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Abstract

The training data distribution is often biased towards objects in certain orientations and illumination conditions.
While humans have a remarkable capability of recognizing objects in out-of-distribution (OoD) orientations and illu-
minations, Deep Neural Networks (DNNs) severely suffer in this case, even when large amounts of training examples
are available. In this paper, we investigate three different approaches to improve DNNs in recognizing objects in
OoD orientations and illuminations. Namely, these are (i) training much longer after convergence of the in-distribution
(InD) validation accuracy, i.e., late-stopping, (ii) tuning the momentum parameter of the batch normalization layers,
and (iii) enforcing invariance of the neural activity in an intermediate layer to orientation and illumination conditions.
Each of these approaches substantially improves the DNN’s OoD accuracy (more than 20% in some cases). We report
results in four datasets: two datasets are modified from the MNIST and iLab datasets, and the other two are novel (one
of 3D rendered cars and another of objects taken from various controlled orientations and illumination conditions).
These datasets allow to study the effects of different amounts of bias and are challenging as DNNs perform poorly in
OoD conditions. Finally, we demonstrate that even though the three approaches focus on different aspects of DNNs,
they all tend to lead to the same underlying neural mechanism to enable OoD accuracy gains—individual neurons in
the intermediate layers become more selective to a category and also invariant to OoD orientations and illuminations.

Keywords: Out-of-distribution Generalization; Object Recognition in Novel Illuminations and Orientations; Neural
Selectivity and Invariance

1. Introduction

The object recognition performance of Deep Neural
Networks (DNNs) dramatically degrades when the train
and test distributions are not identical due to dataset
bias [1], i.e., when tested in out-of-distribution (OoD)
conditions. There is a big gap between DNNs and hu-
mans when evaluated in OoD conditions. This issue has
been getting much interest in recent years [2, 3, 4, 5, 6],
as it severely compromises the safety and fairness of AI
applications.
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1Equal contribution

One of the most prominent factors of dataset bias is
that objects may appear in a constrained range of ori-
entation and illumination conditions [7, 8]. While gen-
eralization to OoD orientations and illumination condi-
tions has been long studied in both biological and ar-
tificial neural networks, e.g., [9, 10, 11], the computa-
tional mechanisms that facilitate such generalization re-
main as a key outstanding question. Recently, [12, 13]
have shown that DNNs are capable to overcome bias by
transferring the generalization ability obtained from ob-
jects seen in a richer set of conditions to the objects seen
in biased conditions. Also, the emergence of represen-
tations at the individual neuron level in the intermediate
layers of the DNN that are selective to categories and
invariant to the OoD conditions has been identified as
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a mechanism that may facilitate such OoD generaliza-
tion. Invariant neural representations have been stud-
ied during decades, e.g., [11], and here they appear as
the mechanism that allows OoD generalization. This
begs the question whether we can further encourage the
emergence of invariant neural representations in DNNs
in order to further improve OoD generalization.

In this paper, we investigate factors that can sub-
stantially boost the DNN ability to recognize objects
in OoD orientations and illuminations. In particular,
we discover that the following factors, summarized in
Fig. 1, have a remarkable impact:

1. Late-stopping: DNNs are usually trained until
the validation recognition accuracy (which is in-
distribution) converges. We found that in many
cases the OoD recognition accuracy improves
slowly, yet consistently, after the validation (in-
distribution) accuracy has converged. This find-
ing is surprising as classic machine learning theory
suggests early-stopping as a regularization mecha-
nism [14], and we found that the opposite is bene-
ficial to improve OoD generalization in DNNs. We
call this approach “late-stopping”.

2. Tuning the batch normalization parameter: Batch
normalization (BN) is known to have an impact in
OoD recognition accuracy [15]. We found that tun-
ing the only hyperparameter of BN, i.e., the mo-
mentum, yields substantial gains of OoD recogni-
tion accuracy. This approach is denoted as “tuned
BN”.

3. Neural activity invariance loss: Motivated by the
aforementioned finding in previous works that in-
variant neural representations leads to improve-
ments of the OoD recognition accuracy, we include
an additional term in the loss function to encour-
age this phenomenon. This loss term takes the
Euclidean distance between neural activity corre-
sponding to pairs of images from the same cate-
gory on an intermediate layer. By minimizing this
loss term, the neural activity tends to be invariant
for objects of the same category even in different
viewing conditions. We do not consider that pairs
of images from different categories should have
distinguishable neural activity, since the classifica-
tion loss term already encourages this. We call this
approach “invariance loss” in short.

Our results demonstrate that each of these three ap-
proaches alone lead to substantial improvements of ob-
ject recognition in OoD orientations and illumination
conditions. Results also corroborate that when any

of the three approaches leads to an increase of se-
lectivity and invariance at the individual neuron level,
OoD recognition accuracy improves in the majority of
trials. Experiments are performed in four challeng-
ing benchmarks, namely modifications of the MNIST
dataset [16] and iLab dataset [17] and two novel datasets
we introduce, which are the CarsCG and the MiscGoods
datasets. CarsCG contains 3D rendered cars from differ-
ent orientations, and the MiscGoods dataset consists of
images of objects taken with a robotic arm from differ-
ent viewpoints and controlled illumination conditions.
These datasets allow to evaluate the DNN generaliza-
tion ability to recognize objects in OoD orientations and
illumination conditions. Also, they allow to analyze the
effects of different amounts of bias and are challenging
as DNNs perform poorly in OoD conditions.

2. Previous works

Our results add to the growing body of literature to
improve the generalization ability of DNNs to OoD ori-
entations and illumination conditions. Prior efforts
leverage synthesized sources of training data [18, 19,
20, 21], 3D models of objects [22], specific character-
istics of the target domain [23, 24, 25], or sensing ap-
proaches such as omnidirectional imaging [26]. These
approaches add preconceived components to the DNN
that need to be adjusted at hand for new objects and con-
ditions. Here, we focus on pure learning-based strate-
gies as these are not constrained to specific objects and
conditions and can be automatically adjusted to new
datasets.

Other strands of research that live in neighbouring ar-
eas investigate generalization to new domains and also,
overcoming spurious correlations between image fea-
tures and categories. While domain generalization does
not tackle dataset bias and overcoming spurious correla-
tions does not address recognition of objects in OoD ori-
entations and illuminations, these two research areas use
related techniques and concepts to our work. In the fol-
lowing we review both of them.

