable
for tasks requiring high-precision interactions [28], [29],
which could be inevitable in some data transformation
tasks. Therefore, our second goal is to investigate how these
identified pros and cons can affect data transformation tasks
in immersive environments.

Data science is iterative by its nature and does not follow
a sequential pipeline. Consequently, alternating between
different steps is inevitable [1]. For example, after observ-
ing some visualizations, analysts may need to perform
extra data transformations for the next analysis iteration.
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Although visual exploration (e.g., ImAxes [26] and Data-
Hop [30]) is feasible in a fully immersed manner, there is no
immersive data transformation tool (i.e., tools for explicitly
changing data table formats). When analysts want to use
immersive visualization, they have to switch between VR
and desktop to complete the iterative data science tasks,
causing high overhead for context-switching. To this end,
we study immersive data transformation tools to progress to
a future where analysts can be fully immersed in VR for the
entire data science workflow and maximize the benefits of
the next generation of display and interaction environment.

To close these gaps, we developed prototypes with em-
bedded interactions on the desktop and embodied inter-
actions in VR for non-technical data workers to support
essential data transformation operations. Compared to a
standard WIMP user interface, users can directly manipu-
late data tables through mouse or physical gestures (e.g.,
overlay one table on top of another to merge them, see Fig. 1).
We compared our interaction designs to WIMP for desktop
and VR. To best simulate real-world scenarios, instead of
testing low-level tasks, we asked participants to transform
a set of data tables into a target format. We found that
participants required a similar amount of time to complete
data transformation in VR and on a desktop. Meantime, VR
demonstrated the potential to facilitate strategic thinking
and support provenance better. Subjectively, participants
found the WIMP user interface on a desktop most familiar,
and using VR was more physically demanding. On the
positive side, VR was perceived as more engaging, and
participants overall preferred the gesture-based experience
in VR. The contributions of this paper are twofold: first,
the designs of gesture-based interactions for essential data
transformation operations on desktop and in VR; and sec-
ond, a user study systematically investigating the effect of
interaction methods (WIMP vs. gesture) and computing
environments (desktop vs. VR) on performing essential data
transformation operations.

2 RELATED WORK

Our work is built upon two lines of prior work: data trans-
formation tools and interaction methods. We also extend
immersive analytics by enabling data transformation, an es-
sential data science workflow, in immersive environments.

2.1 Data Transformation Tools

Programming-based tools are widely used by people with
expertise and experience in programming. A wide range of
libraries has been developed to support data transforma-
tion, like Pandas [31], dplyr [32], tidyr [33], and plyr [33].
Programming-based tools are expressive, and users can use
their almost “exhaustive” APIs and parameters to com-
plete various data transformation tasks. However, master-
ing these tools requires extensive training and leads to
a steep learning curve. Debugging complicated scripts is
also oftentimes challenging [34]. There are a series of at-
tempts to address these issues. As representative examples,
DataLore [35] provides code suggestions to speed up the
data transformation process. Along a similar line, Wrex [36]
uses the notion of programming-by-example to generate
data transformation code. On the other hand, Somnus [34]
visualize data transformation scripts to help debug and gain

a better overview of the process. Yet, users of these tools
are still expected to be experienced in programming, which
excludes a large group of non-technical data workers.

UI-based tools allow people to manipulate their data
without programming knowledge. Microsoft Excel is un-
doubtedly the most popular UI-based data transformation
tool. Performing simple operations (e.g., editing values,
sorting and filtering a column) is straightforward with its
WIMP user interface. However, more complicated opera-
tions (e.g., merging two tables) requires knowing the specific
“secret” menu item or writing code. A few commercial UI-
based tools aim to allow the users to quickly find the needed
menu items, like Tableau Prep Builder [9], Trifacta [10],
and Alteryx [11]. Wrangler [2], meanwhile, provides natural
language as ways users can specify the intended operations.
However, users could get into trouble with discoverability
(i.e., the ability to find and execute features) as a common
challenge faced by a conversational user interface [37].
GestureDB project enables gestures to describe the intended
database queries [16], [18]. Our gesture design on the desk-
top environment shares many similar characteristics with
their system, and we adapted and extended the gesture-
based data transformation method to VR.

Empirical results. Some of the proposed tools have been
evaluated, for example, Wrex was found more beneficial
than a standard programming interface [36], and Wrangler
was found to outperform Excel [2]. Additionally, the Ges-
tureDB system was found to be more effective than the
programming interface and non-gesture UI-based interface
in performing single operations [16], [18]. We focus on UI-
based data transformation tools as they lower the barrier
for non-technical data workers. Our study aims to enrich
the empirical understanding of using UI-based data trans-
formation tools in tasks that require a series of operations.

2.2 Embedded and Embodied Interactions
We consider both embedded and embodied interaction un-
der the same notion of direct manipulation of visual repre-
sentations. Direct manipulation contrasts with the standard
WIMP UI design, which requires users to trigger operations
on a space-separated area different from the area with visual
representations.

Performing direct manipulation on a flat screen is con-
sidered embedded interaction. It has been widely used
in many UIs. For example, when uploading an email at-
tachment, instead of clicking a button to select a file from
a newly opened file browser, people can drag&drop the
file into the window. In addition to this simple example,
it has been used in many other applications, like annota-
tion [38], image editing [39], and content organization [40].
For data science, some work explored embedded interaction
in manipulating data visualization [12], [14], [15], [41], [42],
analysis [43], [44] and modeling [45]. Most relevant to our
work, GestureDB demonstrated some benefits of embedded
interaction for elementary operations [16], [18], and we
aim to study its potential benefits in more complex data
transformation tasks.

Performing direct manipulation using body movement
is considered embodied interaction. The ability to track
physical movement is essential to enable embodied inter-
action, which is an intrinsic characteristic of VR. As a result,
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Figure 1. Four conditions designed for performing data transformation in the user study, including a combination of desktop or VR environments,
and WIMP or gesture interactions.

many basic VR interactions are embodied. For example,
grab&move virtual objects, and rotate the head to change
the viewpoint. Embodied interaction has been explored for
authoring visualizations [26], navigating in space [23], [46],
and switching between different views [25]. We are inter-
ested in how we can adapt and extend the gesture designs
from desktop to VR and whether the benefits of embodied
interaction can be generalized to data transformation tasks.

As evaluated in the aforementioned works, one of the
motivations of direct manipulation design is to reduce the
number of context-switching needed by having the interac-
tion and visual representation in the same display area. We
are interested in if this identified benefit can facilitate data
transformation tasks.

2.3 Immersive Analytics Toolkits
Immersive Analytics has exploded into a fast-growing body
of research on techniques and toolkits [19]. Existing Im-
mersive Analytics research strongly focuses on data visu-
alization [20], [47]. Specifically, a few toolkits enable data
scientists to create immersive data visualizations, includ-
ing DXR [48], VRIA [49], IATK [50], DataHop [30] and
ImAxes [26]. While ImAxes and DataHop provide a fully
immersive visualization authoring experience, the others
require users to create and configure visualizations on the
desktop and view visualizations in the immersive environ-
ment. More importantly, a data science project is oftentimes
iterative and includes more than just data visualization.
Immersive data visualization alone cannot fully leverage
immersive environments for data analysis. In this study, we
explore how we can enable immersive data transformation
to make progress toward a fully immersive data science
workflow.

