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a b s t r a c t

The training data distribution is often biased towards objects in certain orientations and illumination
conditions. While humans have a remarkable capability of recognizing objects in out-of-distribution
(OoD) orientations and illuminations, Deep Neural Networks (DNNs) severely suffer in this case, even
when large amounts of training examples are available. Neurons that are invariant to orientations and
illuminations have been proposed as a neural mechanism that could facilitate OoD generalization, but
it is unclear how to encourage the emergence of such invariant neurons. In this paper, we investigate
three different approaches that lead to the emergence of invariant neurons and substantially improve
DNNs in recognizing objects in OoD orientations and illuminations. Namely, these approaches are
(i) training much longer after convergence of the in-distribution (InD) validation accuracy, i.e., late-
stopping, (ii) tuning the momentum parameter of the batch normalization layers, and (iii) enforcing
invariance of the neural activity in an intermediate layer to orientation and illumination conditions.
Each of these approaches substantially improves the DNN’s OoD accuracy (more than 20% in some
cases). We report results in four datasets: two datasets are modified from the MNIST and iLab datasets,
and the other two are novel (one of 3D rendered cars and another of objects taken from various
controlled orientations and illumination conditions). These datasets allow to study the effects of
different amounts of bias and are challenging as DNNs perform poorly in OoD conditions. Finally, we
demonstrate that even though the three approaches focus on different aspects of DNNs, they all tend
to lead to the same underlying neural mechanism to enable OoD accuracy gains — individual neurons
in the intermediate layers become invariant to OoD orientations and illuminations. We anticipate this
study to be a basis for further improvement of deep neural networks’ OoD generalization performance,
which is highly demanded to achieve safe and fair AI applications.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The object recognition performance of Deep Neural Networks
DNNs) dramatically degrades when the train and test distri-
utions are not identical due to dataset bias (Torralba & Efros,
011), i.e., when tested in out-of-distribution (OoD) conditions.
here is a big gap between DNNs and humans when evaluated
n OoD conditions. This issue has been getting much interest in
ecent years (Beery, Horn, & Perona, 2018; Geirhos et al., 2019;
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Hendrycks et al., 2021; Recht, Roelofs, Schmidt, & Shankar, 2018,
2019), as it severely compromises the safety and fairness of AI
applications.

One of the most prominent factors of dataset bias is that
objects may appear in a constrained range of orientation and
illumination conditions (Alcorn et al., 2019; Barbu et al., 2019).
While generalization to OoD orientations and illumination condi-
tions has been long studied in both biological and artificial neural
networks, e.g.,Anselmi, Rosasco, and Poggio (2016), Sinha and
Poggio (1996) and Ullman (1996), the computational mechanisms
that facilitate such generalization remain as a key outstanding
question. Recently, Madan et al. (2022) and Zaidi et al. (2020)
have shown that DNNs are capable to overcome bias by trans-
ferring the generalization ability obtained from objects seen in
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Three approaches to facilitate generalization to objects in out-of-distribution (OoD) orientations and illuminations. (a) Learning curves of in-distribution (InD)
test accuracy and OoD accuracy for late-stopping applied to the MiscGoods-illuminations dataset (medium InD data diversity). OoD accuracy converges much later
than InD accuracy. (b) Learning curves of the OoD accuracy with and without tuning batch normalization momentum (tuned BN) in the CarsCG-Orientations, dataset
(medium InD data diversity). It can be seen that tuning the momentum reduces the oscillation of the OoD accuracy and improves the performance. (c) Left: Conceptual
diagram of the invariance loss. Pairs of images that belong to the same category are fed into the DNN. The invariance loss is based on the Euclidean distance between
the pairs of the last ReLU activity. The classification loss is calculated with the network output as usual. The total loss is the weighted sum of the invariance and
classification losses. Right: Learning curve of OoD accuracy in MiscGoods-Illuminations dataset (medium InD data diversity) when the invariance loss is applied. The
OoD accuracy increases by about 20% compared to the baseline. The solid lines in the plots are the mean value. The lighter semitransparent colors surrounding the
solid lines indicate 95% confidence interval. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
a richer set of conditions to the objects seen in biased condi-
tions. Also, the emergence of representations at the individual
neuron level in the intermediate layers of the DNN that are
selective to categories and invariant to the OoD conditions has
been identified as a mechanism that may facilitate such OoD gen-
eralization. Invariant neural representations have been studied
during decades, e.g., Anselmi et al. (2016), and here they appear
s the mechanism that allows OoD generalization. This begs the
uestion whether we can further encourage the emergence of
nvariant neural representations in DNNs in order to further
mprove OoD generalization.

In this paper, we investigate factors that drive the emergence
f invariant neurons and as a result substantially boost the DNN
bility to recognize objects in OoD orientations and illuminations.
n particular, we discover that the following factors, summarized
n Fig. 1, have a remarkable impact:

1. Late-stopping: DNNs are usually trained until the validation
recognition accuracy (which is in-distribution) converges.
We found that in many cases the OoD recognition accuracy
improves slowly, yet consistently, after the validation (in-
distribution) accuracy has converged. This finding is sur-
prising as classic machine learning theory suggests early-
stopping as a regularization mechanism (Yao, Rosasco, &
Caponnetto, 2007b), and we found that the opposite is
beneficial to improve OoD generalization in DNNs. We call
this approach ‘‘late-stopping’’.
120
2. Tuning the batch normalization parameter: Batch normaliza-
tion (BN) is known to have an impact in OoD recognition
accuracy (Schneider et al., 2020). We found that tuning the
only hyperparameter of BN, i.e., the momentum, yields sub-
stantial gains of OoD recognition accuracy. This approach is
denoted as ‘‘tuned BN’’.

3. Neural activity invariance loss: Motivated by the aforemen-
tioned finding in previous works that invariant neural rep-
resentations leads to improvements of the OoD recognition
accuracy, we include an additional term in the loss function
to encourage this phenomenon. This loss term takes the
Euclidean distance between neural activity corresponding
to pairs of images from the same category on an inter-
mediate layer. By minimizing this loss term, the neural
activity tends to be invariant for objects of the same cat-
egory even in different viewing conditions. We do not con-
sider that pairs of images from different categories should
have distinguishable neural activity, since the classification
loss term already encourages this. We call this approach
‘‘invariance loss’’ in short.

Our results demonstrate that each of these three approaches
alone leads to substantial improvements of object recognition in
OoD orientations and illumination conditions. Results also corrob-
orate that when any of the three approaches leads to an increase
of invariance at the individual neuron level, OoD recognition
accuracy improves in the majority of trials.



A. Sakai, T. Sunagawa, S. Madan et al. Neural Networks 155 (2022) 119–143

n
g
a
a
f
o
v
a
o
t
a

S
t

2

t
t
o
o

2

t
m

Fig. 2. Sample images from four datasets. (a) MNIST-Positions, (b) iLab-Orientations, (c) CarsCG-Orientations, and (d) MiscGoods-Illuminations are shown in each
subfigure. Samples from each dataset are arranged in a grid pattern. Each row indicates categories and each column indicates either an orientation or an illumination
condition. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Experiments are performed in four challenging benchmarks,
amely modifications of the MNIST dataset (LeCun, Bottou, Ben-
io, & Haffner, 1998) and iLab dataset (Borji, Izadi, & Itti, 2016)
nd two novel datasets we introduce, which are the CarsCG
nd the MiscGoods datasets. CarsCG contains 3D rendered cars
rom different orientations, and the MiscGoods dataset consists
f images of objects taken with a robotic arm from different
iewpoints and controlled illumination conditions. These datasets
llow to evaluate the DNN generalization ability to recognize
bjects in OoD orientations and illumination conditions. Also,
hey allow to analyze the effects of different amounts of bias and
re challenging as DNNs perform poorly in OoD conditions.

ummary of contributions. In the following, we summarize the
hree main contributions of this paper:

1. Three different approaches that substantially improve gen-
eralization to OoD viewpoints and illuminations, summa-
rized in Fig. 1.

2. Two new challenging datasets (CarsCG and the MiscGoods)
that facilitate the study of OoD orientations and illumina-
tions, displayed in Figs. 2(c) and 2(d).

3. Striking evidence that encouraging the emergence of in-
variant neurons leads to improvements of object recog-
nition in OoD orientations and illuminations (Fig. 6 and
Table 2).

. Previous works

We now review related works to overcoming dataset bias in
erms of orientations and illuminations. First, we review works
hat have the same goal as our work, i.e., overcoming biased
rientations and illuminations, and then, we review works in
ther areas of OoD generalization.