Domain generalization. There is a plethora of works
that consists on learning representations in several
domains that can be easily transferred to new do-
mains, e.g., [27, 28, 29, 30, 31, 32, 33, 34]. The problem
of domain generalization is similar to the problem over-
coming dataset bias in our study in the sense that rep-
resentations that facilitate generalization to novel con-
ditions should be learned. However, in domain gen-
eralization the learner has access to multiple domains
during training that can be leveraged for generalization,
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Figure 1: Three approaches to facilitate generalization to objects in out-of-distribution (OoD) orientations and illu-
minations. (a) Learning curves of in-distribution (InD) test accuracy and OoD accuracy for late-stopping applied to
the MiscGoods-illuminations dataset (medium InD data diversity). OoD accuracy converges much later than InD ac-
curacy. (b) Learning curves of the OoD accuracy with and without tuning batch normalization momentum (tuned BN)
in the CarsCG-Orientations, dataset (medium InD data diversity). It can be seen that tuning the momentum reduces
the oscillation of the OoD accuracy and improves the performance. (c) Left: Conceptual diagram of the invariance
loss. Pairs of images that belong to the same category are fed into the DNN. The invariance loss is based on the
Euclidean distance between the pairs of the last ReLU activity. The classification loss is calculated with the network
output as usual. The total loss is the weighted sum of the invariance and classification losses. Right: Learning curve of
OoD accuracy in MiscGoods-illuminations dataset (medium InD data diversity) when the invariance loss is applied.
The OoD accuracy increases by about 20% compared to the baseline. The solid lines in the plots are the mean value.
The lighter semitransparent colors surrounding the the solid lines indicate 95% confidence interval.
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Figure 2: Sample images of four datasets. (a) MNIST-Positions, (b) iLab-Orientations , (c) CarsCG-Orientations, and
(d) MiscGoods-Illuminations are shown in each subfigure. Samples from each dataset are arranged in a grid pattern.
Each row indicates categories and each column indicates either an orientation or an illumination condition.

while in the problem of overcoming dataset bias only
one training set is available. Recently, several works in
domain generalization [35, 36] highlighted the need of
invariant representations to obtain further improvements
in generalization, which further motivates investigating
the invariance loss in our study.

Overcoming spurious correlations between image fea-
tures and categories. Many datasets are biased in a way
that a specific image feature consistently appears in im-
ages of the same category. DNNs tend to learn that
those features are informative of the category [37]. This
form of dataset bias is different from the bias in the ob-
ject orientation and illumination conditions, which do
not necessarily lead to spurious correlations. Recently,
there have been a several works that address spurious
correlations. These are based on automatically detect-
ing the features that spuriously correlate with the cate-
gory, and encourage the DNN not to rely on those fea-
tures [38, 39]. Ahmed et al. [40] introduced a method
that effectively alleviates the effect of spurious correla-
tion caused by biased object background. This work ex-
ploits the assumption that the training distribution also
contains examples without spurious correlations. It em-

ploys EIIL [41] to classify the images of an category
with the features that spuriously correlate with the cate-
gory and without them. Then, invariance is encouraged
across these two groups of images. Thus, invariance ap-
pears once more as a facilitator of generalization.

3. Performance degradation on OoD Conditions

In this section, we introduce the methodology to eval-
uate the accuracy of the DNN in OoD conditions. First,
we describe the procedure of the bias-controlled exper-
iment. Next, we introduce the four datasets used in this
study and finally, we evaluate the performance degrada-
tion that occurs in OoD conditions in these four datasets.

3.1. Bias-controlled experiments

In a dataset there could be multiple biasing factors
at the same time that can cause performance degrada-
tion. In the datasets in this study, we analyze either
the orientation or illumination condition, as it allows
to more clearly understand the effect of each individ-
ual factor. Thus, the datasets we use contains several
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Figure 3: InD and OoD combinations for bias-
controlled experiments. Each sample is a combination
of a category and an orientation or illumination con-
dition. We create a set of combinations called “InD
combinations” and a set of combinations called “OoD
combinations”. The ratio of InD combinations to all
combinations is called InD data diversity. In addition,
we create a train dataset (D(InD)

train ) and an InD valida-
tion dataset (D(InD)

val ) from samples included in the InD
combinations, and an OoD test dataset (D(OoD)) from
the samples included in the OoD combinations.

combinations of categories and orientation or illumina-
tions conditions. We use C to denote the set of all cat-
egories and N the set of all orientation or illuminations
conditions. Let x(k) be an image of the dataset and let
y(k) := (c(k), n(k)) be a tuple representing the ground-
truth category (i.e., c(k) ∈ C), and the orientation or
illuminations condition (i.e., n(k) ∈ N ).

In order to evaluate the DNN’s OoD generalization
capabilities, we train them in a dataset that follows a
distribution that only contains a subset of all possible
combinations, i.e., a subset of C×N . Then, the DNN is
evaluated with images from combinations that were not
included in the training distribution. Let I ⊂ C ×N be
the set of combinations used to generate the InD com-
binations. We ensure that I contains all categories and
all conditions at least once (but not all combinations),
such that we have images from all image categories and
conditions in a balanced manner.

We use D(InD) to denote the set of images that are
InD, i.e., images whose label is in I, y(k) ∈ I. Namely,
the InD images dataset, D(InD), is defined as in the fol-
lowing:

D(InD) := {(x,y)|y ∈ I}. (1)

D(InD) is further divided into train dataset and valida-

tion dataset, which we denote asD(InD)
train and D(InD)

val , re-
spectively. The term InD accuracy refers to the DNN’s
accuracy onD(InD)

val . The OoD datasetD(OoD) is defined
as

D(OoD) := {(x,y)|y ∈ (C × N ) \ I}. (2)

The term OoD accuracy refers to the accuracy on the
OoD dataset D(OoD).

We also define the InD data diversity of a dataset as
#(I)/#(C ×N ), where #(·) denotes a number of ele-
ments. Thus, the data diversity measures the portion of
combinations included in the training distribution. To
directly compare the effect of the InD data diversity
on the OoD accuracy, we vary the InD data diversity
such that the combinations in the distributions of lower
InD data diversity are included in the combinations of
higher InD data diversity, while keeping the training
set size constant, i.e., #(D(InD)

train (I)) is constant for all
InD data diversity. These restrictions allows us to eval-
uate the performance of the DNN only by the difference
in InD data diversity, not by the difference in the amount
of combinations or training examples.

3.2. Datasets
We use the following four datasets. These datasets

have labels for both category and either orientation or
illumination condition, in order to evaluate OoD gener-
alization. See Appendix A for further details than the
ones provided in the following.