3 EMBEDDED AND EMBODIED GESTURE DESIGN

Our study is intended to investigate the opportunities in
using novel interaction methods (i.e., embedded and em-
bodied Gesture) and emerging computing environments
(i.e., VR) to better support data transformation. We first
reviewed the literature to identify the necessary operations
and then designed gestures for both Desktop and VR.

3.1 Selecting Data Transformation Operations

Kasica et al. [51] summarized 21 fine-grained data transfor-
mation operations across five categories (i.e., create, delete,
transform, separate, and combine) on three targets (tables,
columns, and rows), see Table 1. As the first attempt to
compare data transformation experience on desktop and
in VR, we focus on basic operations that are commonly
used by non-technical data workers without the need for
programming. To this end, we excluded operations that
require programming-like input, including create, transform,
separate, and combine operations on rows and columns.
For example, one typical combine columns operation can be
inputting a formula to calculate the weighted average of
selected columns. One exception was the summarize rows
operation, as it does not require inputting a formula.

In summary, we support 12 operations, including all nine
table, one-column, and two-row operations. See Table 1.

3.2 Designing Gestures

After analyzing the selected operations, we found that
some operations have differences at the semantic level but
imply the same interaction analogy. Specifically, Kasica et
al. described extend, supplement, and match as operations to
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Figure 2. VR data table and gestures for data transformation tasks in the VR+Gesture condition. VR controllers, represented as hand models in the
VR prototype and in the figure above, are used to perform these operations. The operation that was excluded from the study is marked with *.

Table 1
A summary of our supported data transformation operations and their

matching gestures.

Operation  Gesture

C
re

at
e create tables ✘

create columns ✘

create rows ✘

D
el

et
e delete tables delete tables

delete columns delete columns

delete rows delete rows

Tr
an

sf
o

rm

rearrange tables sort

reshape tables reshape

transform columns ✘

transform rows ✘

Se
p

ar
at

e

subset tables filter + extract

decompose tables filter + extract

split tables extract

separate columns ✘

separate rows ✘

C
o

m
b

in
e

extend tables merge

supplement tables merge

match tables merge

summarize rows group / ungroup

combine columns ✘

interpolate rows ✘

combine two data tables, with their difference being row-
wise vs. column-wise combination or inner-join vs. outer-
join [51]. All three operations suggest an interaction on
two tables that results in one table. Thereby, we found one
gesture (i.e., merge, see Fig. 1) can meet the semantic require-
ments of all three operations. The same applies to subset
and decompose, and we used a combination of filter+extract
gestures for them. Deleting tables, rows, and columns shares
a similar gesture as the metaphor of throwing things away
but differs in the target selection.

We iterate the gesture designs among the team members.

The design objective is to ensure the gestures can intuitively
reflect their semantic meanings of data transformation and
that no conflicts exist between different gestures. Some ini-
tial gesture designs were inspired by the teaching materials
of an undergraduate data science course taught by two co-
authors, where they frequently used gestures as metaphors
for data transformation operations. Specifically, within a
data table, horizontal movements were naturally linked to
column operations, while vertical movements were con-
sidered row operations. Meanwhile, operations involving
multiple data tables were intrinsically demonstrated as two-
handed gestures. This initial design covered a good range
of operations summarized by Kasica et al. [51]. We further
introduced more gestures to increase the coverage of data
transformation operations, Table 1. In summary, we have
designed the following gestures:
• Extract: after selecting the target row(s) or column(s), pull

them out from the original data table to create a new table
with the selected content. The original table will be kept,
and a new table will be created.

• Merge: move one table to collide with another table and re-
lease to combine two tables into one. If the key columns [2]
are selected and match the criteria, an operation similar
to JOIN in SQL will be performed. If no key columns
are selected, and two tables share the same structure, an
operation similar to UNION in SQL will be performed.
Otherwise, the two tables cannot be combined. After
merging, the original tables will be kept, and a new
merged table will be created.

• Filter: for each column, a histogram is created to show its
distribution. Brush the histograms to select the range of
values to keep. The original table will be updated.

• Sort: swipe at a column from top to bottom or bottom to
top to rearrange data in ascending or descending order.
The original table will be updated.
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Figure 3. Desktop data table and gestures for data transformation tasks in the Desktop+Gesture condition. The operation that was excluded from
the study is marked with *.

• Group/Ungroup: after selecting the target column(s),
squeeze to aggregate the values, while expand to restore the
aggregated values to their original values. The original
table will be updated.

• Reshape: after selecting the target column(s), rotate clock-
wise to transform LONG data shape to WIDE shape, while
rotate counterclockwise to transform WIDE data shape to
LONG shape. For LONG to WIDE, the values in target
column(s) will be grouped into key-value sets, while for
WIDE to LONG, the values in target column(s) will be
categorized. The original table will be updated.

• Delete: after selecting target row(s), column(s) or table(s),
throw them away to remove the selected content. The
original table will be replaced.

Our gesture design on Desktop shares some similarities
with the GestureDB system [16], [18]. We further adapted
and extended those gestures into embodied interactions in
VR. Most gestures require only one input device (i.e., for
extract, merge, filter, sort, reshape, and delete). Those gestures
are almost identical in interaction behaviors on Desktop and
VR (i.e., consist of actions like click, drag, and drop). In VR,
the ability to use two input devices (i.e., left and right hand-
held controllers, which are visually represented as hands in
our prototype) provides an alternative way to merge data ta-
bles: people can manipulate two data tables simultaneously
by grabbing one in each hand and moving them close to
merge them. The group/ungroup gestures also leverage the
two input devices in VR to squeeze and expand, while we use
the draw a circle counterclockwise and clockwise to imitate
the same semantic meaning on the Desktop due to only one
input device is available.

The designed gestures for VR are illustrated in Fig. 2, and
the desktop gestures are presented in Fig. 3. We conducted
a pilot study with three computer science graduate students

who have data science experience to verify the usability of
our designed gestures. Throughout this pilot, we confirmed
the feasibility of our chosen gestures to complete data
transformation tasks. The pilot study revealed no major
operational issues and confirmed the intuitiveness of our
gestures.

4 USER STUDY

This study involves two primary experimental factors: the
computing environment (or ENVIRONMENT, i.e., Desktop
vs. VR) and the interaction method (or INTERACTION, i.e.,
WIMP vs. Gesture), see Fig. 4.

4.1 Study Conditions

To systematically investigate the two primary experimental
factors, we included four conditions that cover all their in-
teractions (Fig. 4), namely, Desktop+ WIMP, Desktop+

Gesture VR+ WIMP, and VR+ Gesture(Fig. 1).
The conditions are also demonstrated in the supplemental
video.