.1. OoD orientations and illuminations

Our results add to the growing body of literature to improve
he generalization ability of DNNs to OoD orientations and illu-
ination conditions. These are fundamental aspects at the core
121
Fig. 3. InD and OoD combinations for bias-controlled experiments. Each sample
is a combination of a category and an orientation or illumination condition. We
create a set of combinations called ‘‘InD combinations’’ and a set of combinations
called ‘‘OoD combinations’’. The ratio of InD combinations to all combinations is
called InD data diversity. In addition, we create a train dataset (D(InD)

train ) and an InD
validation dataset (D(InD)

val ) from samples included in the InD combinations, and
an OoD test dataset (D(OoD)) from the samples included in the OoD combinations.

of object recognition, that are present in all object recognition
tasks. Prior efforts leverage synthesized sources of training data
(Cubuk, Zoph, Shlens, & Le, 2019; Halder, Lalonde, & Charette,
2019; Kim, Uddin, & Bae, 2021; Qiao, Zhao, & Peng, 2020), 3D
models of objects (Angtian, Kortylewski, & Yuille, 2021), specific
characteristics of the target domain (Chidester, Zhou, Do, & Ma,
2019; Qi et al., 2018; Sabour, Frosst, & Hinton, 2017), or sens-
ing approaches such as omnidirectional imaging (Cohen, Geiger,
Köhler, & Welling, 2018). These approaches add preconceived
components to the DNN that need to be adjusted at hand for new
objects and conditions. Here, we focus for the first time on a pure
learning-based strategy for OoD orientations and illuminations,
which is not constrained to specific objects and conditions and
can be automatically adjusted to new datasets.

Our investigation build upon theories of biological neural
mechanisms for OoD generalization, namely, neural invariance
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Fig. 4. Performance degradation in the OoD conditions. Upper figures show the examples of InD combination in MiscGoods-Illuminations dataset to depict the
InD data diversity of each experiment. Lower figures show InD or OoD accuracy of ResNet-18 in (a) low InD data diversity, (b) medium InD data diversity and
(c) high InD data diversity performed on four datasets. Each experiment is conducted five times, and the mean and 95% confidence interval are reported. Sharp
performance degradation in OoD accuracy is observed (e.g., between 40% to almost 80% is observed when the InD data diversity is low). These result shows the
mpact of a distribution shift from InD to OoD to the performance of a DNN.
Anselmi et al., 2016; Quiroga, Reddy, Kreiman, Koch, & Fried,
005; Riesenhuber & Poggio, 1997; Rust & DiCarlo, 2010). Re-
ent works have shown that those mechanisms also emerge
n artificial neural networks and facilitate OoD generalization
Madan et al., 2022; Zaidi et al., 2020). In this paper, we show
hat the emergence of invariant neurons can be encouraged
uring training and this leads to substantial improvements of
oD generalization.

.2. Other aspects of OoD generalization

To the best of our knowledge, this paper is the first to in-
estigate learning-based approaches to overcome bias of object’s
rientations and illumination conditions. Yet, there are other
trands of research that live in neighboring areas, which inves-
igate generalization to new domains and also, overcoming spu-
ious correlations between image features and categories. These
esearch areas use related techniques and concepts to our work,
nd in the following we review them.
There is a plethora of works that consists on learning rep-

esentations in several domains that can be easily transferred
o new domains, e.g.,Carlucci, D’Innocente, Bucci, Caputo, and
ommasi (2019), Dou, Castro, Kamnitsas, and Glocker (2019),
hifary, Bastiaan Kleijn, Zhang, and Balduzzi (2015), Guo et al.
2020), Jia, Zhang, Shan, and Chen (2020), Li, Pan, Wang, and
ot (2018), Li et al. (2018), Li, Yang, Song and Hospedales (2018)
nd Volpi et al. (2018). The problem of domain generalization is
imilar to the problem overcoming dataset bias in our study in the
ense that representations that facilitate generalization to novel
onditions should be learned. However, in domain generalization
he learner has access to multiple domains during training that
an be leveraged for generalization, while in the problem of
vercoming dataset bias only one training set is available. Re-
ently, several works in domain generalization (Chattopadhyay,
alaji, & Hoffman, 2020; Ilse, Tomczak, Louizos, & Welling, 2020;
ame, Dancette, & Cord, 2021; Xiao, Shen, Zhen, Shao, & Snoek,
021) highlighted the need of invariant representations to obtain
urther improvements in generalization, which further motivates
nvestigating invariance for dataset bias.
122
Many datasets are biased in a way that a specific image fea-
ture consistently appears in images of the same category. DNNs
tend to learn that those features are informative of the category
(Geirhos et al., 2020). This form of dataset bias is different from
the bias in the object orientation and illumination conditions,
which do not necessarily lead to spurious correlations. Recently,
there have been several works that address spurious correla-
tions. These are based on automatically detecting the features
that spuriously correlate with the category, and encourage the
DNN not to rely on those features (Arjovsky, Bottou, Gulrajani,
& Lopez-Paz, 2019; Sagawa, Koh, Hashimoto, & Liang, 2020).
Ahmed, Bengio, van Seijen, and Courville (2021) introduced PGI,
which is a method that effectively alleviates the effect of spurious
correlation caused by biased object background. This work ex-
ploits the assumption that the training distribution also contains
examples without spurious correlations. CMMD (Li et al., 2018) is
another method, which uses idea of maximum mean discrepancy
(MMD). CMMD and PGI employ EIIL (Creager, Jacobsen, & Zemel,
2021) to classify the images of an category with the features that
spuriously correlate with the category and without them. Then,
invariance is encouraged across these two groups of images. Thus,
invariance appears once more as a facilitator of generalization.

Recently, several researchers have pointed out that no single
OoD algorithm can achieve high performance for all problem
domains (Gulrajani & Lopez-Paz, 2021; Hendrycks et al., 2021;
Wiles et al., 2022). It also has been reported that even very
simple methods can achieve performance beyond state-of-the-
art (Djolonga et al., 2021; Wiles et al., 2022). We show that for
orientations and illuminations, which are fundamental aspects of
object recognition, the approaches we introduce in this paper are
superior to the most successful aforementioned generic methods
for OoD generalization. Also, we provide insights about the neural
mechanisms that facilitate such improvements.

3. Performance degradation on OoD conditions

In this section, we introduce the methodology to evaluate the
accuracy of the DNN in OoD conditions. First, we describe the
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rocedure of the bias-controlled experiment. Next, we introduce
he four datasets used in this study and finally, we evaluate the
erformance degradation that occurs in OoD conditions in these
our datasets.

.1. Bias-controlled experiments

In a dataset there could be multiple biasing factors at the same
ime that can cause performance degradation. In the datasets
n this study, we analyze either the orientation or illumination
ondition, as it allows to more clearly understand the effect of
ach individual factor. Thus, the datasets that we use contain
everal combinations of categories and conditions. We use C to
enote the set of all categories and N the set of all orientation
r illuminations conditions. Let x(k) be an image of the dataset
nd let y(k) := (c(k), n(k)) be a tuple representing the ground-

truth category (i.e., c(k) ∈ C), and the orientation or illuminations
condition (i.e., n(k)

∈ N ).
In order to evaluate the DNN’s OoD generalization capabilities,

we train them in a dataset that follows a distribution that only
contains a subset of all possible combinations, i.e., a subset of
C×N . Then, the DNN is evaluated with images from combinations
that were not included in the training distribution. Let I ⊂ C×N
be the set of combinations used to generate the InD combinations.
We ensure that I contains all categories and all conditions at least
once (but not all combinations), such that we have images from
all image categories and conditions in a balanced manner.

We use D(InD) to denote the set of images that are InD, i.e., im-
ages whose label is in I, y(k) ∈ I. Namely, the InD images dataset,
D(InD), is defined as in the following:

D(InD)
:= {(x, y)|y ∈ I}. (1)

D(InD) is further divided into train dataset and validation dataset,
which we denote as D(InD)

train and D(InD)
val , respectively. The term

InD accuracy refers to the DNN’s accuracy on D(InD)
val . The

OoD dataset D(OoD) is defined as

D(OoD)
:= {(x, y)|y ∈ (C × N ) \ I}. (2)

The term OoD accuracy refers to the accuracy on the OoD dataset
D(OoD). Fig. 3 also illustrates how to split all dataset to OoD dataset
and InD dataset. Appendix A elaborates this bias-controlled ex-
periments.

We also define the InD data diversity of a dataset as
#(I)/#(C × N ), where #(·) denotes a number of elements. Thus,
the data diversity measures the portion of combinations in-
cluded in the training distribution. To directly compare the effect
of the InD data diversity on the OoD accuracy, we vary the
InD data diversity such that the combinations in the distributions
of lower InD data diversity are included in the combinations of
higher InD data diversity, while keeping the training set size
constant, i.e., #(D(InD)

train (I)) is constant for all InD data diversity.
These restrictions allows us to evaluate the performance of the
DNN only by the difference in InD data diversity, not by the
difference in the amount of combinations or training examples.