MNIST-Positions. It is based on the MNIST
dataset [16]. We created a dataset of 42 × 42 pixels
with nine numbers by resizing images to 14 × 14 and
placing them in one of nine possible positions in a 3×3
empty grid. We call this dataset the MNIST-Positions
dataset. In our experiments, the digits are considered to
be the category set, and the positions where the digits
are placed is considered as the orientation. We use
nine digits and nine positions. Samples are shown in
Fig. 2(a). We used 54K images for D(InD)

train , 8K images
for D(InD)

val and 8K images for D(OoD). Low, medium,
and high InD data diversity are set to be 2/9, 4/9, and
8/9, respectively.

iLab-Orientations. iLab-2M is a dataset created from
iLab-20M dataset [17]. The dataset consists of images
of 15 categories of physical toy vehicles photographed
in various orientations, elevations, lighting conditions,
camera focus settings and backgrounds. The image size
is 256× 256 pixels. From the original iLab-2M dataset,
we chose six categories (bus, car, helicopter, monster
truck, plane, and tank) and six orientations. We call it
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Figure 4: Performance degradation in the OoD conditions. Upper figures show the examples of InD combination in
MiscGoods-illuminations dataset to depict the InD data diversity of each experiment. Lower figures show InD or OoD
accuracy of ResNet-18 in (a) low InD data diversity, (b) medium InD data diversity and (c) high InD data diversity
performed on four datasets. Each experiment is conducted five times, and the mean and 95% confidence interval are
reported. Sharp performance degradation in OoD accuracy is observed (e.g., between 40% to almost 80% is observed
when the InD data diversity is low). These result shows the impact of a distribution shift from InD to OoD to the
performance of a DNN.

iLab-Orientations. Samples are shown in Fig. 2(b). We
resized each image to 64× 64 pixels. We used 18K im-
ages for D(InD)

train , 8K images for D(InD)
val and 8K images

for D(OoD). Low, medium, and high InD data diversity
are set to be 2/6, 3/6, and 5/6, respectively.

CarsCG-Orientations. CarsCG-Orientations is a new
dataset that consists of images of ten types of cars in
various conditions rendered by Unreal Engine. It in-
cludes ten orientations, three elevations, ten body col-
ors, five locations and three time frames (morning,
evening, night). We synthesize images with 1920×1080
pixels and resize them as 224 × 224 pixels for our ex-
periment. We chose ten types of cars as categories and
ten orientations for each of them. Samples are shown in
Fig. 2(c). More samples are provided in Appendix A.
In the experiment, we used 3400 images forD(InD)

train , 450

images for D(InD)
val and 800 images for D(OoD). Low,

medium, and high InD data diversity are set to be 2/10,
5/10, and 9/10, respectively.

MiscGoods-Illuminations. MiscGoods-Illuminations
is a subset of DAISO-10, a novel dataset collected

for this study. The dataset consists of ten physical
miscellaneous goods photographed using a robotic
arm with five controlled illumination conditions, two
object placements, twenty object orientations, and five
camera angles. Each image is 640 × 480 pixels in
size. We chose five categories (stuffed dolphin, stuffed
whale, metal basket, imitation plant and cup) and five
illumination conditions as shown in Fig. 2(d). More
samples are displayed in Appendix A. We resize the
images to 224 × 224 pixels for our experiments. We
used 800 images for train D(InD)

train , 200 images for
D(InD)

val and 400 images for D(OoD). Low, medium, and
high InD data diversity are set to be 2/5, 3/5 and 4/5,
respectively.

3.3. OoD accuracy results

We now demonstrate that these four datasets are ex-
tremely challenging for DNNs as these achieve low ac-
curacy in OoD conditions. We examine the perfor-
mance degradation in three InD data diversity: low,
medium, and high. Recall that we evaluate InD accu-
racy in D(InD)

val and the OoD accuracy in D(OoD). We
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use ResNet-18 [42] trained with D(InD)
train . The experi-

mental setup is introduced in Sec. 6.1.
Figure 4 shows the OoD accuracy degradation re-

garding the four datasets ranging low to high InD data
diversity. While the InD accuracy is more than 80%
for all four datasets at almost all data diversities (ex-
cept for MNIST-positions), the OoD accuracy showed
a substantial degradation when the DNN was trained
with low and medium InD data diversities. Between
20% to 70% performance degradation is observed in
low InD data diversity in all four datasets. In medium
InD data diversity, large performance degradation rang-
ing from 10% to 50% is observed, and for high
InD data diversity, there is more than 10% performance
degradation in CarsCG-Orientations and MiscGoods-
Illuminations datasets. Thus, dramatic drops of accu-
racy are observed in OoD conditions, which confirms
that these benchmarks are very challenging for DNNs.

OoD accuracy is often overlooked in standard com-
puter vision benchmarks and only InD is usually re-
ported. This is usually due to the difficulty of measuring
OoD accuracy. Our datasets enable evaluating OoD ac-
curacy in a controlled way that facilitates understand-
ing the different factors that may affect the OoD accu-
racy. The performance degradation in OoD conditions
is expected when deploying application of deep learn-
ing. Recently, it has been reported that even a small
amount of data bias can cause major performance degra-
dation [5], and this is reconfirmed for our four datasets.
Also, the drop of accuracy in our datasets is dramatic,
specially for low InD data diversity. Our datasets allow
to gain an understanding of the specific biasing factors
in the dataset, i.e., orientation and illumination condi-
tions, and analyze aspects such as the InD data diversity.

4. Three approaches to improve OoD Accuracy

We now introduce the three approaches to address
the performance drop of accuracy in OoD conditions,
which are “late-stopping”, “tuning the batch normaliza-
tion momentum” and “invariance los”. These three ap-
proaches are independent on each other and tackle dif-
ferent aspects of the DNN training.

4.1. Late-stopping

The stopping criteria for training is known to have
an impact on the DNNs performance [43, 44, 45]. In
particular, stopping the training before convergence of
the training accuracy, i.e., early stopping, is known to
prevent overfitting in shallow classifiers [46]. However,

these results are with respect to InD accuracy, and lit-
tle is known regarding the relation between the stop-
ping critaria and OoD accuracy. We therefore run ex-
periments with a large number of training epochs (up to
1000 epochs) in order to investigate any patterns. Fig-
ure 1(a) shows the change of InD and OoD accuracy
when ResNet-18 is trained with the medium InD data
diversity. Surprisingly, the OoD accuracy, unlike the
InD accuracy, continued to increase in performance af-
ter training during a large number of epochs. This
phenomenon was not known because usually only the
InD accuracy is analyzed. We denote the approach of
continuing the training of a DNN after the convergence
of InD validation accuracy as “late stopping”.

4.2. Tuning batch normalization

Batch normalization [47] is a method used to speed-
up and stabilize the training of DNN networks through
normalization of the layers’ inputs by re-centering and
re-scaling them. Batch normalization has also been re-
ported to act as a regularizer and improve generaliza-
tion [48]. Thus, it is reasonable that batch normaliza-
tion could help improving OoD generalization but this
has not been studied so far.

Batch normalization uses the so called moving aver-
age to recenter the layer’s input. Let vma(t) be the mov-
ing average at training step t. The moving average is
updated at each training step in the following way:

vma(t) = (β − 1)vmean(t) + βvma(t− 1), (3)

where vmean(t) is the mean activity over the batch of the
t-th training step, and β ∈ [0, 1] is called momentum
and balances the update of the moving average between
vmean(t) and itself. Note that the only hyperparameter
available for batch normalization is β, and we use this
to adjust it. Usually, β is set to 0.9 or 0.99, which is
the default value. We use the default value 0.99 that is
employed by the TensorFlow library [49].