Desktop Conditions: On the Desktop, we provide an
infinite canvas as the primary working space. The infinite
canvas is a zoomable and pannable canvas with no boundary
where the user can place and move digital content (data
tables, in our case). It provides extra freedom to content
organization and overcomes the size limitation of a physical
screen. Various commercial tools (e.g., Miro [52], Google
Jamboard [53], Microsoft Whiteboard [54], and SAGE [55])
use it as their working space, and there are also a series
of attempts of using it in data science [55], [56], [57], [58].
Following their success and design, we allow the user to
zoom in and out of the workspace by scrolling the mouse
scroll wheel. The same interaction has been implemented
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GestureWIMP

DW, see Fig.1 (a)

VW, see Fig.1 (c)

DG, see Fig.1 (b)

VG, see Fig.1 (d)

Desktop

VR

Figure 4. Our study compares two primary factors, leading to four
conditions.

in many widely used Zoomable User Interfaces (ZUI), like
Google Maps. The user can also move data tables to any
desired location using drag&drop. A mouse is the input
device for the two Desktop conditions. In Desktop+WIMP,
the user clicks buttons to trigger operations (Fig. 1(a)). We
provide one button for each operation and place all buttons
on a panel that is fixed on the right side of the screen. It
is visible to the user all the time. In Desktop+Gesture, the
user uses our implemented gestures (Fig. 3) to perform
operations (Fig. 1(b)).

VR Conditions: In VR, we allow the user to physically
move in the space and freely place and move data tables to
any location around them. In VR+WIMP, operation buttons
were placed on a panel and interacted in the same way
as in Desktop+WIMP. Due to the different display spaces
between Desktop and VR, it is unclear where to place this
panel. To make the panel placement in VR as close as
the Desktop+WIMP condition, we initially placed it using
a head-reference approach [59], i.e., the panel will move
as the user rotate their head, always visible to the user.
However, our preliminary test indicates that such a design
is distracting and annoying. We then changed the design
to attach the panel to a left-hand-held controller according
to [23], where the user can easily access or hide it with
arm movements. The latter design was clearly preferred by
the users we tested with, and was used in the user study
(Fig. 1(c)). We also noticed participants struggled to select
rows and columns precisely in our pilot study. Participants’
comments revealed the need for a real-time visual indicator
for selections. Thus, we rendered a “red dot” to indicate
the pointer position on the data table. This mitigated the
difficulties in selecting rows and columns based on another
round of pilot tests. In VR+Gesture, the user uses our imple-
mented gestures (Fig. 2) to perform operations (Fig. 1(d)).

Summary: WIMP and Gesture differ in the way they
trigger the operations. Additionally, performing operations
in WIMP requires the user to move the cursor or pointer
back and forth between the data tables and menu panel,
which is likely to introduce a context-switching cost, while
the gestures are directly operated on the data tables. Desk-
top and VR both have an “infinite” display space and let
the user reposition the table at any location. Regarding the
navigation method, the Desktop provides pan&zoom, while
VR enables physical navigation.

4.2 Participants

We recruited 20 participants (Male=16, Female=4; Age from
18 to 35) from the university mailing list after screening for
their data transformation experiences with a five-question
quiz. 20 out of 25 respondents answered at least four
questions correctly and were invited to participate in the
study. Nine participants indicated they use VR regularly on
a weekly basis, another nine only used VR occasionally, and
the rest two had no VR experience. All participants had

normal or corrected-to-normal vision. We provided a $20
Amazon Gift Card as compensation for each participant.

4.3 Experimental Setup
For VR conditions, we used a Meta Quest 2 virtual reality
headset with 1920 × 1832 resolution per eye and a 90 Hz
refresh rate. For Desktop conditions, we used a 27” monitor
with a 2560× 1440 resolution and 75 Hz refresh rate, which
is a standard office setup. Both conditions use a PC with an
Intel i7-11800H 2.30 GHz processor and NVIDIA GeForce
RTX 3070 graphics card. We used the Air Link feature from
Meta, which uses the PC for computation and the headset
for rendering. Air Link enables a wireless experience while
still leveraging the stronger computing power from the PC.
Meanwhile, participants could move around more confi-
dently without worrying about being tripped by cables. The
study took place in the space of 3.5 x 3.5 meters (12.25m2),
and we let participants freely walk around the given area
in VR conditions. The participants were asked to place
themselves in the center of the actual space at the beginning
of every VR condition. In Desktop conditions, participants
sat on a comfortable office chair with the monitor placed in
front of them on an office desk.

On the Desktop, every initial data table, including the
target data table, was the same size as 530 × 400 pixels.
The initial tables form a grid layout to maximize the use of
display space, and the target table was placed in the middle
for participants to reference and remember easily. In VR,
five initial data tables, each with the size of 1.15 × 0.65
meters, were placed 1.65 meters in front of the participant’s
initial position in a semi-circular curved layout, which was
identified as an effective space use strategy in VR for multi-
window applications [21], [60], which allows all data tables
to be placed at the same distance within participant’s reach.
The target table in VR was placed 35 cm higher than the ini-
tial table for the same purpose as in the Desktop conditions,
i.e., to be easily distinguishable from other tables. The initial
data tables and the target data table cannot be deleted. This
is to avoid accidentally deleting those data tables and being
unable to complete the task.

4.4 Task and Data
We asked our participants to perform data transformations with
five given data tables to produce a table in the target format.
Participants could move and resize all the given data tables
and the target data table. To decide the number of given data
tables, we piloted three different options (i.e., three, five, and
eight). We found the task was too obvious with three tables
and too difficult with eight tables, so we decided to use five
tables for the study.

After training, the participants were asked to use data
transformation operations to complete the task with each
condition. Initially, we included all operations from Sec. 3.2.
However, in our pilot tests, we found participants had a
hard time conceptually understanding and applying the
reshape operation, resulting in an unexpectedly long com-
pletion time for each trial (>30 minutes). This was aligned
with some previous works [2], [51], [61], pointing out the
reshape operation can be too complicated for novice users.
Thus, we decided to remove the reshape operation from the
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task to target non-technical data workers and control the
study duration. We further conducted another test without
using reshape. Participants could complete the task in a
reasonable amount of time (around 15 minutes per trial)
without struggling. To ensure the difficulty of each trial was
similar, all trials required a minimum of twelve operations.
The sequence of the required minimum operations in each
trial was different to reduce the learning effect.

We used tabular data sets collected online for training
and study tasks. To eliminate the effect of participants’
previous experience, we explicitly told them the data was
not reflective of real-world information. We also controlled
the data size of initial data tables (row count for each: 30,
total column count: ∼20) and target table (row count: 10,
column count: ∼6). We have included all our study stimuli
in the supplementary material.