3.2. Datasets

There is a plethora of benchmarks for OoD generalization by
now, e.g.,Gulrajani and Lopez-Paz (2021), Hendrycks et al. (2021)
and Koh et al. (2021). However, only few of these datasets are
useful to investigate generalization to novel orientations and il-
luminations, as only a few provide labels for category, orientation
and illumination, and cover a wide range of conditions. We use
the following four datasets, two of them are introduced in this
paper. See Appendix B for further details than the ones provided
in the following.
123
MNIST-Positions. It is based on the MNIST dataset (LeCun et al.,
1998). We created a dataset of 42 × 42 pixels with nine numbers
by resizing images to 14 × 14 and placing them in one of nine
possible positions in a 3 × 3 empty grid. We call this dataset
the MNIST-Positions dataset. In our experiments, the digits are
considered to be the category set, and the positions where the
digits are placed is considered as the orientation. We use nine
digits and nine positions. Samples are shown in Fig. 2(a). We used
54k images for D(InD)

train , 8K images for D(InD)
val and 8K images for

D(OoD). Low, medium, and high InD data diversity are set to be
2/9, 4/9, and 8/9, respectively.

iLab-Orientations. iLab-2M is a dataset created from iLab-20M
dataset (Borji et al., 2016). The dataset consists of images of
15 categories of physical toy vehicles photographed in various
orientations, elevations, lighting conditions, camera focus settings
and backgrounds. The image size is 256 × 256 pixels. From
the original iLab-2M dataset, we chose six categories (bus, car,
helicopter, monster truck, plane, and tank) and six orientations.
We call it iLab-Orientations. Samples are shown in Fig. 2(b). We
resized each image to 64 × 64 pixels. We used 18K images
for D(InD)

train , 8k images for D(InD)
val and 8k images for D(OoD). Low,

medium, and high InD data diversity are set to be 2/6, 3/6, and
5/6, respectively.

CarsCG-Orientations. CarsCG-Orientations is a new dataset that
consists of images of ten types of cars in various conditions ren-
dered by Unreal Engine. It includes ten orientations, three eleva-
tions, ten body colors, five locations and three time frames (day-
time, twilight, night). We synthesize images with 1920 × 1080
pixels and resize them as 224 × 224 pixels for our experiment.
We chose ten types of cars as categories and ten orientations for
each of them. Samples are shown in Fig. 2(c). More samples are
provided in Appendix B. In the experiment, we used 3400 images
for D(InD)

train , 450 images for D(InD)
val and 800 images for D(OoD). Low,

medium, and high InD data diversity are set to be 2/10, 5/10, and
9/10, respectively.

MiscGoods-illuminations. MiscGoods-Illuminations is a subset of
DAISO-10, a novel dataset collected for this study. The dataset
consists of ten physical miscellaneous goods photographed using
a robotic arm with five controlled illumination conditions, two
ways of object placement, twenty object orientations, and five
camera angles. Each image is 640 × 480 pixels in size. We chose
five categories (stuffed dolphin, stuffed whale, metal basket, im-
itation plant and cup) and five illumination conditions as shown
in Fig. 2(d). More samples are displayed in Appendix B. We resize
the images to 224 × 224 pixels for our experiments. We used 800
images for train D(InD)

train , 200 images for D(InD)
val and 400 images for

D(OoD). Low, medium, and high InD data diversity are set to be
2/5, 3/5 and 4/5, respectively.

3.3. OoD accuracy results

We now demonstrate that these four datasets are extremely
challenging for DNNs as these achieve low accuracy in OoD condi-
tions. We examine the performance degradation in three InD data
diversity: low, medium, and high. Recall that we evaluate InD ac-
curacy in D(InD)

val and the OoD accuracy in D(OoD). We use ResNet-18
(He, Zhang, Ren, & Sun, 2016) trained with D(InD)

train . The experimen-
tal setup is introduced in Section 6.1.

Fig. 4 shows the OoD accuracy degradation regarding the
four datasets ranging low to high InD data diversity. While the
InD accuracy is more than 80% for all four datasets at almost
all data diversities (except for MNIST-positions), the OoD ac-
curacy showed a substantial degradation when the DNN was
trained with low and medium InD data diversities. Between 20%
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o 70% performance degradation is observed in low InD data
iversity in all four datasets. In medium InD data diversity, large
erformance degradation ranging from 10% to 50% is observed,
nd for high InD data diversity, there is more than 10% per-
ormance degradation in CarsCG-Orientations and MiscGoods-
lluminations datasets. Thus, dramatic drops of accuracy are ob-
erved in OoD conditions, which confirms that these benchmarks
re very challenging for DNNs.
OoD accuracy is often overlooked in standard computer vision

enchmarks and only InD is usually reported. This is usually due
o the difficulty of measuring OoD accuracy. Our datasets en-
ble evaluating OoD accuracy in a controlled way that facilitates
nderstanding the different factors that may affect the OoD accu-
acy. The performance degradation in OoD conditions is expected
hen deploying application of deep learning. Recently, it has
een reported that even a small amount of data bias can cause
ajor performance degradation (Recht et al., 2018), and this is

econfirmed for our four datasets. Also, the drop of accuracy in
ur datasets is dramatic, specially for low InD data diversity. Our
atasets allow to gain an understanding of the specific biasing
actors in the dataset, i.e., orientation and illumination conditions,
nd analyze aspects such as the InD data diversity.

. Three approaches to improve OoD accuracy

We now introduce the three approaches to address the per-
ormance drop of accuracy in OoD conditions, which are ‘‘late-
topping’’, ‘‘tuning the batch normalization momentum’’ and ‘‘in-
ariance loss’’. These three approaches are independent on each
ther and tackle different aspects of the DNN training.

.1. Late-stopping

The stopping criteria for training is known to have an im-
act on the DNNs performance (Caruana, Lawrence, & Giles,
001; Cataltepe, Abu-Mostafa, & Magdon-Ismail, 1999; Yao et al.,
007b). In particular, stopping the training before convergence
f the training accuracy, i.e., early stopping, is known to prevent
verfitting in shallow classifiers (Prechelt, 1998). However, these
esults are with respect to InD accuracy, and little is known
egarding the relation between the stopping criteria and OoD ac-
uracy. We therefore run experiments with a large number of
raining epochs (up to 1000 epochs) in order to investigate any
atterns. Fig. 1(a) shows the change of InD and OoD accuracy
hen ResNet-18 is trained with the medium InD data diver-
ity. Surprisingly, the OoD accuracy, unlike the InD accuracy,
ontinued to increase in performance after training during a
arge number of epochs. While recent work by Papyan et al.
as shown that continuing training long after the classification
rror is zero, leads to important benefits such as improving
obustness to adversarial attacks (Papyan, Han, & Donoho, 2020),
e report for the first time that it also leads to improvements
f OoD generalization. We denote the approach of continuing the
raining of a DNN after the convergence of InD validation accuracy
s ‘‘late stopping".

.2. Tuning batch normalization

Batch normalization (BN) (Ioffe & Szegedy, 2015) is a method
sed to speed-up and stabilize the training of DNN networks
hrough normalization of the layers’ inputs by re-centering and
e-scaling them. Batch normalization has also been reported to
ct as a regularizer (Luo, Wang, Shao, & Peng, 2019). Yet, in
oD conditions the statistics of the dataset may change and
ence, the statistics used to normalize the layer may not be valid
nymore. Previous works have pointed out that in OoD conditions
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batch normalization needs to be adjusted (Schneider et al., 2020;
Xie et al., 2020). Thus, it is reasonable that batch normaliza-
tion also needs adjustment to help improving generalization to
OoD orientations and illuminations, but this has not been studied
so far.

Batch normalization uses the so called moving average to
recenter the layer’s input. Let vma(t) be the moving average at
training step t . The moving average is updated at each training
step in the following way:

vma(t) = (β − 1)vmean(t) + βvma(t − 1), (3)

here vmean(t) is the mean activity over the batch of the tth train-
ing step, and β ∈ [0, 1] is called momentum and balances the
update of the moving average between vmean(t) and itself. Note
hat the only hyperparameter available for batch normalization
s β , and we use this to adjust it. This value is often fixed, and we
ound that adjusting it is needed when the distribution of inputs
hanges. Usually, β is set to 0.9 or 0.99, which is the default value
n standard deep learning frameworks. We use the default value
.99 that is employed by the TensorFlow library (Abadi et al.,
016).
We investigated how the OoD generalization performance be-

aves depending on the value of the batch normalization momen-
um, β . Fig. 1(b) shows the learning curves of ResNet-18 trained
n MiscGoods-illuminations with the medium InD data diversity.
xperimentally, we found that the tuning momentum parameter,
, can have a significant positive impact on the OoD generaliza-
ion performance. Generally, the default value of β = 0.99 was
too large for almost all cases in our experiments. We call this
approach as tuning batch normalization or ‘‘tuning BN’’.

4.3. Invariance loss

The ‘‘invariance loss’’ approach is intended to increase the in-
variance score that is introduced in Madan et al. (2022), which we
explain in Section 5. This invariance score measures the degree
of invariance in the neural activity of intermediate layers, and
previous works have shown that DNNs that generalize better to
OoD conditions have developed larger degrees of invariance in
the intermediate layers.