We investigated how the OoD generalization perfor-
mance behaves depending on the value of the batch
normalization momentum, β. Figure 1(b) shows the
learning curves of ResNet-18 trained on MiscGoods-
illuminations with the medium InD data diversity. Ex-
perimentally, we found that the tuning momentum pa-
rameter, β, can have a significant positive impact on the
OoD generalization performance. Generally, the default
value of β = 0.99 was too large for almost all cases in
our experiments. We call this approach as tuning batch
normalization or “tuning BN”.
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4.3. Invariance loss

The “invariance loss” approach is intended to in-
crease the invariance score that is introduced in
Madan et al. [13], which we explain in Sec. 5. This
invariance score measures the degree of invariance in
the neural activity of intermediate layers, and previous
works have shown that DNNs that generalize better to
OoD conditions have developed larger degrees of invari-
ance in the intermediate layers.

Concretely, we encourage the emergence of invari-
ant representations by taking pairs of images that be-
long to the same category and enforce that the neural
activity is as similar as possible. To do so, we use the
Euclidean distance between the activities of neurons in
an intermediate layer caused by the pairs of images, and
add this as an additional loss term to the classification
loss. Figure 1(c) shows the scheme of this approach.
Let g(· ;θg) be the neural activity of a DNN interme-
diate layer, where θg are the parameters of the DNN
before the intermediate layer. Let f(· ;θf ) be the out-
put of the DNN given as input the intermediate layer,
g(· ;θg), where θf are the DNN parameters from the
intermediate layer to the output of the network. Thus,
the neural activity of the intermediate layer for an im-
age x is g(x;θg) and the output of the whole network
is f(g(x;θg);θf ). Let x be a training image, and let
x′ be another image that belongs to the same category
as x, and is sampled from the training data D(InD)

train ac-
cording to some sampling strategy (in our experiments
is random with uniform distribution across the training
images of the same category). Thus, the invariance loss
is expressed as

‖g(x;θg)− g(x′;θg)‖2. (4)

This term is added to the categorical cross entropy loss
weighted with a hyperparameter that we call λ, such that
the invariance loss term acts as a regularization term.
Note that the invariance loss is equivalent to the con-
trastive loss [50] for positive examples in the context of
metric learning, but it has not been used so far to im-
prove generalization to OoD orientations and illumina-
tion conditions.

5. Selectivity and invarinace for OoD generalization

We now revisit the mechanism at the individual neu-
ron level of intermediate layers that previous works have
suggested that facilitates OoD generalization, i.e., indi-
vidual neurons being selective to a category and invari-
ant OoD conditions. This mechanism has been shown

to explain the improvement in OoD accuracy with in-
creased InD data diversity [12, 13].

For a given intermediate layer of the DNN, let αjcn
be the average activity for the j-th neuron over all im-
ages with the c-th category and the n-th orientation or
illumination condition. For neuron j, the activity is 0-1
normalized. Let c∗j be the category that a neuron j is
most active on average, i.e., c∗j := argmaxc

∑
n α

j
cn.

This is called preferred category. The selectivity score
Sj is defined as

Sj :=
α̂j − ᾱj

α̂j + ᾱj
, (5)

where, α̂j := 1
#(N )

∑
n α

j
c∗jn and ᾱj :=∑

c 6=c∗d
∑

N αj
cn

#(C)(#(C)−1) denote the average activity for the pre-
ferred category and for the remaining categories, re-
spectively. This selectivity score ranges from zero to
one and takes its maximum value in the case that the
neuron average activity, αjcn, is 0 for all categories ex-
cept for the preferred category, i.e., the neuron is only
active for the preferred category. The invariance score
Ij is defined as

Ij := 1− (maxnα
j
c∗jn −minnα

j
c∗jn), (6)

and it also ranges from zero to one and takes the maxi-
mum in the case that the average activity, αjcn, takes the
same value for the preferred category regardless of the
orientation and illumination conditions.

Finally, we define the SI score of a neuron as
the geometric mean of the selectivity and invariance
scores, i.e.,

√
SjIj . Neurons that have a larger SI score

are active for specific categories independently on the
orientation and illumination conditions. Networks with
neurons that have larger SI scores have been observed to
generalize better in OoDconditions. In order to provide
a score that summarizes the SI score across all neurons
in the layer, we use the upper 20 percentile of the scores
among all neurons. This is because not all neurons are
required to have larger SI to improve OoD generaliza-
tion, and we just take into account a portion of neurons
with the highest SI score. In the experiment section,
we use this summary of the SI score across neurons to
assess whether the three approaches we introduce yield
improved OoD accuracy through improving selectivity
and invariance.

6. Experiments

We first introduce the experimental setup, and then
report the OoD accuracy facilitated by the three ap-
proaches explained in Sec. 4. Finally, we analyze
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whether this boost of OoD accuracy is driven by selec-
tive and invariance mechanism revisited in Sec. 5.

6.1. Experimental setting

We apply the three approaches to improve OoD ac-
curacy to ResNet-18 [42] and evaluate its effectiveness
in the aforementioned datasets (MNIST-Positions, iLab-
Orientations, CarsCG-Orientations, and MiscGoods-
Illuminations). Standard ResNet-18 is adopted as the
network for all experiments and we trained it in the stan-
dard manner. Namely, all neurons employ the ReLU
activation function g(z) = max{0, z} [51] and Glo-
rot uniform initializer [52] is adopted for the network
weights initialization for all experiments. Adam [53] is
employed as the optimization algorithm. The pixels of
images are normalized within 0 to 1 as a preprocessing
for all datasets.

We run five trials in all cases and report mean ac-
curacy and its 95% confidence interval. In each trial,
the InD combinations are chosen randomly as long as
they satisfy the conditions explained in Sec. 3.1, and
the OoD combinations are created accordingly. Each
of the four approaches, including baseline, is subjected
to a hyper-parameter search before performing the five
trials. We select the hyper-parameters in a differ-
ent trial from the ones used to report OoD accuracy.
In this reserved trial, we select the hyper-parameters
with the highest OoD accuracy by grid search. For
all tested approaches, we selected a learning rate in
{0.1, 0.01, 0.001, 0.0001, 0.00001}, and other hyper-
parameters depending in the approach. In the follow-
ing we detail the experimental setting of the different
approaches.

Late-stopping. The epoch size is set to 1, 000 epochs
for late stopping, and 100 epochs for the other ap-
proaches, including baseline. We confirmed that 100
epochs are sufficient for convergence in InD accuracy
by the preliminary experiments. For late stopping,
we run as many epochs as computing resources allow
(about a week of training).

Tuning batch normalization. For tuning batch nor-
malization, we perform a grid-search for β =
{0.01, 0.1, 0.5, 0.9, 0.99} in addition to the learning
rate. For the other approaches, we use 0.99 as a momen-
tum parameter β for batch normalization layer, which is
the default value.