4.5 Design and Procedures

The conducted user study followed a full-factorial within-
subjects design. We used a Latin square (4 groups) to
balance the study conditions. Each participant completed
four study trials, i.e., one for each condition. The user study
lasted two hours on average. The participants were first
welcomed and reviewed to sign a consent form. Participants
were then instructed about the purpose and steps of the
study. They will then complete the following components of
the study:

Adjustment: We asked participants to adjust the Quest
2 headset (e.g., the IPD) to a comfortable setting for the
VR conditions. Similarly, for the Desktop conditions, par-
ticipants were instructed to adjust the chair height to their
preference before starting the tasks. We confirmed that all
participants could see the sample text clearly in all condi-
tions before proceeding.

Training: We first introduce the data transformation
terms, considering people might use different terminologies
for the same data transformation. We then introduced the
computing environment (i.e., Desktop or VR) when a par-
ticipant first encountered it. Sufficient time was provided for
them to get familiar with the hardware until the participant
asked to continue (usually around five minutes). For each
study condition, when it first appeared to the participant,
we first asked them to watch a video demonstrating each
operation in that study condition. We confirmed that the
participant fully understood how to perform each operation
before moving to the next one. After that, we asked partici-
pants to perform the same task as in the user study but with
only three initial data tables and one target data table. In this
phase, we encouraged participants to ask questions about
interactions and study tasks. All participants completed the
training by finishing the task and confirmed familiarity with
the study conditions (the training task took around five to
seven minutes).

Study Task: The study task with each study condition
started after participants completed the training session for
that condition. Before we started the study, we ensured
participants were well-informed by providing sufficient
context. This included a brief overview of the datasets and
the high-level semantic meaning of the target data table.
Participants had no time limit for task completion, but we

instructed participants to complete the task as accurately
and as fast as they could. For the VR environment, we repo-
sitioned participants to the room’s center and let them face
the same direction before each study task. All participants
were able to complete the study task.

Questionnaires. Post-condition questionnaires: after com-
pleting the study task with each condition, participants were
first asked to recall their performed operations in sequence.
They were informed about this question at the beginning
of the user study. They then filled out a Likert-scale survey
adapted from SUS and NASA TLX to rate their subjective
experience and provide qualitative feedback about the pros
and cons of that condition. Post-study questionnaires: after
completing all study tasks and post-condition question-
naires, participants were asked to rank all study conditions
based on their overall experience. We asked them to provide
demographic information at the end.

4.6 Measures

We collected quantitative data and interaction records for
each study condition to capture their task performance and
sense-making process. Specifically, we used the following
measures. Error score: we compared the difference between
the target table and the participant’s result table by rows
and columns. Each difference contributed to one error score.
The order of rows was considered (as sorting operation was
included in the task), while the column order did not affect
the error score. Time: we measured the time from the initial
data tables that were first rendered to the participant’s task
completion. Number of operations: we recorded the total
number of operations performed by participants to com-
plete the task. Recall score: we calculated the Levenshtein
distance between the participant’s actual performed opera-
tions sequence and recalled operations sequence that were
collected in the questionnaire. A lower value means a closer
match and suggests participants can remember their action
history more accurately. Number of performed delete op-
erations: we recorded the total number of performed table
deleting operations in each study trial. Number of data
tables left: we documented the number of data tables when
the participant completed each study trial.

We also collected subjective ratings on a seven-point Lik-
ert scale for mental demand, physical demand, learnabil-
ity, engagement, and usability. Lower mental and physical
demands were considered positive, while higher learnabil-
ity, engagement, and usability were treated as beneficial.
Participants also ranked their overall experience. Qualita-
tive feedback about each condition’s pros and cons were
collected from participants. Two authors derived a set of
codes from the responses of the first five participants and
applied the codes to the remaining responses.

4.7 Hypotheses

We developed our hypotheses based on previous empirical
results and our analysis of study conditions, see Sec. 4.1.

Error score. We did not expect any difference in the error
score as all required operations were provided consistently
across all conditions. We believed that participants could
complete the study task for all conditions successfully.
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Time. We expected Desktop to outperform VR
(Htime−env) based on previous studies, which found desk-
top interactions faster than VR interactions due to less
required movement [27], [62], [63], [64]. Meanwhile, we an-
ticipated Gesture to be faster than WIMP (Htime−interaction)
considering better completion time of embedded/embodied
interaction over WIMP found in earlier research [14], [15].

Number of operations. Our tasks require a sense-
making process of foraging and structuring information to
solve the problem. Under such a context, we considered
VR requires a fewer number of operations than Desktop
(Hops−env) based on the previous investigation of sense-
making in immersive space [24], [65]. We also expected
Gesture requires a fewer number of operations than WIMP
(Hops−interaction). With a lower context-switching cost, Ges-
ture would have fewer disruptions from navigation [66] and
require less “mental map” rebuilding for the users [67], [68].

Recall score. We expected participants to have a better
recall performance in VR than Desktop (Hrecall−env), as
VR with a 3D spatial environment was found to be more
effective than Desktop for memorizing and retrieving infor-
mation [69]. Meanwhile, we foresaw Gesture outperforms
WIMP (Hrecall−interaction) since performing body motions
with the Gesture has a positive effect on memorability [70].

Number of performed delete operations and data ta-
bles left. We predicted a fewer number of delete opera-
tions (Hdel−env) and a larger number of data tables left
(Hleft−env) in VR than in Desktop. We argue that the
larger display space in VR allows participants to keep more
intermediate results and reduce the need to delete them. We
also anticipated Gesture requires a fewer number of delete
operations (Hdel−interaction) and has a larger number of
data tables left (Hleft−interaction) than WIMP. As discussed,
Gesture has a lower context-switching cost than WIMP,
which can reduce the content organization workload and
increase the maximum number of data tables participants
can handle.

5 RESULTS

We present our statistical results regarding our hypothe-
ses, outline participants’ strategies for using the display
space and summarize qualitative feedback for each condi-
tion. For dependent variables or their transformed values
that met the normality assumption, we used linear mixed
modeling to evaluate the effect of independent variables
on the dependent variables [71]. Compared to repeated
measure ANOVA, linear mixed modeling does not have
the constraint of sphericity [72, Ch. 13]. We modeled all
independent variables (ENVIRONMENT and INTERACTION),
and their interactions as fixed effects. A within-subject de-
sign with random intercepts was used for all models. We
evaluated the significance of the inclusion of an indepen-
dent variable or interaction terms using a log-likelihood
ratio. We then performed Tukey’s HSD posthoc tests for
pairwise comparisons using the least square means [73]. We
used predicted vs. residual and Q—Q plots to graphically
evaluate the homoscedasticity and normality of the Pearson
residuals respectively. For other dependent variables that
cannot meet the normality assumption, we used the Fried-
man test to evaluate the effect of the independent variable,

Time (s) # of Operations Recall Score # of Delete # of Tables Left

Desktop WIMP Desktop gesture VR WIMP VR gesture

vs 1.38

vs 1.98

vs 0.72

vs 0.82

vs 2.05

vs 1.30

vs 1.57

vs 0.56

vs 1.27

vs 0.60

vs 1.65

vs 0.76

vs 2.35

vs 1.04

vs 1.20

vs 1.53

vs 1.13

vs 1.47

Pairwise comparisons with significant difference and their effect size (Cohen’s d)

Figure 5. Measurement of time, the total number of operations, recall
score, the number of delete operations, and the number of tables left
by task. Solid lines indicate statistical significance with p < 0.05, and
dashed lines indicate p < 0.1. The tables below show the effect sizes
for pairwise comparison. Circles with black borders indicate the winning
conditions.

as well as a Wilcoxon-Nemenyi-McDonald-Thompson test
for pairwise comparisons. Significance values are reported
for p < .05(∗), p < .01(∗∗), and p < .001(∗ ∗ ∗). We
also report mean values, 95% confidence intervals (CI), as
well as Cohen’s d as an effect size indicator for significant
comparisons.