Concretely, we encourage the emergence of invariant repre-
sentations by taking pairs of images that belong to the same
category and enforce that the neural activity is as similar as possi-
ble. To do so, we use the Euclidean distance between the activities
of neurons in an intermediate layer caused by the pairs of images,
and add this as an additional loss term to the classification loss.
Fig. 1(c) shows the scheme of this approach. Let g(· ; θg ) be the
neural activity of a DNN’s intermediate layer, where θg are the
parameters of the DNN before the intermediate layer. Let f (· ; θf )
be the output of the DNN given as input the intermediate layer,
g(· ; θg ), where θf are the DNN parameters from the intermediate
layer to the output of the network. Thus, the neural activity of
the intermediate layer for an image x is g(x; θg ) and the output
f the whole network is f (g(x; θg ); θf ). Let x be a training image,

and let x′ be another image that belongs to the same category as
x, and is sampled from the training data D(InD)

train according to some
sampling strategy (in our experiments, we use random sampling
with uniform distribution across the training images of the same
category). Thus, the invariance loss is expressed as

∥g(x; θg ) − g(x′
; θg )∥2. (4)

his term is added to the categorical cross entropy loss weighted
ith a hyperparameter that we call λ, such that the invariance

oss term acts as a regularization term.
Note that the invariance loss is equivalent to the contrastive

oss (Hadsell, Chopra, & LeCun, 2006) for positive examples in
he context of metric learning, but it has not been used so far
o improve generalization to OoD orientations and illumination
onditions.
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. Invariant neurons for OoD generalization

We now revisit the mechanism at the individual neuron level
f intermediate layers that previous works have suggested that
acilitates OoD generalization, i.e., individual neurons being in-
ariant to OoD conditions. This mechanism has been shown to
xplain the improvement in OoD accuracy with increased InD
ata diversity (Madan et al., 2022; Zaidi et al., 2020).
Neurons are interpreted as features detectors. A neuron is

elective to some features when the neuron’s output value is high
nly when those features are present in the image. Invariance of
eurons that are selective can be helpful for OoD conditions. Note
hat a neuron can be simply invariant by always having as an
utput the same value, which is not helpful for generalization.
e refer to invariant neurons to those neurons that have a high
egree of selectivity to some image features and invariance to
oD conditions, i.e., selectivity is assumed as a precondition to
nvariance.

For a given intermediate layer of the DNN, let α
j
cn be the

verage activity for the jth neuron over all images with the
cth category and the nth orientation or illumination condition.
For neuron j, the activity is 0 − 1 normalized. Let c∗j be the
category that a neuron j is most active on average, i.e., c∗j

:=

rgmaxc
∑

n α
j
cn. This is called preferred category. The selectivity

core S j is defined as

j
:=

α̂j
− ᾱj

α̂j + ᾱj , (5)

where, α̂j
:=

1
#(N )

∑
n α

j
c∗jn

and ᾱj
:=

∑
c ̸=c∗j

∑
N α

j
cn

#(C)(#(C)−1) denote the

average activity for the preferred category and for the remaining
categories, respectively. This selectivity score ranges from zero to
one and takes its maximum value in the case that the neuron
average activity, αj

cn, is 0 for all categories except for the preferred
category, i.e., the neuron is only active for the preferred category.
The invariance score I j is defined as

I j := 1 − (max
n

α
j
c∗jn

− min
n

α
j
c∗jn

), (6)

and it also ranges from zero to one and takes the maximum in the
case that the average activity, α

j
cn, takes the same value for the

preferred category regardless of the orientation and illumination
conditions.

Finally, we define the SI score of a neuron as the geometric
mean of the selectivity and invariance scores, i.e.,

√
S jI j. Neu-

ons that have a larger SI score are active for specific categories
ndependently on the orientation and illumination conditions.
etworks with neurons that have larger SI scores have been
bserved to generalize better in OoD conditions. In order to
rovide a score that summarizes the SI score across all neu-
ons in the layer, we use the upper 20 percentile of the scores
mong all neurons. This is because not all neurons are required
o have larger SI to improve OoD generalization, and we just take
nto account a portion of neurons with the highest SI score. In
he experiments, we use this summary of the SI score across
eurons to assess whether the three approaches we introduce
ield improved OoD accuracy through improving selectivity and
nvariance.

Finally, note that there are other ways to analyze the neural
ctivity, such as the popular t-SNE visualization (van der Maaten
Hinton, 2008). Our neural activity analysis is unique with re-

pect to previous visualization works in that it can quantitatively
ssess the neural activity and directly relate it to OoD accuracy.
125
6. Experiments and analysis

We first introduce the experimental setup, and then report
the OoD accuracy facilitated by the three approaches explained in
Section 4. Finally, we analyze whether this boost of OoD accuracy
is driven by selective and invariance mechanism revisited in
Section 5.

6.1. Experimental setting

We apply the three approaches to improve OoD accuracy
to ResNet-18 (He et al., 2016) and evaluate its effectiveness in
the aforementioned datasets (MNIST-Positions, iLab-Orientations,
CarsCG-Orientations, and MiscGoods-Illuminations). Standard
ResNet-18 is adopted as the network for all experiments and we
trained it in the standard manner. Namely, all neurons employ
the ReLU activation function g(z) = max{0, z} (Dahl, Sainath, &
Hinton, 2013) and Glorot uniform initializer (Glorot & Bengio,
2010) is adopted for the network weights initialization for all
experiments. Adam (Kingma & Ba, 2015) is employed as the
optimization algorithm. The pixels of images are normalized
within 0 to 1 as a preprocessing for all datasets.

We run five trials in all cases and report mean accuracy and
its 95% confidence interval. In each trial, the InD combinations are
chosen randomly as long as they satisfy the conditions explained
in Section 3.1, and the OoD combinations are created accordingly.
Each of the four approaches, including baseline, is subjected to
a hyper-parameter search before performing the five trials. We
select the hyper-parameters in a different trial from the ones
used to report OoD accuracy. In this reserved trial, we select
the hyper-parameters with the highest OoD accuracy by grid
search. For all tested approaches, we selected a learning rate in
{0.1, 0.01, 0.001, 0.0001, 0.00001}, and other hyper-parameters
depending in the approach. In Appendix C, we show that the
results are not much sensitive to the hyper-parameter choice. In
the following we detail the experimental setting of the different
approaches.

Late-stopping. The epoch size is set to 1000 epochs for late stop-
ping, and 100 epochs for the other approaches, including baseline.
We confirmed that 100 epochs are sufficient for convergence in
InD accuracy by the preliminary experiments. For late stopping,
we run as many epochs as computing resources allow (about a
week of training).

Tuning batch normalization. For tuning batch normalization, we
perform a grid-search for β = {0.01, 0.1, 0.5, 0.9, 0.99} in addi-
tion to the learning rate. For the other approaches, we use 0.99 as
a momentum parameter β for batch normalization layer, which
is the default value in TensorFlow.

Invariance loss. Invariance loss is applied to the last ReLU ac-
tivation layer ‘‘activation_17’’ which has 512 neurons. We keep
fixed the pairs of images in which invariance is enforced, and we
randomize the pairs from time to time. We perform a grid search
to determine how frequently we randomize the pairs of images
(the choices are randomizing every {10, 20, 50, 100} epochs). The
weight of the invariance loss term, λ, is also selected via a grid
search among the following values: λ = {1.0, 0.1, 0.01, 0.001,
0.0001}. For more details we refer the reader to Appendix D.

6.2. Improvement of OoD accuracy

Fig. 5 compares the mean OoD accuracy between the base-
line and the three approaches for all tested datasets and all
tested InD data diversities. Looking at the case of the CarsCG-
Orientations and MiscGoods-Illuminations datasets, we can see
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Fig. 5. Performance improvement of the mean OoD accuracy. Top figures show the examples of InD combinations, i.e., InD data diversity, in MiscGoods-Illuminations
ataset. (a), (b), and (c) show the mean OoD accuracy of the three approaches and the baseline for different InD data diversities. Error bars show 95% confidence
nterval. (d), (e), and (f) show the increase of the mean OoD accuracy by the three approaches over the baseline. The unit ‘‘pp’’ in figures denotes percentage points,
.e., the unit for the arithmetic difference of two percentages.
hat the three approaches increase the mean OoD accuracy at
lmost all the data diversities. Comparing the three approaches,
ate stopping and invariance loss both achieves the best improve-
ent rate in some combinations, and batch norm momentum
oes not achieve the best improvement in any combination.
he highest improvement of 22.2% is achieved by late stopping
ith a high InD data diversity. The performance improvement
cross datasets and data diversities is remarkable. Only in iLab-
rientations dataset is relatively small, but for high InD data
iversity in this dataset, all three approaches achieve better OoD
ccuracy than the baseline approach. For MNIST-Positions, all
hree approaches showed an improvement in performance with
edium InD diversity. In Appendix E we report the learning
urves and the InD accuracy for a more detailed depiction of the
ffects of the three approaches during training.
We also investigated whether the three approaches combined

ogether are more effective than the best of three approaches
pplied alone. Thus, we trained networks using late-stopping,
uned BN and invariance loss together. We call this approach
‘three approaches together’’. Another way of combining the three
pproaches is training networks with each approach alone and
hen selecting the best of the approaches using a validation set.
e call this approach ‘‘best of three approaches alone’’. The
yper-parameter tuning method of these combined approaches
s detailed in Appendix F. Table 1 shows the comparison between
hese two combination approaches and also the baseline, i.e., the
etwork trained without any approach to improve the OoD accu-
acy. The table reports the number times a method outperformed
nother method across all datasets and InD data diversity. The
esults show that using the best of the three approaches alone
126
obtains the best results in the vast majority of experiments.
Interestingly, the three approaches together performs worse than
the baseline for more than half of the experiments. This indicates
that the three approaches together interfere with each other and
should not be used.