Invariance loss. Invariance loss is applied to the last
ReLU activation layer “activation 17” which has 512
neurons. We keep fixed the pairs of images in which

invariance is enforced, and we randomize the pairs
from time to time. We perform a grid search to deter-
mine how frequently we randomize the pairs of images
(the choices are randomizing every {10, 20, 50, 100}
epochs). The weight of the invariance loss term, λ, is
also selected via a grid search among the following val-
ues: λ = {1.0, 0.1, 0.01, 0.001, 0.0001}.

For more details we refer the reader to Appendix Ap-
pendix B.

6.2. Improvement of OoD accuracy

Figure 5 compares of mean OoD accuracy between
the baseline and the three approaches for all tested data
sets and all tested InD data diversities. Looking at
the case of the CarsCG-Orientations and MiscGoods-
illuminations datasets, we can see that the three ap-
proaches increase the mean OoD accuracy at almost all
the data diversities. Comparing the three approaches,
late stopping and invariance loss both achieves the best
improvement rate in some combinations, and batch
norm momentum does not achieve the best improve-
ment in any combination. The highest improvement
of 22.2% is achieved by late stopping with a high InD
data diversity. The performance improvement across
datasets and data diversities is remarkable. Only in
iLab-Orientations dataset is relatively small, but for
high InD data diversity in this dataset, all three ap-
proaches achieve better OoD accuracy than the baseline
approach. For MNIST-Positions, all three approaches
showed an improvement in performance with medium
InD diversity. In Appendix C we report the learning
curves and the InD accuracy for a more detailed depic-
tion of the effects of the three approaches during train-
ing.

We also investigated whether the three approaches
combined together are more effective than the best of
three approaches applied alone. Thus, we trained net-
works using late-stopping, tuned BN and invariance
loss together. We call this approach “three approaches
together”. Another way of combining the three ap-
proaches is training networks with each approach alone
and then selecting the best of the approaches using a
validation set. We call this approach “best of three ap-
proaches alone”. The hyper-parameter tuning method
of these combined approaches is detailed in Appendix
D. Table 1 shows the comparison between these two
combination approaches and also the baseline, i.e., the
network trained without any approach to improve the
OoD accuracy. The table reports the number times a
method is better than another method across all datasets
and InD data diversity. The results show that using the
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Figure 5: Performance improvement of the mean OoD accuracy. Top figures show the examples of InD combina-
tions, i.e., InD data diversity, in MiscGoods-illuminations dataset. (a), (b), and (c) mean OoD accuracy of the three
approaches and the baseline for different InD data diversities. Error bars show 95% confidence interval. (d), (e), and
(f) increase of the mean OoD accuracy by the three approaches from the baseline. The unit ”pp” in figures denotes
percentage points, i.e., the unit for the arithmetic difference of two percentages.

best of the three approaches alone obtains the best re-
sults in the vast majority of experiments. Interestingly,
the three approaches together performs worse than the
baseline for more than half of the experiments. This in-
dicates that the three approaches together interfere with
each other and should not be used.

6.3. Analysis for selectivity and invariance mechanism

Figure 6 shows the relationship between the SI score
of the last ReLU layer and the OoD accuracy for all
combinations of dataset, InD data diversity, and ap-
proach (details are provided in Fig. C.11). We can
see that there is a large correlation between SI score
and OoD accuracy (Pearson’s correlation coefficient is
0.891). While it has already been shown in Madan et
al. [13] that increasing the InD data diversity improves
the OoD accuracy and the SI score, here we show for

the first time that approaches that targets improving the
OoD accuracy also yield increases of the SI score.

Next, we analyze the relationship between improve-
ments of OoD accuracy and increases of the SI score.
We investigate whether increases of the SI score always
precede improvement of OoD accuracy, which serves to
assess whether invariant representations drive OoD gen-
eralization in a more stringent way than the correla-
tional analysis presented before. Let P (∆+

acc) be the
probability that the OoD accuracy increases when using
one of the three approaches to train the network, com-
pared to not using it. Also, let P (∆+

SI) be the probabil-
ity that the SI scores increases when using one of the
three approaches, compared to not using it. The condi-
tional probabilities between these two events provides
insights regarding whether increases of the the SI score
precedes the improvements of the OoD accuracy. We
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Table 1: Comparison of ways to combine the three approaches. We compare the the best of the three approaches
alone (i.e., training a network different times each with one of the three approaches alone, and then selecting the best
of the three in a validation set), training with the three approaches together (i.e., training a network using the three
approaches together), and the baseline (i.e., training the network without using any approach). Results compare how
many times each of these strategies is better than another strategy, across InD data diversities in each of the four
datasets.

Comparison of OoD accuracy MNIST iLab CarsCG MiscGoods Total
Best of 3 approaches alone vs Baseline 3 vs 0 2 vs 1 3 vs 0 3 vs 0 11 vs 1
3 approaches together vs Baseline 1 vs 2 1 vs 2 1 vs 2 2 vs 1 5 vs 7
Best of 3 approaches alone vs 3 approaches together 3 vs 0 2 vs 1 3 vs 0 1 vs 2 9 vs 3

Table 2: Analysis of the dependency between improvements of OoD accuracy and SI score. This table shows the
relative frequency of improvement (+) or degradation (−) of the mean OoD accuracy ∆acc or mean SI score ∆SI.
Relative frequency P (x) is calculated by counting the number of cases that satisfy the condition x ∈ {∆+

acc,∆
+
SI},

and normalize it by total number of cases (i.e., 12, 3 possible InD data diversity × 4 datasets). Conditional relative
frequency P (y|x) is also calculated by counting the number combinations satisfying y ∈ {∆+

acc,∆
−
acc} in the condi-

tion of x ∈ {∆+
SI,∆

−
SI}, and divide it by the number of combinations satisfying x. The first and second columns show

the portion of case the mean OoD accuracy ∆+
acc and the mean SI score ∆+

SI increased, respectively. The third column
shows the portion of cases the mean OoD accuracy increased ∆+

acc when the mean SI score increased ∆+
SI. The fourth

column shows the portion cases the mean OoD accuracy increased ∆−acc when the mean SI score increased ∆−SI.

Approach P (∆+
acc) P (∆+

SI) P (∆+
acc|∆+

SI) P (∆+
acc|∆−SI)

Late-Stopping (%) 75.0 (9/12) 50.0 (6/12) 83.3 (5/6) 66.6 (4/6)
Tuned BN (%) 75.0 (9/12) 83.3 (10/12) 80.0 (8/10) 50.0 (1/2)
Invariance Loss (%) 91.7 (11/12) 83.3 (10/12) 100.0 (10/10) 50.0 (1/2)

Total (%) 80.6 (29/36) 72.2 (26/36) 88.4 (23/26) 60.0 (6/10)

calculate the probabilities by evaluating the frequency
that the events happen across datasets and InD data di-
versities. We report them in Table 2.