5.1 Quantitative Results
Results are illustrated in Fig. 5, Fig. 6, and Fig. 7. All
statistical analyses and anonymized data were included in
the supplementary material.

Error score. As expected, all participants could complete
the study task correctly under all conditions.

Time. Surprisingly, we found ENVIRONMENT (p = 0.14),
INTERACTION (p = 0.51) and their interaction (p = 0.42) did
not have a significant effect on time. All conditions took sim-
ilar amount of time: Desktop+WIMP (634s, CI=73s), Desk-
top+Gesture (727s, CI=134s), VR+WIMP (744s, CI=116s),
and VR+Gesture (728s, CI=96s). Desktop+WIMP tended to
be slightly faster but without statistical significance. Thus,
we reject Htime−env and Htime−interaction.

Number of operations. We found significant effects of
ENVIRONMENT (∗∗∗), INTERACTION (∗∗∗) and their interac-
tion (∗∗∗) on the total number of performed operations. VR
conditions (WIMP with 21.0, CI=2.90 and Gesture with 20.5,
CI=2.54) required less number of operations to complete
the study task than Desktop conditions (WIMP with 26.6,
CI=4.22 and Gesture with 43.8, CI=7.06). All comparisons
were statistically significant (∗) except for the compari-
son between VR+WIMP and Desktop+WIMP (p = 0.057).
On Desktop, Gesture also required more operations than
WIMP (∗ ∗ ∗). In summary, we accept Hops−env , and reject
Hops−interaction.

Recall score. We found significant effects of ENVIRON-
MENT (∗ ∗ ∗), INTERACTION (∗ ∗ ∗) on the recall score, with
a marginally significant effect from their interaction (p =
0.081). Condition-wise, participants can remember their ac-
tion history better in VR+WIMP (5.0, CI=1.83), VR+Gesture
(7.4, CI=2.20), and Desktop+WIMP (7.3, CI=1.94) than Desk-
top+Gesture (18.6, CI=5.42). VR+WIMP was also marginally
more memorable than Desktop+WIMP (p = 0.078). For both
the WIMP and Gesture, VR could better support the recall
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Figure 6. Subjective ratings on mental demand, physical demand, learn-
ability, engagement, and usability by task. Solid lines indicate statistical
significance with p < 0.05, and dashed lines indicate p < 0.1.

process than a Desktop. Dekstop+WIMP was also found
more memorable than Desktop+Gesture (∗ ∗ ∗). In conclu-
sion, we accept Hrecall−env , and reject Hrecall−interaction.

Number of performed delete operations and number
of data tables left. For the number of performed deleting
operations and the number of left tables, there was a sig-
nificant effect from ENVIRONMENT (all ∗ ∗ ∗). INTERACTION
only had a significant effect on the number of performed
deleting operations (∗). Participants deleted fewer tables
and kept more data tables in VR than in Desktop (all ∗ ∗ ∗).
In summary, along with accepting Hdel−env and Hleft−env ,
we reject Hdel−interaction and Hleft−interaction.

Ratings. We found a significant effect of the study
condition on physical demand (∗ ∗ ∗), learnability (∗∗), and
engagement (∗ ∗ ∗). Participants found VR conditions (WIMP
with 4.0, CI=0.71 and Gesture with 3.7, CI=0.92) more physi-
cally demanding than Desktop conditions (WIMP with 2.25,
CI=0.69 and Gesture with 2.6, CI=0.88). Participants consid-
ered Desktop+WIMP (4.7, CI=0.55) most easy to learn, with
Desktop+Gesture (3.45, CI=0.81), VR+WIMP (4.0, CI=0.55),
and VR+Gesture (3.7, CI=0.76). VR+Gesture (6.4, CI=0.41)
was found more engaging to use than Desktop conditions
(WIMP with 4.7, CI=0.73 and Gesture with 5.3, CI=0.64).

Ranking. Participants ranked the VR+Gesture as provid-
ing the best overall experience, with 65% ranked it as first
place, and 25% ranked it as second place (i.e., 90% in total
ranked VR+Gesture as the first or second place).

5.2 Layout Strategies
To better understand how participants used the display
space, we grouped the final layout of each trial. We found
participants had different strategies in Desktop and VR, but

Overall Exp
100%

75%

50%

25%

0%

vs 1.37

vs 1.37

vs 1.56

Comparisons with 
significant difference

Effect Size 
(Cohen’sd)

Desktop WIMP Desktop gesture VR WIMP VR gesture

1!"
2#$
3%$
4"&

Figure 7. User ranking of overall user experience for each condition.
Solid lines indicate significant differences with p < 0.05.

used a similar layout between Gesture and WIMP. All final
layouts are included in the supplementary material.

On Desktop, we identified four different layout strate-
gies (Fig. 8): Grid (five). Participants placed their data tables
in a regular layout, closely forming a grid shape. Piling
(one). The participant created a few piles of data tables.
Grid+Piling (five). The participants created a regular layout
with some piles of data tables. No obvious pattern (nine).
Roughly half of the participants did not demonstrate a clear
layout pattern and created an “organic” layout.

In VR, 19 out of 20 participants almost did not move
the five initial tables or the target table. Participants seemed
to treat these given tables in as strong anchors and were
reluctant to manipulate them. This observation might reflect
participants’ intention to keep data provenance. Thus, VR
might increase the awareness of provenance and allow
the track of provenance to be more manageable. Regard-
ing the final layouts, we found three different strategies
(Fig. 9). 17 participants performed data transformation be-
hind themselves: Behind-cluster (16). Participants created a
few clusters at the back of their initial orientation. Behind-
piling (one). Participants piled data tables in one cluster
and formed a roughly vertical line at the back of their
initial orientation. Front (three). Participants used the space
in front of their initial orientation, and to avoid occlusions,
they had to delete data tables more frequently. In all strate-
gies, we observed that participants preferred to stay in the
center and place data tables close to them to reduce physical
movements.