Finally, we compare the three approaches with state-of-the-
art methods for OoD generalization, namely PGI (Ahmed et al.,
2021) and CMMD (Li et al., 2018). Note that these methods
were not introduced for OoD orientations and illuminations, but
as a generic approach to OoD generalization. Recently, several
researchers have pointed out that no single OoD algorithm can
achieve high performance for all problem domains (Gulrajani &
Lopez-Paz, 2021; Hendrycks et al., 2021; Wiles et al., 2022). In Ap-
pendix G we show that our three approaches outperform PGI and
CMMD in OoD orientations and illuminations. We also show that
PGI and CMMD can be combined with our approaches and lead
to substantial improvements of PGI and CMMD’s accuracy. This
result shows that our three approaches tackle complementary
aspects from state-of-the-art methods for OoD generalization.

6.3. Analysis for selectivity and invariance mechanism

Fig. 6 shows the relationship between the SI score of the last
ReLU layer and the OoD accuracy for all combinations of dataset,
InD data diversity, and approach (details are provided in Fig. E.9).
We can see that there is a large correlation between SI score and
OoD accuracy (Pearson’s correlation coefficient is 0.891). While it
has already been shown in Madan et al. (2022) that increasing
the InD data diversity improves the OoD accuracy and the SI
score, here we show for the first time that approaches that targets
improving the OoD accuracy also yield increases of the SI score.
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Fig. 6. Correlation analysis. This figure shows the correlation between OoD test accuracy and SI score. The Pearson’s correlation coefficient is 0.891.
Table 1
Comparison of ways to combine the three approaches. We compare the best of the three approaches alone
(i.e., training a network different times each with one of the three approaches alone, and then selecting the best of
the three in a validation set), training with the three approaches together (i.e., training a network using the three
approaches together), and the baseline (i.e., training the network without using any approach). Results compare
how many times each of these strategies outperformed another strategy, across InD data diversities in each of the
four datasets.
Comparison of OoD accuracy MNIST iLab CarsCG MiscGoods Total

Best of 3 approaches alone vs. Baseline 3 vs. 0 2 vs. 1 3 vs. 0 3 vs. 0 11 vs. 1
3 approaches together vs. Baseline 1 vs. 2 1 vs. 2 1 vs. 2 2 vs. 1 5 vs. 7
Best of 3 approaches alone vs. 3 approaches together 3 vs. 0 2 vs. 1 3 vs. 0 1 vs. 2 9 vs. 3
Table 2
Analysis of the dependency between improvements of OoD accuracy and SI score. This table shows
the relative frequency of improvement (+) or degradation (−) of the mean OoD accuracy ∆acc
or mean SI score ∆SI . Relative frequency P(x) is calculated by counting the number of cases that
satisfy the condition x ∈ {∆+

acc, ∆+

SI}, and normalize it by total number of cases (i.e., 12, 3 possible
InD data diversity × 4 datasets). Conditional relative frequency P(y|x) is also calculated by counting
the number combinations satisfying y ∈ {∆+

acc, ∆−
acc} in the condition of x ∈ {∆+

SI, ∆−

SI}, and divide
it by the number of combinations satisfying x. The first and second columns show the proportion
of cases where the mean OoD accuracy ∆+

acc and the mean SI score ∆+

SI increased, respectively. The
third column shows the proportion of cases where the mean OoD accuracy increased ∆+

acc when
the mean SI score increased ∆+

SI . The fourth column shows the proportion of cases where the mean
OoD accuracy increased ∆−

acc when the mean SI score increased ∆−

SI .

Approach P(∆+
acc) P(∆+

SI) P(∆+
acc|∆

+

SI) P(∆+
acc|∆

−

SI)

Late-stopping (%) 75.0 (9/12) 50.0 (6/12) 83.3 (5/6) 66.6 (4/6)
Tuned BN (%) 75.0 (9/12) 83.3 (10/12) 80.0 (8/10) 50.0 (1/2)
Invariance loss (%) 91.7 (11/12) 83.3 (10/12) 100.0 (10/10) 50.0 (1/2)
Total (%) 80.6 (29/36) 72.2 (26/36) 88.4 (23/26) 60.0 (6/10)
c
c
f
a
s
F
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Next, we analyze the relationship between improvements
f OoD accuracy and increases of the SI score. We investigate
hether increases of the SI score always precede improvement
f OoD accuracy, which serves to assess whether invariant rep-
esentations drive OoD generalization in a more stringent way
han the correlational analysis presented before. Let P(∆+

acc) be
he probability that the OoD accuracy increases when using one of
he three approaches to train the network, compared to not using
t. Also, let P(∆+

SI) be the probability that the SI scores increases
hen using one of the three approaches, compared to not using it.
he conditional probabilities between these two events provides
nsights regarding whether increases of the SI score precedes the
mprovements of the OoD accuracy. We calculate the probabili-
ies by evaluating the frequency that the events happen across
atasets and InD data diversities. We report them in Table 2.
127
We observe by analyzing P(∆+
acc) that the OoD accuracy in-

reases very often with the three approaches, at least 75% of the
ases. In particular, the OoD accuracy increased 91.7% of the cases
or the invariance loss. The analysis of P(∆+

SI) shows that tuned BN
nd invariance loss increase the SI score 83.3% of the cases. This
uggests that these two approaches tend to improve the SI score.
or late-stopping this trend is not as strong. Yet, when analyzing
(∆+

acc|∆
+

SI), we observe that for the three approaches, increases
f the SI score precede the improvements of OoD accuracy (this
s in 83.3% (5/6), 80.0% (8/10) and 100% (10/10) of the cases
or late-stopping, tuned BN and invariance loss, respectively).
ote that the invariance loss directly encourages to increase
he SI score, and when the SI score in fact increases, the OoD
ccuracy always has improved. Late stopping and tuning batch
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ormalization momentum do not directly encourage to increase
he SI score, but we observe that they do increase the SI score
ost of the cases, and when this happens, the OoD accuracy is
lso improved in more than 80.0% of the cases. Thus, these results
uggest that the improvement of OoD accuracy is strongly driven
y the increase of the SI score.
Finally, we observe by analyzing P(∆+

acc|∆
−

SI), that when the
SI score has not increased after applying one of the three ap-
proaches, the OoD accuracy still improves in a non-negligible
number of cases. This suggests the existence of another mech-
anism that can improve the OoD accuracy even if the selectiv-
ity and invariance mechanisms did not emerge. However, one
possible limitation of this interpretation is that selectivity and
invariance may have emerged but have not been captured by the
SI score, because the SI score may not quantify the emergence
of these mechanisms in the most precise way. Thus, we cannot
make any assertion beyond the fact that it is unclear what are
the neural mechanisms that facilitate OoD generalization when
the three approaches do not manage to increase the SI score. This
result motivates follow-up investigations.

In summary, in this study we provided evidence that the
invariance and selectivity mechanism drives OoD generalization.
Also, we found cases in which improvements of OoD general-
ization may not be preceded by the strengthening of the selec-
tivity and invariance mechanism in the neural representations,
which requires future work proposing novel mechanisms to ex-
plain these cases. We believe our experimental framework will
facilitate such future discoveries.

Finally, in Appendix H we visualize the neural activity using
t-SNE (van der Maaten & Hinton, 2008). This serves to illustrate
the advantages of our analysis over this popular visualization
tool. We observe that t-SNE displays neural invariance by having
the samples of the same object categories close to each other.
The trend is that for higher data diversity the samples are closer
to each other, which is consistent with our analysis of neural
invariance. Yet, our analysis of invariance provides more granular
insights at the individual neuron level, rather than for an entire
DNN layer as in t-SNE. Also, our analysis provides a quantitative
assessment that directly relates with the OoD accuracy, unlike
t-SNE, which only provides a qualitative assessment.

7. Conclusion

We have shown that late-stopping, tuning the batch nor-
malization momentum parameter, and optimizing the invariance
loss during learning lead to substantial improvements of the
DNN recognition accuracy of objects in OoD orientations and
illuminations (in some cases more than 20%). These improve-
ments are consistent across four datasets, and different degrees
of dataset bias. We also corroborated that the neural mechanisms
of selectivity to a category and invariance to orientations and
illuminations, at the individual neuron level, lead to the afore-
mentioned improvements of OoD recognition accuracy. Namely,
we found that in the majority of trials where any of the three ap-
proaches yield an increase of selectivity and invariance, resulted
in improvements of the OoD recognition accuracy.

Nonetheless, our analysis also revealed that other mechanisms
different from selectivity and invariance may also exists, as we
observed that gains of OoD recognition accuracy were not pre-
ceded by an increase of the SI score in some trials. What are
the neural mechanisms that drive OoD generalization in these
cases remains as an open question for future work. Furthermore,
there are also other novel questions derived from our results that
motivate future works: Is there any effective way of combining
the three approaches investigated in this paper that leads to even
more improvements of OoD generalization? Are these approaches
128
applicable to other factors beyond orientations and illumination
conditions? How these approaches relate to biological learning
systems? This paper is rather limited in providing answers to
these fascinating questions that have cropped up ahead of us,
and we hope that the substantial improvements of OoD recogni-
tion accuracy that we demonstrated in this paper motivate new
research to address them.