We observe by analyzing P (∆+
acc) that the OoD ac-

curacy increases very often with the three approaches,
at least 75% of the cases. In particular, the OoD ac-
curacy increased 91.7% of the cases for the invariance
loss. The analysis of P (∆+

SI) shows that tuned BN
and invariance loss increase the SI score 83.3% of the
cases. This suggests that these two approaches tend to
improve the SI score. For late-stopping this trend is not
as strong. Yet, when analyzing P (∆+

acc|∆+
SI), we ob-

serve that for the three approaches, increases of the SI
score precede the improvements of OoD accuracy (this
is in 83.3% (5/6), 80.0% (8/10) and 100% (10/10)
of the cases for late-stopping, tuned BN and invariance
loss, respectively). Note that the invariance loss directly
encourages to increase the SI score, and when the SI
score in fact increases, the OoD accuracy always has

improved. Late stopping and tuning batch normaliza-
tion momentum do not directly encourage to increase
the SI score, but we observe that they do increase the
SI score most of the cases, and when this happens, the
OoD accuracy is also improved in more than 80.0 %
of the cases. Thus, these results suggest that the im-
provements of OoD accuracy is strongly driven by the
increase of the SI score.

Finally, we observe by analyzing P (∆+
acc|∆−SI), that

when the SI score has not increased after applying one
of the three approaches, the OoD accuracy still im-
proves in a non-negligible number of cases. This sug-
gests the existence of another mechanism that can im-
prove the OoD accuracy even if the selectivity and in-
variance mechanisms did not emerge. However, one
possible limitation of this interpretation is that selectiv-
ity and invariance may have emerged but have not been
captured by the SI score, because the SI score may not
quantify the emergence of these mechanisms in the most
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Figure 6: Correlation analysis. This figure shows the
correlation between OoD test accuracy and SI score.
The Pearson’s correlation coefficient is 0.891.

precise way. Thus, we can not make any assertion be-
yond the fact that it is unclear what are the neural mech-
anisms that facilitate OoD generalization when the three
approaches do not manage to increase the SI score. This
result motivates follow-up investigations.

In summary, in this study we provided evidence
that the invariance and selectivity mechanism drives
OoD generalization. Also, we found cases in which im-
provements of OoD generalization may not be preceded
by the strengthening of the selectivity and invariance
mechanism in the neural representations, which requires
future work proposing novel mechanisms to explain this
cases. We believe our experimental framework will fa-
cilitate these future discoveries.

7. Conclusion

We have shown that late-stopping, tuning the batch
normalization momentum parameter, and optimizing
the invariance loss during learning lead to substantial
improvements of the DNN recognition accuracy of ob-
jects in OoD orientations and illuminations (in some
cases more than 20%). These improvements are consis-
tent across four datasets, and different degrees of dataset
bias. We also corroborated that the neural mechanisms
of selectivity to a category and invariance to orientations
and illuminations, at the individual neuron level, lead
to the aforementioned improvements of OoD recogni-
tion accuracy. Namely, we found that in the majority
of trials where any of the three approaches yield an in-
crease of selectiviy and invariance, resulted in improve-
ments of the OoD recognition accuracy. Nonetheless,
our analysis also revealed that other mechanisms dif-
ferent from selectivity and invariance may also exists,
as we observed that gains of OoD recognition accu-
racy were not preceded by an increase of the SI score in

some trials. What are the neural mechanisms that drive
OoD generalization in these cases remains as an open
question for future work. Furthermore, there are also
other novel questions derived from our results that mo-
tivate future works: Is there any effective way of com-
bining the three approaches investigated in this paper
that leads to even more improvements of OoD general-
ization? Are these approaches applicable to other fac-
tors beyond orientations and illumination conditions?
How these approaches relate to biological learning sys-
tems? We hope that the substantial improvements of
OoD recognition accuracy that we demonstrated in this
paper motivate new research to address the fascinating
questions that have cropped up ahead of us.

Finally, we would like to highlight that poor
OoD generalization is one of the issues of machine
learning that needs to be urgently addressed in order to
allow for safe and fair AI applications. We hope that
this research serves as a basis for further improvements
of OoD generalization.
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Appendix A. Details of datasets

Appendix A.1. MNIST-Positions

Starting with the MNIST dataset [16], which is available at http://yann.lecun.com/exdb/mnist/ (Last
access: Oct. 1, 2020), we created a dataset of 42×42 pixels with nine numbers (0 to 8) by resizing images to 14×14
and placing them in one of 9 possible positions in a 3×3 empty grid. We call it MNIST-Positions. Fig. A.7 shows
the all categories and positions of MNIST-Positions. In our experiments, the numbers are considered to be the object
category set C and the positions where the numbers are placed is considered as the condition setN . Thus, it is written
as #(C) = #(N ) = 9.

Appendix A.2. iLab-Orientations

iLab-2M is a dataset created from iLab-20M dataset [17]: available at https://bmobear.github.io/
projects/viva/ (Last access: Oct. 20, 2020). The dataset consists of images of 15 categories of physical
toy vehicles photographed in various orientations, elevations, lighting conditions, camera focus settings and back-
grounds. It has 1.2M training images, 270K validation images, 270K test images, and each image is 256×256 pixels.
We chose from the original iLab-2M dataset six categories — bus, car, helicopter, monster truck, plane, and tank as C
and six orientations as N . We call it iLab-Orientations. Fig. A.8 shows samples of the all categories and orientations
of iLab-Orientations dataset.

Appendix A.3. CarsCG-Orientations

CarsCG-Orientations is a new dataset that consists of images of ten models of cars in various conditions rendered
by Unreal Engine version 4.25.3; we plan to make this dataset publicly available. The conditions consist of ten
orientations, three elevations, ten body colors, five locations and three time slots. Fig. A.9 shows the all car models
(categories) and orientations (conditions) in the grid form. The details of these are as follows.

• Categories: CarsCG-Orientations dataset consists of images of the following cars — Nissan XTrail®,
Volkswagen® Golf, BMW 2Series Coupe®, Honda Odyssey®, Toyota Prius®, Mercedes Benz® A-Class,
Lexus® LS, Mercedes® Benz E-Class, Toyota Yaris®and Volvo® V40 (See Fig. A.10). We used the whole
car models as categories C. Therefore the number of categories is #(C) = 10 in the experiments conducted in
this study.

• Orientations: During the rendering process, the virtual camera (camera actor) was rotated around the yaw axis
of each car from 0 to 324 degrees in units of 36 degrees. Therefore, each car model appears in the images with
ten different azimuth orientations. All orientations are shown in Fig. A.11. We used the whole orientations as
conditions N . Thus the number of the conditions is #(N ) = 10 in the experiments conducted in this study.