Due to limited data points in some strategies, we could
not identify significant performance differences between
different strategies, except that the Front strategy required
more deletion and total operations and had fewer tables left
than other strategies utilizing the entire 360° circular space
in VR.

5.3 Qualitative Feedback

We performed qualitative coding to extract common themes
from user feedback on each condition. For each condition,
we listed the top three mentioned codes and those men-
tioned more than five times by the participants (frequency
shown in parenthesis). We further highlighted the top codes
with other frequently associated codes. Finally, we summa-
rized the overall insights across all conditions. The complete
coding results can be found in the supplemental materials.

Desktop+ WIMP was considered straightforward (7),
and familiar (5). The downsides were limited space (11),
hard to interact (6), and button interaction were not intuitive
(5). Specifically, limited space was the primary concern,
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Figure 8. Four layout strategies used by our participants on Desktop.

(c) Front

(b) Behind: piling(a) Behind: cluster
front

behind

front

behind

front

behind

Figure 9. Three layout strategies used by our participants in VR. The
red dot indicates the position of the participant.

as shown by its association with several codes, including
hard-to-interact (3) and the constant shift in focus from the
working window to the buttons created task disruptions
when executing operations (2).

Desktop+ Gesture was considered intuitive (15), bet-
ter than button (8), and easy to use (8). Because of the intuitive
feeling, it was considered better than buttons and easy to use
by five users, good for merging by four users, and good for
sorting by two users. The primary issues included limited
space (9), hard to interact (8), discoverability issues (6), and
functionality (5). Similar to the Desktop+WIMP, the limited
space was the predominant concern linked to other codes.
This included instances where gestures were occasionally
challenging to execute due to the limited space, which
resulted in creating task disruptions (3), particularly when
executing certain functions (3) that demanded more space,
such as extraction tasks.

VR+ WIMP was praised with large space (12), better
than desktop (9), grabbed&moved navigation was intuitive (7),
easy to use (6), and flexible (6). Specifically, the major benefit
of the large space was associated with flexibility by five
users, easy to use by two users, and good understanding by
two users. Among comments on better than desktop, people
referred to it as easy to use (5), easy to organize (2), and
accessible (2). Conversely, the issues related to functionality
(13). In addition, one participant pointed out that using a

pointer to select two tables from a dropdown menu caused
greater disruption when trying to execute merge operations
compared to the Desktop+WIMP setup. The concerns arose
regarding the constant need to hold buttons on the left hand,
causing task disruptions (6), along with another reason sim-
ilar to those encountered with the Desktop+WIMP. People
had diverse opinions on the functionality, such as hard-to-
select (3), heavy headset (2), and other technical issues like
resolutions.

VR+ Gesture was found to be intuitive (17), better
than button (10), easy to use (7), straightforward (5), and flexible
(5). The majority (17) found it intuitive and subsequently
associated it with better than buttons (7), easy to use (6), and
flexible (4). Three also cited more accessible, and the other
three cited large spaces. Furthermore, people considered
it better than buttons mainly because it is easy to use
(4), straightforward (4), accessible (3), and promotes good
understanding (2). Participants particularly spoke highly
about gesture interactions and grab&move navigation. On
the other hand, the major concern was functionality (12),
mostly with resolution and technical issues (7), but no spe-
cific functionality issues were found to perform operations
in VR+WIMP.

Summary. All conditions were considered easy to use.
In Gesture conditions (Desktop+Gesture and VR+Gesture),
the majority cited intuitive (15 and 17 times, respectively)
and considered them better than button (8 and 10 times). VR
conditions (VR+WIMP and VR+Gesture) were considered
flexible (6 and 5 times) and better than desktop by several
users (9 and 4 times). Interestingly, Desktop+WIMP and
VR+Gesture each were cited straightforward by a handful of
users (7 and 5 times), indicating that users have expected
that WIMP is natural for desktop and 3D gestures for VR
environment. More discussions were presented in Sec. 5.

On the other hand, Desktop conditions hinder inter-
action due to limited space (11 and 9 times) and hard to
interact (6 and 8 times). With VR conditions, the majority
have commented on functionality (13 and 12 times) due
to the unfamiliarity with data transformation in VR, such
as technical issues and feature suggestions. In VR+WIMP,
people found it hard to interact and select (5 times), leading
to creating disturbed (6 times).

6 KEY FINDINGS AND DISCUSSIONS

Performing data transformation in VR and on a
Desktop had similar time performance. Previous studies

produced mixed results in comparing VR and Desktop. In
immersive analytics, for completion time, VR was found to
be primarily beneficial for visualizing spatial data and 3D
shape perception [19], [47], and to be slower than Desktop
due to more required movements (see our time hypothesis
in Sec. 4.7). Our tested task did not involve perceiving 3D
or spatial visualization, so we expected Desktop to be faster
than VR. Surprisingly, our four tested conditions had similar
time performance. We believe the empirical results of VR
being slower than Desktop in performing interactions still
applied to our case, which is partially reflected by the fact
that VR conditions were considered significantly more phys-
ically demanding than Desktop conditions. On the other
hand, unlike the previously tested tasks, our tested task
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not only involved low-level interactions but also required
participants to actively make sense of the data to come up
with a sequence of interactions to complete the task. We
could reasonably expect participants to put a significant
amount of effort into thinking and planning strategies for
a complicated task like ours. Based on this assumption
and our results, we suggest that VR allows participants
to complete the high-level sense-making components faster
than Desktop, which supplements its extra time costs in
performing low-level interactions. Below, we elaborate more
on the high-level sense-making process from the provenance
and strategic thinking perspectives.

VR showed the potential to provide improved prove-
nance over Desktop. Provenance is about the lineage and
processing history of data. It provides a detailed record of
the origins of the data, how it has been processed or modi-
fied, and where and when it transformed over time [74]. The
ability to track provenance can support many applications,
like data quality control, data auditing, and replication [75].
In our study, we used the recall score, the number of performed
delete operations, and the number of data tables left as indicators
of certain aspects of provenance. The recall score measures
the ability to recall the operation history, reflecting when the
data was transformed. The latter two metrics offer objective
measures of the amount of kept information.