Finally, we would like to highlight that poor OoD general-
ization is one of the issues of machine learning that needs to
be urgently addressed in order to allow for safe and fair AI
applications. We hope that this research serves as a basis for
further improvements of OoD generalization.
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Appendix A. Formulation of bias-controlled experiments

In bias-controlled experiment, we prepare the InD dataset
D(InD) that consists of images belonging to certain category (C)
and orientation or illuminations condition (N ); we denote the
omplement set of D(InD) as D(OoD). Let x(k) be an image and
(k)

= (c(k), n(k)) be the corresponding label. We divide our dataset
s follows. First, we select certain combinations of category and
ondition I ⊂ C × N . InD dataset is sampled as
(InD)

= {(x(k), y(k))|y(k) ∈ I}, (A.1)

while the sampling process to make the combination I is forced
to satisfy the conditions described below. Let us define I|C and
I|N as follows:

I|C = {c ∈ C | (c, n) ∈ I}, (A.2)

I|N = {n ∈ N | (c, n) ∈ I}. (A.3)

We impose conditions I|C = C and I|N = N to ensure that D(InD)

contains all categories and all conditions like the bottom left part
of Fig. 3. Training datasetD(InD)

train is sampled fromD(InD) so that each
ombination of category and condition has the same number of
mages. Validation dataset D(InD)

val is sampled from the rest of D(InD)

in the same way.
The OoD dataset is defined as

D(OoD)
:= {(x, y)|y ∈ (C × N ) \ I}. (A.4)

https://github.com/FujitsuResearch/three-approaches-ood
https://github.com/FujitsuResearch/three-approaches-ood
https://github.com/FujitsuResearch/three-approaches-ood
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Fig. B.1. Sample images of MNIST-Positions dataset arranged in a grid pattern. Each row indicates the number as the object category. MNIST-Positions include nine
umbers from 0 to 8. Each column indicates the positions as the condition category. There are 9 positions in this dataset.
nD data is sampled from D(InD) so that each combination of
category and condition has the same number of images.

We also define (InD) data diversity as #(I)/#(C × N ). To
xamine the dependency of the generalization on data diversity,
e increase data diversity of I by creating a set I ′ with data
iversity #(I ′)/#(C × N ), so that I is contained in I ′, i.e.,

I ⊂ I ′, (A.5)

hile keeping the same amount of training examples, i.e.,

(D(InD)(I)) = #(D(InD)(I ′)). (A.6)

For each z ∈ N , we define I|C(z) ⊂ C as follows:

I|C(z) = {c ∈ C | (c, z) ∈ I}. (A.7)

lso, for each z ∈ C, we define I|N (z) ⊂ N :

|N (z) = {n ∈ N | (z, n) ∈ N }. (A.8)

n our experiments, we only treat the cases where

(C) = #(N ) (A.9)
129
and keep the following additional condition to balance the com-
binations:

#(I|N (z)) = #(I|N (z ′)) = #(I|C(z)) = #(I|C(z ′)), for all z and z ′.

(A.10)

Appendix B. Details of datasets

B.1. MNIST-Positions

Starting with the MNIST dataset (LeCun et al., 1998), which
is available at http://yann.lecun.com/exdb/mnist/ (Last access:
Dec. 15, 2021) under the CC0 license, we created a dataset of
42 × 42 pixels with nine numbers (0 to 8) by resizing images to
14 × 14 and placing them in one of 9 possible positions in a 3 × 3
empty grid. We call it MNIST-Positions. Fig. B.1 shows the all
categories and positions of MNIST-Positions. In our experiments,
the numbers are considered to be the object category set C and

http://yann.lecun.com/exdb/mnist/
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Fig. B.2. Sample images of iLab–Orientations dataset arranged in a grid pattern. Each row indicates the object category. iLab-Orientations include six object
ategories — bus, car, helicopter, monster truck, plane, and tank. Each column indicates the orientations as the condition category. There are 6 orientations in
his dataset.
he positions where the numbers are placed is considered as the
ondition set N . Thus, it is written as #(C) = #(N ) = 9.

B.2. iLab-Orientations

iLab-2M is a dataset created from iLab-20M dataset (Borji
et al., 2016): freely and publicly available at https://bmobear.
github.io/projects/viva/ (Last access: Dec. 15, 2021). The dataset
consists of images of 15 categories of physical toy vehicles pho-
tographed in various orientations, elevations, lighting conditions,
camera focus settings and backgrounds. It has 1.2M training im-
ages, 270k validation images, 270k test images, and each image
is 256 × 256 pixels. We chose from the original iLab-2M dataset
six categories — bus, car, helicopter, monster truck, plane, and
tank as C and six orientations as N . We call it iLab-Orientations.
ig. B.2 shows samples of the all categories and orientations of
Lab-Orientations dataset.
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B.3. CarsCG-Orientations

CarsCG-Orientations is a new dataset that consists of im-
ages of ten models of cars in various conditions rendered by
Unreal Engine version 4.25.3; this dataset is publicly available
at http://dataset.jp.fujitsu.com/data/carscg/index.html. The con-
ditions consist of ten orientations, three elevations, ten body
colors, five locations and three time slots. Fig. B.3 shows the all
car models (categories) and orientations (conditions) in the grid
form. The details of these are as follows.

• Categories: CarsCG-Orientations dataset consists of images
of the following cars — Nissan Rouge

®
, Volkswagen

®
Golf,

Volkswagen
®

Beetle, Honda Odyssey
®
, Toyota Prius

®
,

Mercedes Benz
®

A-Class, Lexus
®

LS, Mercedes Benz
®

E-
Class, Toyota Yaris

®
and Volvo

®
V40 (See Fig. B.4). We used

the whole car models as categories C. Therefore the number
of categories is #(C) = 10 in the experiments conducted in
this study.

https://bmobear.github.io/projects/viva/
https://bmobear.github.io/projects/viva/
https://bmobear.github.io/projects/viva/
http://dataset.jp.fujitsu.com/data/carscg/index.html
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Fig. B.3. Sample images of each object category and orientation of CarCGs-Orientations. Each row indicates object categories — Nissan Rogue
®

, Volkswagen
®

Golf,
Volkswagen

®
Beetle, Honda Odyssey

®
, Toyota Prius

®
, Mercedes Benz

®
A-Class, Lexus

®
LS, Mercedes Benz

®
E-Class, Toyota Yaris

®
and Volvo

®
V40. Each

column indicates the nuisance attribute categories, orientations from 0 to 324 degrees. These categories and orientations in this figure are used in our experiments.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. B.4. Sample images of ten object categories of CarsCG-Orientations — Nissan Rouge
®

, Volkswagen
®

Golf, Volkswagen
®

Beetle, Honda Odyssey
®

, Toyota
Prius

®
, Mercedes Benz

®
A-Class, Lexus

®
LS, Mercedes Benz

®
E-Class, Toyota Yaris

®
and Volvo

®
V40 are shown in this figure from the top left to the bottom

right. All conditions except object category are fixed in this figure.

Fig. B.5. Sample images of ten orientations (condition categories) of CarsCG-Orientations. Ten orientations from 0 to 324 degrees are displayed from the top left to
the bottom right. All conditions except orientation are fixed in this figure.

Fig. B.6. Sample images of the three elevation angles (10, 15, 30 degrees) of CarsCG-Orientations. Left figure is the image whose elevation angle is 10 degrees.
Middle figure is the image whose elevation angle is 15 degrees. Right figure is the image whose elevation angle is 30 degrees. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. B.7. Sample images of cars painted in ten colors of CarsCG-Orientations. There are images painted in black, light blue, green, red, white, beige, dark blue, orange,
plum, and silver from the top left to the bottom right. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. B.8. (a) is images of a car placed in five different locations taken from elevation angle of 10 degrees. (b) is images taken from elevation angle of 15 degrees.
There are differences in texture of road and background.
Fig. B.9. Sample images of each time slot of CarsCG-Orientations. Left figure is an image of car taken in the daytime. Middle figure shows an image of a car taken
n the twilight. The color of the car is different from that in the left and right ones. It is caused by the twilight sunlight condition. Right figure shows an image of
ar taken at midnight. The color of the car is also different from left and middle ones. (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
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• Orientations: During the rendering process, the virtual cam-
era (camera actor) was rotated around the yaw axis of each
car from 0 to 324 degrees in units of 36 degrees. Therefore,
each car model appears in the images with ten different
azimuth orientations. All orientations are shown in Fig. B.5.
We used the whole orientations as conditions N . Thus the
number of the conditions is #(N ) = 10 in the experiments
conducted in this study.

To create variety of samples for each combination of the cate-
gories (car models) and conditions (orientations), we added other
conditions as follows.

• Elevations: The virtual camera was located at three elevation
angles, namely, 10, 15, and 30 degrees, during the rendering
process. Sample images taken from each angle are shown in
Fig. B.6.

• Body colors: Each car model is rendered with ten colors,
namely, black, light blue, green, red, white, beige, dark blue,
orange, plum, and silver by using Automotive Materials (a
library for Unreal Engine). Fig. B.7 shows sample images of
Nissan Rouge rendered with these colors.