To create variety of samples for each combination of the categories (car models) and conditions (orientations), we
added other conditions as follows.

• Elevations: The virtual camera was located at three elevation angles, namely, 10, 15, and 30 degrees, during the
rendering process. Sample images taken from each angle are shown in Fig. A.12.

• Body colors: Each car model is rendered with ten colors, namely, black, light blue, green, red, white, beige, dark
blue, orange, plum, and silver by using Automotive Materials (a library for Unreal Engine). Fig. A.13 shows
sample images of Nissan XTrail rendered with these colors.

• Locations: We used a sample environment of an urban park contained in City Park Environment Collection. We
chose five locations from the sample environment and modified them for our experiments. Sample images taken
at each location are shown in Fig. A.14.

• Time slots: We used Ultra Dynamic Sky 3D model set to synthesize the three different times slots, namely,
daytime, twilight, and midnight. Fig. A.15 shows the samples of these three time slots.

The number of images and the image size are as follows.
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• Number of images and image size: The total number of images of this dataset is 45K = 10 (categories) × 10
(orientations) × 3 (elevations) × 10 (body colors) × 5 (locations) × 3 (time slots). The images are rendered in
3840×2160 pixels and then resized to 1920×1080 pixels for the sake of anti-aliasing.

Appendix A.4. MiscGoods-Illuminations

MiscGoods-Illuminations is a subset of DAISO-10, a novel dataset constructed for this study; we plan to make
this dataset publicly available. The dataset consists of images of ten physical miscellaneous goods taken with five
illumination conditions, two object aspects, twenty object orientations, five camera angles. Figure A.16 shows the all
miscellaneous goods (categories) and illumination conditions in the grid form. The details of these are as follows.

• Categories: As shown in Fig. A.16, DAISO-10 has ten types of miscellaneous goods — stuffed dolphin, stuffed
whale, metal basket, imitation plant, cup, cleaning brush, winding tape, lace yarn, bottled imitation tomatoes, and
bottled imitation green apples. In this study, we selected the following five miscellaneous goods from DAISO-10
as the categories C— stuffed dolphin, stuffed whale, metal basket, imitation plant and cup. Therefore the number
of categories is #(C) = 5 in the experiments conducted in this study.

• Illumination conditions: As the conditions, we created five illumination conditions (lighting conditions); one is
created with ceiling lights, and the rest are with a colored spotlight. All illumination conditions are shown in
Fig. A.16. For spotlight conditions, the light source (PIXEL G1S™ RGB Video Light) was placed 23 cm in
front of the object (See Fig. A.17). The parameters of the light source were H217/S141=8500k (white light),
H0/S100 (red light), H120/S100 (green light), and H240/S100 (blue light). These parameters were set so that
the condition of the illumination makes a sufficient difference in the learning experiments. We used whole
illumination conditionsN . Thus the number of the conditions is #(N ) = 5 in the experiments conducted in this
study.

As we did for CarCGs-Orientations, we added other conditions to create variety of samples for each combination of
the categories and illumination conditions as follows.

• Object poses (aspects and orientations): In this dataset,we placed each object in two representative aspects for
each lighting condition. Fig. A.18 shows the two aspects of all objects. For additional diversity, we rotated the
object every 18 degrees from 0 to 342 degrees (Fig. A.19). In total, there are 40 patterns in object pose conditions.

• Camera angles: To capture the images automatically, we created a robotic image capture system (see Fig. A.17).
A camera (Intel® Realsense D435) was attached to a robot arm (COBOTTA®), and the system captured images
from five camera angles for each lighting and object pose condition (Fig. A.20). The postures were defined
so that the acquired image shows the entire object pose. The series of operations from robot control to image
acquisition is automated by utilizing ROS kinetic.

The number of images and the image size are as follows.

• Number of images and image size: The number of images of whole dataset is 10K = 10 (categories) × 5
(illuminations) × 2 (aspects) × 20 (orientations) × 5 (camera angles), and each image size is 640 × 480 pixels.

Appendix B. Details of experiments

ResNet-18 [42] is adopted as the network for all experiments. The source codes are implemented based on Python
v3.6.9, using TensorFlow v2.5.0 and NumPy v1.19.5. They are included in the zip file (/source code). The whole net-
work architecture is shown in Fig B.1 and Fig B.2. All neurons employ the rectified linear function g(z) = max{0, z}
and satisfy anm(x) ≥ 0. Glorot uniform initializer [52] is adopted for the network weights initialization for all exper-
iments. We use BatchNormalization to standardize the inputs to a layer for each mini-batch. We use it for stabilizing
the learning process and reducing the number of training epochs. We do not use any data augmentations. Invariance
loss is applied to the last fully-connected layer “activation 17” with 512 neurons shown in Fig. B.1. Adam [53] is
employed as the optimization algorithm. The cross-entropy loss is employed as the loss L. The pixels of images are
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normalized within 0 to 1 as a preprocessing for all datasets. The epoch size and batch size are confirmed to produce
reasonable accuracy in the baseline case for each dataset and we employ the same values for all experiments with
the same dataset. For example, we use 100 and 256 as epoch size and batch size, respectively, for MNIST-Positions.
The values of hyper-parameters are summarized in Table B.1. We have employed four Tesla V100 GPUs for the

Table B.1: Hyper-parameters used for each dataset

dataset epoch size preprocessing weights initialization batch size
MNIST-Positions 100 divide by 255 Glorot uniform initializer 256
iLab-Orientations 100 divide by 255 Glorot uniform initializer 256
CarsCG-Orientations 100 divide by 255 Glorot uniform initializer 32
MiscGoods-Illuminations 100 divide by 255 Glorot uniform initializer 32

experiments. The preparation of training dataset D(InD)
train , InD validation dataset D(InD)

val , and OoD dataset D(OoD) has
been conducted as follows.

• MNIST-Positions: We use images of the original MNIST-Positions with image size of 42×42 pixels. InD dataset
and OoD dataset are prepared in the way described in Sec. 3.1.The number of train dataset is #(D(InD)

train ) = 54000.
We use #(D(InD)

val ) = 8000 for InD validation dataset. The number of OoD dataset is #(D(OoD)) = 8000.

• iLab-Orientations: We reize the images to 64× 64 pixels. InD dataset and OoD dataset are prepared in the way
described in Sec. 3.1.The number of train dataset is #(D(InD)

train ) = 18000. We use #(D(InD)
val ) = 8000 for InD

validation dataset. The number of OoD dataset is #(D(OoD)) = 8000.

• CarsCG-Orientations: We resize the images to 224 × 224 pixels. InD dataset and OoD dataset are prepared in
the way described in Sec. 3.1.The number of train dataset is #(D(InD)

train ) = 3400. We use #(D(InD)
val ) = 450 for

InD validation dataset. The number of OoD dataset is #(D(OoD)) = 800.