In addition to the previously confirmed memorability
advantage in VR (see our provenance hypothesis in Sec. 4.7),
we believe the large display space and embodied navigation
in VR also helped participants keep track of provenance.
First, participants had more space to place tables in VR,
whereas on Desktop, they were more likely to delete tables
to free display space to reduce clutter. Our results of fewer
table deletions and more kept tables in VR than on Desktop
are well aligned with provenance tracking ability. The data
tables, kept persistently visible, provided a reliable reference
for participants to confirm the success of their current oper-
ations. Moreover, they were a handy tool for participants to
return to whenever they made mistakes. This was likely due
to the large display space provided within the VR setup.
Particularly, nine participants explicitly complained about
the display space on the Desktop; for example, “I have a very
limited workspace (on the desktop), and cannot see all the tables
at once, which really hurts my performance (P15).” This limited
space on the Desktop lets participants continually delete the
data tables, which leads to a loss of opportunities to keep
track of the processing history. Second, we consider physical
navigation more efficient than virtual navigation. Previous
research identified the benefits of using physical move-
ments to navigate large displays over virtual navigation
(i.e., zooming) [76], [77]. Our results partially re-confirmed
their findings in VR. 12 participants’ comments reconciled
with our assumption, like, “I have all data tables in front of me
without zooming in & out, and I can focus on the task (P12).” We
found that the participants prefer physical navigation, as it
offers a more intuitive and faster method for altering the
perspective view of their workspace for accessing all kept
information. One participant also specifically described the
use of large display space to improve spatial memory and
embodied navigation in VR: “I like the point that I put the data
table behind me so that I can come back if I make mistakes (P7).”
This feedback aligns well with the improved provenance in

VR, which enhances data quality through auditing without
manually documenting every detail of each step. However,
provenance is still a relatively abstract concept, and our
measurements also only captured certain aspects of it. More
effort is needed to formally define and quantify provenance
in data transformation.

VR demonstrated preliminary evidence of promot-
ing strategic thinking. Participants needed to continuously
develop the next steps in our tested task and evaluate their
progress. We found VR required fewer operations to com-
plete transformation tasks than Desktop, which points to the
potential advantages of VR in supporting strategic planning.
With the improved provenance, it is likely that VR users
can better track the progress and take more efficient steps.
Another potential reason is the flexible arrangement of VR
tables that support easier visual comparison. We observed
all 20 participants in VR grabbed&moved their working table
under the target table for comparison. Meanwhile, partici-
pants rarely performed a similar interaction on the Desktop.
We believe such frequent comparisons enabled continuous
progress evaluation and promoted strategic thinking in VR.
We anticipate the embodied table management (i.e., the
grabbed&moved) and large display space in VR provide a
natural mechanism to support such an approach. In con-
trast, the need for repetitive zooming in/out on Desktop
made participants reluctant to perform the same strategy.
Additionally, participants also commented on their experi-
ences along this line, for instance, “I have many more places
to put the data table (in VR). Organizing the table was way more
manageable (P14).” “The interaction in VR was way better than
the monitor version; the task became way more accessible, and
organizing was easy (P3).”

WIMP tended to be more suitable for Desktop than
Gesture. Unlike previous studies [14], [15], we did not

find positive effects on the collected measures of using Ges-
ture over WIMP on a Desktop. We believe the task and ges-
ture complexities could be the main reasons for our contra-
dictory results. We tested a more complicated high-level task
(average completion time was 10+ minutes per trial) than
the previous low-level tasks (average completion time was
around one minute per trial). Performing a single interaction
using Gesture could outperform WIMP in our study, but the
complexity of Gesture might introduce other overheads that
decreased its performance significantly in our tested task.
The subjective ratings partially confirmed our assumption:
Desktop+Gesture was considered harder to learn than Desk-
top+WIMP. Participants had to remember more gestures
(eight) than in the previous studies (three in [14] and five
in [15]), which might introduce a high working memory and
affect their performance, especially in a more complicated
task. The fact that participants struggled with recalling
their action history in Desktop+Gesture resonated with our
conclusion, with some representative comments like: “The
interaction was confusing (in Desktop+Gesture). I think I would
like[ly] have more errors than other conditions.”.

No noticeable difference in time, efficiency, and prove-
nance measures between WIMP and Gesture in VR.
Similar to Desktop, the identified benefits of body mo-
tion [70] might also be affected by the task and gesture
complexities in VR. On the other hand, we did not find any
significant difference between VR+WIMP and VR+Gesture,
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indicating the overhead introduced by learning and remem-
bering Gesture in VR could be negligible due to its intuitive-
ness. Participants ranked VR+Gesture with the best overall
experience, and some commented on the benefits of using
Gesture in VR explicitly, like “Embodied interaction helps me a
lot in understanding the data story (P2)” and “Using both hands
was very helpful in performing the task (P4).” More importantly,
the embodied table management (i.e., the grabbed&moved)
and physical navigation were provided in all VR conditions.
Compared to interactions for triggering the operations,
these two features might contribute a heavier weight in the
final performance, making both VR conditions have similar
performances. Furthermore, the perceived intuitiveness of
the gestures and embodied interactions was reflected in the
feedback we collected. Comparably, none of the participants
explicitly mentioned Desktop+WIMP to be intuitive.

Various layout strategies exist in both environments.
The “infinite” space in both the desktop and VR condi-
tions allowed participants to freely lay out content in their
workspaces. We found two distinct dimensions in their
strategies: space usage and view management methods. For
space usage, on Desktop, most participants only used space
slightly larger than the initial setup (Fig. 8) with 6 to 9
data tables and adjusted the view by zooming. On the
other hand, the majority of participants in VR utilized the
entire 360° circular space around them to fit more data
tables (12 to 15) (Fig. 9). In VR, previous studies observed
using semi-circular layouts were more frequent [21] and
beneficial over 360° layouts [60], [78] for performing low-
level tasks (e.g., search and comparison). However, for high-
level tasks, our observations aligned well with some other
works, such as sensemaking [79] and visual exploration [80],
where people preferred using the entire fully circular space.
We anticipated that placing content within the field of
view is beneficial for time-constrained low-level tasks, while
fully utilizing the display space is essential for the larger
amount of content generated in high-level tasks. In terms
of view management methods, the layout on the Desktop
was considerably more organized than in VR, showing
that precise view placement is easier with a mouse than
with a VR controller. However, user behaviors were similar
across both Desktop and VR. Most participants intended to
create occlusion-free clusters (e.g., a grid layout in Fig. 9b),
yet some participants created piled clusters (e.g., a piling
layout in Fig. 9a), which was also observed in a recent AR
study [81]. We also noticed the use of space to record the
operation history from some participants (e.g., moving older
tables to the top), which has been identified on large 2D
displays [46].

7 GENERALIZATIONS, LIMITATIONS AND FUTURE
WORK

Applications. Our study provides empirical evidence of the
benefits of using VR for data transformation. We believe the
large display space, spatial memory, and embodied naviga-
tion offered by VR are the primary factors for its improved
performance. Since these are general characteristics of VR,
we expect our results can be generalized to similar tasks
that require organizing a large number of entities in space
for sense-making. Some preliminary research explored the

use of VR in such applications, like multiple view visualiza-
tion [26], [82], multi-scale geographic navigation [21], and
large-scale document analysis [24], [65], [81]. However, as
highlighted by Ens et al. [19], there is a lack of fundamental
study for comparing immersive versus non-immersive plat-
forms for analytics purposes. Our study provides a prelimi-
nary assessment for data transformation under this context.
Future studies may test other applications and delineate the
benefits of immersive environments for a broader range of
analytical tasks.