• Locations: We used a sample environment of an urban park
contained in City Park Environment Collection. We chose
five locations from the sample environment and modified
them for our experiments. Sample images taken at each

location are shown in Fig. B.8.
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• Time slots: We used Ultra Dynamic Sky 3D model set to
synthesize the three different times slots, namely, daytime,
twilight, and night. Fig. B.9 shows the samples of these three
time slots.

The number of images and the image size are as follows.

• Number of images and image size: The total number of
images of this dataset is 45k = 10 (categories) × 10 (orien-
tations) × 3 (elevations) × 10 (body colors) × 5 (locations)
× 3 (time slots). The images are rendered in 3840 × 2160
pixels and then resized to 1920 × 1080 pixels for the sake
of anti-aliasing.

.4. MiscGoods-Illuminations

MiscGoods-Illuminations is a subset of DAISO-10, a novel
ataset constructed for this study; this dataset is publicly avail-
ble at http://dataset.jp.fujitsu.com/data/daiso10/index.html. The
ataset consists of images of ten physical miscellaneous goods
aken with five illumination conditions, two ways of object place-
ent, twenty object orientations, five camera angles. Images
ere taken with a robot arm (Fig. B.10). Fig. B.11 shows the all
iscellaneous goods (categories) and illumination conditions in

he grid form. The details of these are as follows.

• Categories: As shown in Fig. B.11, DAISO-10 has ten types of

miscellaneous goods — stuffed dolphin, stuffed whale, metal

http://dataset.jp.fujitsu.com/data/daiso10/index.html
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Fig. B.10. Robotic image capture system for MiscGoods-Illuminations. Dashed bidirectional arrow indicates the robot motion.
basket, imitation plant, cup, cleaning brush, winding tape,
lace yarn, bottled imitation tomatoes, and bottled imitation
green apples. In this study, we selected the following five
miscellaneous goods from DAISO-10 as the categories C —
stuffed dolphin, stuffed whale, metal basket, imitation plant
and cup. Therefore the number of categories is #(C) = 5 in
the experiments conducted in this study.

• Illumination conditions: As the conditions, we created five
illumination conditions (lighting conditions); one is created
with ceiling lights, and the rest are with a colored spotlight.
All illumination conditions are shown in Fig. B.11. For spot-
light conditions, the light source (PIXEL G1S™ RGB Video
Light) was placed 23 cm in front of the object (See Fig. B.10).
The parameters of the light source were H217/S141 = 8500k
(white light), H0/S100 (red light), H120/S100 (green light),
and H240/S100 (blue light). These parameters were set so
that the condition of the illumination makes a sufficient
difference in the learning experiments. We used whole illu-
mination conditions N . Thus the number of the conditions
is #(N ) = 5 in the experiments conducted in this study.

As we did for CarCGs-Orientations, we added other conditions to
create variety of samples for each combination of the categories
and illumination conditions as follows.

• Object poses (ways of object placement and orientations):
In this dataset,we placed each object in two representa-
tive ways of object placement for each lighting condition.
Fig. B.12 shows the two ways of object placement of all
objects. For additional diversity, we rotated the object every
18 degrees from 0 to 342 degrees (Fig. B.13). In total, there
are 40 patterns in object pose conditions.

• Camera angles: To capture the images automatically, we
created a robotic image capture system (see Fig. B.10). A
camera (Intel

®
Realsense D435) was attached to a robot

arm (COBOTTA
®
), and the system captured images from

five camera angles for each lighting and object pose con-

dition (Fig. B.14). The postures were defined so that the
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acquired image shows the entire object pose. The series
of operations from robot control to image acquisition is
automated by utilizing ROS kinetic.

The number of images and the image size are as follows.

• Number of images and image size: The number of images of
whole dataset is 10k = 10 (categories) × 5 (illuminations)
× 2 (ways of object placement) × 20 (orientations) × 5
(camera angles), and each image size is 640 × 480 pixels.

Appendix C. Sensitivity to hyper-parameter

In this appendix, we investigate the hyper-parameter sensi-
tivity of the tuning batch normalization and invariance loss; for
late-stopping, the epoch size is simply set to 1000 epochs. We ex-
amine hyper-parameter dependence by examining the difference
between the best and second best OoD accuracy in the tuning
dataset (Table C.1). We can consider the sensitivity to hyper-
parameters to be small if the difference is small. The results
showed that the difference was generally within 3%, although
there were outliers in the low data diversity of the MNIST dataset
for invariance loss and in the MiscGoods medium data diversity
of the tuning dataset. Therefore, we consider the sensitivity to the
hyper-parameters to be within a reasonable range.

Appendix D. Details of experiments

ResNet-18 (He et al., 2016) is adopted as the network for
all experiments. The source codes are implemented based on
Python v3.6.9, using TensorFlow v2.5.0 and NumPy v1.19.5. The
whole network architecture is shown in Figs. D.1 and D.2. All
neurons employ the rectified linear function g(z) = max{0, z}
and satisfy anm(x) ≥ 0. Glorot uniform initializer (Glorot &
Bengio, 2010) is adopted for the network weights initialization for
all experiments. We use BatchNormalization to standardize the
inputs to a layer for each mini-batch. We use it for stabilizing the



A. Sakai, T. Sunagawa, S. Madan et al. Neural Networks 155 (2022) 119–143

T
D

Fig. B.11. Sample images of each object category and illumination condition of MiscGoods-Illuminations are shown in this figure. Each row indicates object categories —
stuffed dolphin, stuffed whale, metal basket, imitation plant, cup, cleaning brush, winding tape, lace yarn, bottled imitation tomatoes, and bottled imitation green
apples. Each column indicates the condition categories, illumination conditions — ceiling light, white spotlight, red spotlight, green spotlight and blue spotlight. These
five categories from the top and five illumination conditions are used as object categories and condition categories in our experiments. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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learning process and reducing the number of training epochs. We
do not use any data augmentations. Invariance loss is applied to
the last fully-connected layer ‘‘activation_17’’ with 512 neurons
shown in Fig. D.1. Adam (Kingma & Ba, 2015) is employed as
the optimization algorithm. The cross-entropy loss is employed
as the loss L. The pixels of images are normalized within 0 to 1 as
a preprocessing for all datasets. The epoch size and batch size are
confirmed to produce reasonable accuracy in the baseline case for
each dataset and we employ the same values for all experiments
with the same dataset. For example, we use 100 and 256 as epoch
size and batch size, respectively, for MNIST-Positions. The values
of hyper-parameters are summarized in Table D.1.

We have employed four Tesla V100 GPUs for the experiments.
he preparation of training dataset D(InD)

train , InD validation dataset
(InD)
val , and OoD dataset D(OoD) has been conducted as follows.

• MNIST-Positions: We use images of the original MNIST-
Positions with image size of 42 × 42 pixels. InD dataset
and OoD dataset are prepared in the way described in Sec-
tion 3.1. The number of train dataset is #(D(InD)

train ) = 54000.
We use #(D(InD)

val ) = 8000 for InD validation dataset. The
number of OoD dataset is #(D(OoD)) = 8000.

• iLab-Orientations: We resize the images to 64 × 64 pix-
els. InD dataset and OoD dataset are prepared in the way
described in Section 3.1. The number of train dataset is

(InD) (InD)
#(Dtrain ) = 18000. We use #(Dval ) = 8000 for InD p
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validation dataset. The number of OoD dataset is #(D(OoD)) =

8000.
• CarsCG-Orientations: We resize the images to 224 × 224

pixels. InD dataset and OoD dataset are prepared in the
way described in Section 3.1. The number of train dataset is
#(D(InD)

train ) = 3400. We use #(D(InD)
val ) = 450 for InD validation

dataset. The number of OoD dataset is #(D(OoD)) = 800.
• MiscGoods-Illuminations: We resize the images to

224 × 224 pixels. InD dataset and OoD dataset are prepared
in the way described in Section 3.1. The number of train
dataset is #(D(InD)

train ) = 800. We use #(D(InD)
val ) = 200 for InD

validation dataset. The number of OoD dataset is #(D(OoD)) =

400.

ppendix E. Additional results of experiments

InD accuracy and OoD accuracy learning curves with all dataset
nd all diversity corresponding to Fig. 1(a) are available in
igs. E.1 E.2 E.3. Furthermore InD accuracy and OoD accuracy
earning curves with all dataset and all diversity corresponding
o Fig. 1(b) are available in Figs. E.4 E.5 E.6. InD accuracy corre-
ponding to Figs. 5(a) 5(b) 5(c) is available in Fig. E.7. InD accuracy
f difference from baseline corresponding to Figs. 5(d) 5(e) 5(f) is
lso available in Fig. E.8. The experiments for measuring accuracy
re exactly same as what we reported in the main body of the

aper.
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Fig. B.12. Sample images of MiscGoods-Illuminations with two ways of object
placement. Each object has these two aspects as condition. The shapes of these
objects in an image are changed by the way of object placement.