• MiscGoods-Illuminations: We resize the images to 224× 224 pixels. InD dataset and OoD dataset are prepared
in the way described in Sec. 3.1.The number of train dataset is #(D(InD)

train ) = 800. We use #(D(InD)
val ) = 200 for

InD validation dataset. The number of OoD dataset is #(D(OoD)) = 400.

Appendix C. Additional results of experiments

InD accuracy and OoD accuracy learning curves with all dataset and all diversity corresponding to Fig. 1(a) are
available in Fig. C.3 C.4 C.5. Furthermore InD accuracy and OoD accuracy learning curves with all all dataset and all
diversity corresponding to Fig. 1(b) are available in Fig. C.6 C.7 C.8. InD accuracy corresponding to Fig. 5(a) 5(b) 5(c)
is available in Fig. C.9. InD accuracy of difference from baseline corresponding to Fig. 5(d) 5(e) 5(f) is also available
in Fig. C.10 The experiments for measuring accuracy is exactly same as what we reported in the main body of the
paper.

Appendix D. Details of combined method

For the best of three approaches, we choose the one with the highest OoD accuracy calculated on the data set
for hyperparameter tuning among late stopping, tuning batch normalization momentum, and invariance loss. The
combined three approaches employs the hyper-parameters that determined in the Sec. 6: epoch size for longer epochs,
momentum parameter β for tuning batch normalization momentum, and learning rate, paring interval and the value
λ for invariance loss. If the InD accuracy drops to a chance, the learning rate is multiplied by 0.1 and the training is
re-started.
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Figure A.7: Sample images of MNIST-Positions dataset arranged in a grid pattern. Each row indicates the number as
the object category. MNIST-Poitions include nine numbers from 0 to 8. Each column indicates the positions as the
condition category. There are 9 positions in this dataset.
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Figure A.8: Sample images of iLab–Orientations dataset arranged in a grid pattern. Each row indicates the object
category. iLab-Orientations include six object categories — bus, car, helicopter, monster truck, plane, and tank. Each
column indicates the orientations as the condition category. There are 6 orientations in this dataset.
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Figure A.9: Sample images of each object category and orientation of CarsCG-Orientations. Each row indicates
object categories — Nissan XTrail®, Volkswagen ® Golf, BMW® 2Series Coupe, Honda Odyssey®, Toyota Prius®,
Mercedes Benz® A-Class, Lexus® LS, Mercedes Benz® E-Class, Toyota Yaris® and Volvo® V40. Each column
indicates the condition categories, orientations from 0 to 324 degrees. These categories and orientations in this figure
are used in our experiments.

Figure A.10: Sample images of ten object categories of CarsCG-Orientatoins — Nissan XTrail®, Volkswagen® Golf,
BMW® 2Series Coupe, Honda Odyssey®, Toyota Prius®, Mercedes Benz® A-Class, Lexus® LS, Mercedes Benz® E-
Class, Toyota Yaris® and Volvo® V40 are shown in this figure from the top left to the bottom right. All conditions
except object category are fixed in this figure.

Figure A.11: Sample images of ten orientations (condition categories) of CarsCG-Orientations. Ten orientations from
0 to 324 degrees are displayed from the left to right. All conditions except orientation are fixed in this figure.
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Figure A.12: Sample images of the three elevation angles (10, 15, 30 degrees) of CarsCG-Orientations. Left figure is
the image whose elevation angle is 10 degrees. Middle figure is the image whose elevation angle is 15 degrees. Right
figure is the image whose elevation angle is 30 degrees.

Figure A.13: Sample images of cars painted in ten colors of CarsCG-Orientations. There are images painted in black,
light blue, green, red, white, beige, dark blue, orange, plum, and silver from left to right.

(a) Sample images of each location from elevation angle of 10 degrees that CarsCG-Orientations has.

(b) Sample images of each location from elevation angle of 15 degrees that CarsCG-Orientations has.

Figure A.14: (a) is images of a car placed in five different locations taken from elevation angle of 10 degrees. (b) is
images taken from elevation angle of 15 degrees. There are differences in texture of road and background.

Figure A.15: Sample images of each time slot of CarsCG-Orientations. Left figure is an image of car taken in the
daytime. Middle figure shows an image of a car taken in the twilight. The color of the car is different from that in
the left and right ones. It is caused by the twilight sunlight condition. Right figure shows an image of car taken at
midnight. The color of the car is also different from left and middle ones.
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Figure A.16: Sample images of each object category and illumination condition of MiscGoods-Illuminations are
shown in this figure. Each row indicates object categories — stuffed dolphin, stuffed whale, metal basket, imitation
plant, cup, cleaning brush, winding tape, lace yarn, bottled imitation tomatoes, and bottled imitation green apples.
Each column indicates the condition categories, illumination conditions — ceiling light, white spotlight, red spotlight,
green spotlight and blue spotlight. These five categories from the top and five illumination conditions are used as object
categories and condition categories in our experiments.
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Figure A.17: Robotic image capture system for MiscGoods-Illuminations. Dashed bidirectional arrow indicates the
robot motion.
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Figure A.18: Sample images of MiscGoods-Illuminations with two aspects. Each object has these two aspects as
condition. The shapes of these objects in an image are changed by aspects conditions.
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Figure A.19: Sample images of each orientation of MiscGoods-Illuminations. 20 orientations from 0 to 342 degrees
that the dataset has are shown in this figure from the top left to the bottom right.

Figure A.20: Sample images from each camera angles of MiscGoods-Illuminations. There are five angles in the
dataset. The postures were defined so that the acquired image shows the entire object pose. These five camera angles
are related to postures of robot arm that the camera is connected.
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Figure B.1: This diagram shows the whole architecture of our implementation of ResNet-18. The numbers in this
diagram represent batchsize, height of image, width of image and channels. Therefore they change depending on the
dataset. Current numbers correspond to MNIST-Positions. For instance, the numbers on the top of the diagram means
(batchsize, height, width, channels) = (128, 42, 42, 1). Conv2D, Dense and BasicBlock mean a convolutional
layer, a fully connected layer and a basic building block of ResNet, respectively.
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Figure B.2: This diagram shows the architecture of BasicBlock in ResNet-18. Conv2D and Add mean a convolutional
layser and a layer that simply add the two input values.
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Figure C.3: Late-stopping with low InD data diversity
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Figure C.4: Late-stopping with medium InD data diversity
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Figure C.5: Late-stopping with high InD data diversity
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Figure C.6: Baseline and BN momentum with low InD data diversity
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Figure C.7: Baseline and BN momentum with medium InD data diversity
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Figure C.8: Baseline and BN momentum with high InD data diversity
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Figure C.9: Performance improvement in mean InD accuracy
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Figure C.10: Performance improvement of difference from Baseline in mean InD accuracy
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Figure C.11: Overall results between IS scores and all combinations of (data diversity, dataset, approaches)
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