Target users and functionality. We focused on investi-
gating intuitive data transformation tools for non-technical
data workers and intentionally excluded the programming
requirements in our study. However, programming-like
operations are essential for more experienced users and
more complicated tasks. The Gesture has limitations in how
much information and intention it can express. To extend
this work in this direction, future work needs to integrate
a programming interface into the prototypes, like many
UI-based commercial tools (e.g., Tableau and Excel) and
research prototypes [83], [84]. To achieve this in VR, we need
to consider the most appropriate text input method [85].
Alternatively, we may also consider using natural language
as a user interface with higher expressiveness [86], [87]. On
the other hand, we also see opportunities to develop new
interaction techniques (e.g., embodied gestures) to lower the
learning curve of complicated data transformation opera-
tions for non-technical data workers.

Techniques. We believe our designed gestures were in-
tuitive and natural to their represented data transformation
operations. However, the Gesture did not contribute to
the participants’ performance as we expected. We believe
Gesture can still outperform WIMP in low-level tasks when
the user knows the precise operation to perform [15], [16],
[41]. Specifically, Nandi et al. found gestures to have better
performance and discoverability than WIMP for a single
data transformation operation [16]. However, discoverabil-
ity might become a more severe issue in high-level tasks
where the user must continuously develop the next steps.
Although during the training phase, the participants were
able to complete training tasks with a smaller dataset, it
was still reasonable for participants to spend extra time and
effort to recall the gestures in the longer study tasks. Future
work may look at further improving the discoverability
and learnability of gestures [88], [89], [90] or conduct a
longitudinal study to reduce this effect.

Additionally, there are a few other directions to extend-
ing our work. Although we improved the selection expe-
rience in VR, precisely selecting and manipulating objects
can still be challenging. Along with improving mid-air in-
teractions, one may consider other input devices, like using
a mouse in VR [91], [92] and other tangible proxies [93],
[94]. Besides, we consider visualizing data processing his-
tory could further improve provenance, like a data flow
system [58], [95].

Computing environments. We tested Desktop and VR,
as Desktop is the most widely used, and VR is emerging.
Testing other computing environments with different input
modalities could bring more insights into interaction de-
signs, like a tablet [15], [16], [41], [44] and display wall [96].
Tablets offer multitouch capabilities and are considered
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more natural for performing gestures than Desktop. How-
ever, tablets are usually limited in size, and users may suffer
from “fat finger” issues in precise interactions. A larger
touch screen may alleviate the issue, but not easily accessible
to many people. Nevertheless, testing different touching de-
vices is an exciting future direction. Moreover, specific to our
study, our gestures primarily only involve click and drag,
which could be easily completed with a mouse, as demon-
strated in previous work [13], [14]. Increasing the display
space on the Desktop is likely to increase the performance
(like using multiple monitors or a display wall), as one of
the most notable benefits of VR is its large display space.
The effect of display size has been previously explored [97].
Future work can follow the same methodology to study the
effect of display size on the data transformation workspace.
Furthermore, we found that our participants might not be
familiar with our zoomable and pannable interface on the
Desktop. However, there’s an increasing trend of no-code
data science tools designed with zoomable and pannable in-
terfaces, as we discussed in Section 4.1. It gradually becomes
an essential design for non-technical data workers. Despite
this, we also see other opportunities for managing multiple
data tables, such as using tabs.

Scalability and ecological validity. We tested relatively
small data in our study (see Sec. 4.4), as we want to control
the study duration. Meanwhile, we had an interesting com-
ment from one participant that they did not actively check
the rows of data tables but focused on the columns more.
This comment aligns well with the design of the GestureDB
system [16], [18], where they present the columns all the
time and only present rows on demand or for confirmation
purposes. Larger data should be tested in future studies,
especially data with more columns. Meanwhile, it is chal-
lenging to display all columns for large data sets (e.g.,
with 20 columns). As such, in our tested data, we inten-
tionally have columns that cannot fit into the table view.
The width of each column was determined by its longest
data entry, causing the total width of all columns to exceed
the table’s width. Hence, even with a limited number of
columns, columns were not visible at once, and scrolling
was necessary to finish the task. From this perspective, we
anticipate that, with increasing data size, participants need
to scroll more, which will make the task more challenging
for all conditions. Precision is often required in scrolling,
so increasing the data size may affect VR more than the
Desktop. On the other hand, it is possible to leverage the
large display space in VR to alleviate this issue: we can use
a large space to ensure all columns are visible without the
need to scroll in VR. The user then can physically move in
the space to navigate the large data tables. Such physical
navigation has been found more effective than virtual nav-
igation like panning or scrolling [77]. However, additional
interaction supports are likely to be needed (e.g., shrinking
the size of the table when it is grabbed) and should be tested
in future work. Our study did not include commercial data
transformation tools on the desktop like Tableau Pre Builder
and Trifacta. Those tools include many more features be-
sides the basic data transformation operations, which may
distract us from studying our intended main effects (e.g.,
WIMP vs. Gesture and Desktop vs. VR). Adapting necessary
features from those commercial desktop tools to VR is a

promising next step, along with an ecological investigation
of a complete system. Beyond the size of the datasets used,
conducting user studies with a larger number of participants
also should be tested. We expect this to lower the variance
in several measures and further strengthen our hypothesis.

VR vs. AR. Our study was conducted in VR, as the VR
hardware is more mature than AR headsets (e.g., higher
resolution and larger field of view). On the positive side,
our designed gestures and implemented prototypes can be
easily migrated from VR to AR thanks to the developing
ecosystem, i.e., Unity3D. We also believe our identified
benefits in VR can be generalized to AR or hybrid systems
of AR and Desktop [98], because the same as VR, AR
also provides embodied interaction and large display space.
With AR hardware improving, it is important to investigate
AR’s unique challenges and benefits. For example, observ-
ing the physical environment can improve people’s spatial
memory [81] and seamlessly switch between different com-
puting environments [98]. We will systematically analyze
and evaluate data transformation in AR in a future study
once better AR headsets are released.

8 CONCLUSION

In this paper, we presented our prototypes to enable em-
bedded interactions on the Desktop and embodied interac-
tions in VR for data transformation. We conducted a con-
trolled user study to systematically evaluate the effect of the
computing environments (Desktop vs. VR) and interaction
methods (WIMP vs. Gesture). We found initial evidences
showing the benefits of using VR for data transformation:
VR had the potential to provide improved provenance over
Desktop and demonstrated preliminary evidence of pro-
moting strategic thinking. VR also had a similar time per-
formance compared to Desktop. Additionally, participants
found VR to be more engaging, and VR+Gesture provided
the best overall experience. Considering the iterative nature
of data science, we foresee strong initiatives to combine
immersive data transformation and visualization to enable
a more complete Immersive Analytics workflow, reducing
the overhead of switching between different computing
environments. On the other hand, we did not find a better
performance of Gesture over WIMP. We still believe there
is potential to improve Gestures, for example, by provid-
ing long-term training and real-time memory assistance. In
summary, our results provide preliminary evidence that the
large display space, spatial memory, and embodied naviga-
tion in VR are beneficial for high-level data transformation
tasks.
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