Appendix F. Details of combined method

For the best of three approaches, we choose the one with
the highest OoD accuracy calculated on the dataset for hyper-
parameter tuning among late stopping, tuning batch normaliza-
tion momentum, and invariance loss. The combined three ap-
proaches employ the hyper-parameters that determined in Sec-
tion 6: epoch size for longer epochs, momentum parameter β for
uning batch normalization momentum, and learning rate, pairing
 i
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interval and the value λ for invariance loss. If the InD accuracy
drops to a chance, the learning rate is multiplied by 0.1 and the
training is re-started.

Appendix G. Comparison with the state-of-the-art methods

We now compare the existing state-of-the-art OoD algorithms
with the three approaches we introduce. We employ PGI (Ahmed
et al., 2021) and CMMD (Li et al., 2018) implemented in Ahmed
et al. (2021) as existing state-of-the-art algorithms.1 For consis-
ency with previous works (Ahmed et al., 2021), we use Wide-
esNet (Zagoruyko & Komodakis, 2016) for the network and
arsCG for the dataset. Also, the images are scaled down to
4 × 64, and the data is augmented with slides and inversions.
yper-parameters are optimized in the same way as in the main
ext for the three approaches. For PGI and CMMD, we perform
grid search using tuning dataset in learning rate in {0.1, 0.01,
.001, 0.0001}, portion weight for EIIL (Creager et al., 2021) in {10,
, 0.1, 0.01, 0.001}, and weight for loss term in {1, 0.1, 0.01, 0.001,
.0001}; this is the reasonable subset of grid search as in Ahmed
t al. (2021). For other parameters, we fully employ the parame-
ers used in Ahmed et al. (2021). We perform five trials on the test
ataset using the selected hyper-parameters. Table G.1 shows the
edian, and the minimum and maximum in parenthesis, of the

esults. Existing state-of-the-art methods improved performance
rom baseline with a few exceptions, but at least one of the three
pproaches outperform these state-of-the-art methods in all data
iversity.
Finally, we also explore combining PGI and CMMD with tun-

ng batch normalization and late-stopping. Table G.2 shows the
esults. In all cases, performance improvement up to +8.7 are
bserved when the existing state-of-the-art methods (PGI and
MMD) are combined with our approaches. This shows that our
hree approaches tackle complementary aspects from state-of-
he-art methods, and are versatile and easy to be effectively
ombined with previous works.

1 We utilized the code written by the authors of Ahmed et al. (2021)
hat is publicly available at https://github.com/Faruk-Ahmed/predictive_group_
nvariance.

https://github.com/Faruk-Ahmed/predictive_group_invariance
https://github.com/Faruk-Ahmed/predictive_group_invariance
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t

Fig. B.13. Sample images of each orientation of MiscGoods-Illuminations. 20 orientations from 0 to 342 degrees that the dataset has are shown in this figure from
he top left to the bottom right.

Fig. B.14. Sample images from each camera angles of MiscGoods-Illuminations. There are five angles in the dataset. The postures were defined so that the acquired
image shows the entire object pose. These five camera angles are related to postures of robot arm that the camera is connected.

Table C.1
Differences of the best and second-best OoD accuracy on the tuning dataset. This Table shows the difference between
the best and second best OoD accuracy (the best OoD accuracy is shown in Parentheses) in the tuning dataset of
Tuning Batch Normalization and Invariance Loss; Late-stopping is not shown because it only continues learning until
1000 epochs.
Approach Data diversity MNIST iLab CarsCG MiscGoods Mean

Tuned BN (%) Low 4.96 (17.79) 0.37 (65.11) 0.06 (32.24) 0.59 (32.31) 1.50
Invariance loss (%) 15.00 (47.42) 0.54 (69.79) 0.55 (38.93) 4.21 (46.31) 5.08

Tuned BN (%) Medium 1.08 (87.35) 0.11 (78.61) 1.60 (60.78) 7.42 (57.58) 2.55
Invariance loss (%) 0.06 (99.16) 0.18 (80.45) 0.58 (63.26) 1.07 (74.00) 0.47

Tuned BN (%) High 0.02 (99.69) 0.14 (93.05) 4.00 (85.01) 0.27 (67.52) 1.11
Invariance loss (%) 0.05 (99.81) 0.75 (95.43) 4.14 (92.39) 1.13 (81.48) 1.52

Table D.1
Hyper-parameters used for each dataset.
Dataset Epoch size Preprocessing Weights initialization Batch size

MNIST-Positions 100 Divide by 255 Glorot uniform initializer 256
iLab-Orientations 100 Divide by 255 Glorot uniform initializer 256
CarsCG-Orientations 100 Divide by 255 Glorot uniform initializer 32
MiscGoods-Illuminations 100 Divide by 255 Glorot uniform initializer 32
136
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(
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Fig. D.1. This diagram shows the whole architecture of our implementation
of ResNet-18. The numbers in this diagram represent batchsize, height of
image, width of image and channels. Therefore they change depending on
the dataset. Current numbers correspond to MNIST-Positions. For instance, the
numbers on the top of the diagram means (batchsize, height, width, channels) =

128, 42, 42, 1). Conv2D, Dense and BasicBlock mean a convolutional layer, a
ully connected layer and a basic building block of ResNet, respectively.
137
Fig. D.2. This diagram shows the architecture of BasicBlock in ResNet-18.
Conv2D and Add mean a convolutional layer and a layer that simply add the
two input values.
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Fig. E.1. Late-stopping with low InD data diversity.

Fig. E.2. Late-stopping with medium InD data diversity.
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Fig. E.3. Late-stopping with high InD data diversity.

Fig. E.4. Baseline and BN momentum with low InD data diversity.
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Fig. E.5. Baseline and BN momentum with medium InD data diversity.

Fig. E.6. Baseline and BN momentum with high InD data diversity.

Fig. E.7. Performance improvement in mean InD accuracy.

Fig. E.8. Performance improvement of difference from Baseline in mean InD accuracy.
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Fig. E.9. Overall results between IS scores and all combinations of (data diversity, dataset, approaches).
Table G.1
Comparison with the state-of-the-art methods. This table shows the OoD performance of the baseline, three
approaches, PGI, and CMMD. We performed five trials for all methods and this table shows the median, and the
minimum and maximum in parenthesis.
Approach CarsCG (low) CarsCG (medium) CarsCG (high)

Baseline (%) 25.4 (19.8–28.3) 66.9 (40.6–71.1) 75.9 (36.5–80.5)

Late-stopping (%) 34.0 (32.4–34.6) 71.5 (70.3–73.8) 80.9 (67.0–82.8)
Tuned BN (%) 30.4 (26.6–33.3) 71.4 (69.9–73.1) 78.0 (72.0–83.5)
Invariance loss (%) 30.9 (28.5–33.6) 69.8 (25.5–74.1) 79.9 (71.3–84.3)

PGI (%) 24.6 (23.1–26.1) 68.0 (15.0–71.6) 75.3 (71.8–78.1)
CMMD (%) 31.3 (30.0–33.0) 64.0 (32.6–69.5) 79.5 (36.1–80.6)
Table G.2
Performance improvement of the state-of-the-art methods by tuning batch normalization and late-stopping. This table shows the OoD
performance improvement (∆) of the combination of the state-of-the-art methods with tuning batch normalization and late-stopping
(denoted by co). We performed five trials for all methods and this table shows the median (max–min).
Approach CarsCG (low) ∆ CarsCG (medium) ∆ CarsCG (high) ∆

Invariance loss (%) 30.9 (28.5–33.6) 69.8 (25.5–74.1) 79.9 (71.3–84.3)
Invariance loss (co) (%) 34.9 (33.6–37.6) +4.0 67.1 (60.9–72.3) −2.7 84.0 (80.8–86.1) +4.1
PGI (%) 24.6 (23.1–26.1) 68.0 (15.0–71.6) 75.3 (71.8–78.1)
PGI (co) (%) 33.3 (31.1–35.6) +8.7 72.5 (68.4–73.1) +4.5 83.9 (81.5–86.1) +8.6
CMMD (%) 31.3 (30.0–33.0) 64.0 (32.6–69.5) 79.5 (36.1–80.6)
CMMD (co) (%) 34.5 (32.4–37.8) +3.2 70.9 (68.9–72.3) +6.9 81.1 (14.9–88.1) +1.6
Appendix H. Visualization of the latent space

In this appendix, we visualize the latent spaces obtained by
he baseline method and three approaches. Table H.1 shows the
esults of applying t-SNE to the latent space of the last fully con-
ected layer of ResNet-18 trained by the CarsCG dataset. Three
pproaches are confirmed to increase cluster concentration. This
esult is consistent with the improvement of the SI score by three
pproaches shown in Section 6.3.

ppendix I. Abbreviation list

• OoD: out-of-distribution
• InD: in-distribution
• DNN: deep neural network
• BN: batch normalization
• MNIST dataset: modified national institute of standards and

technology dataset
• CarsCG dataset: cars computer graphics dataset
• MiscGoods dataset: miscellaneous goods dataset
• 3D: three dimension
• EIIL: environment inference for invariant learning
• SI score: selectivity and invariance score
• ResNet: residual network
• ReLU: rectified linear unit
• CC: creative commons
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Table H.1
Latent space visualization using t-SNE. Each cell of this table shows the t-SNE visualization of the activity of the latent layer of the
network that each approach has been applied (row), trained on each data diversity (column). Each color expresses a car model.
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