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Abstract
The capability of Deep Neural Networks (DNNs) to recog-
nize objects in orientations outside the distribution of the
training data, ie., out-of-distribution (OoD) orientations, is
not well understood. For humans, behavioral studies showed
that recognition accuracy varies across OoD orientations,
where generalization is much better for some orientations
than for others. In contrast, for DNNs, it remains unknown
how generalization abilities are distributed among OoD ori-
entations. In this paper, we investigate the limitations of
DNNs’ generalization capacities by systematically inspect-
ing patterns of success and failure of DNNs across OoD ori-
entations. We use an intuitive and controlled, yet challeng-
ing learning paradigm, in which some instances of an object
category are seen at only a few geometrically restricted ori-
entations, while other instances are seen at all orientations.
The effect of data diversity is also investigated by increasing
the number of instances seen at all orientations in the training
set. We present a comprehensive analysis of DNNs’ gener-
alization abilities and limitations for representative architec-
tures (ResNet, Inception, DenseNet and CORnet). Our results
reveal an intriguing pattern—DNNs are only capable of gen-
eralizing to instances of objects that appear like 2D, ie., in-
plane, rotations of in-distribution orientations.
Keywords: Evaluation and Analysis; Deep Neural Networks;
Object Recognition; Out-of-Distribution Generalization

1 Introduction
The orientation of an object with respect to the viewer is
a key factor that impacts image structure. An intelligent
viewer should be able to recognize objects across a variety
of orientations. During training, the orientations included in
the datasets define the entire distribution available for learn-
ing systems. However, these datasets may lack some orien-
tations from the full, true distribution of all orientations—
they may be biased towards certain object orientations due
to conventions and constraints during the data collection
process (Torralba and Efros 2011). Thus, learning systems
trained with these datasets may never have encountered ex-
amples of those “out-of-distribution” (OoD) orientations.

It has been shown that while Deep Neural Networks
(DNNs) achieve high in-distribution test accuracy, their ac-
curacy substantially degrades when tested with objects at
OoD orientations, even when learning from large datasets
with millions of examples (Barbu et al. 2019; Alcorn et al.

2019). Efforts to address OoD orientations leverage precon-
ceived components for DNNs, such as using 3D models of
objects (Angtian, Kortylewski, and Yuille 2021) or sophis-
ticated sensing approaches such as omnidirectional imag-
ing (Cohen et al. 2018). However, understanding the role of
image-based learning in recognizing objects in OoD orien-
tations has received less attention. It remains as an outstand-
ing question at the heart of artificial and biological intelli-
gence (Sinha and Poggio 1996; Ullman 1996; Poggio and
Anselmi 2016). For state-of-the-art DNNs, little is known
beyond the observed accuracy reduction for OoD orienta-
tions (Madan et al. 2020).

A potentially useful strategy for investigating the behavior
of DNNs is to employ evaluation metrics that provide more
details than just the conventional average accuracy num-
ber (Hoiem, Chodpathumwan, and Dai 2012). For humans
and other primates, studies showed that recognition accu-
racy varies across OoD orientations, where generalization
is much better for some orientations than for others (Logo-
thetis and Pauls 1995). Are DNNs more likely to fail in rec-
ognizing an object at some OoD orientations than others? If
so, which are these OoD orientations, and are they consis-
tent across different characteristics of the dataset and DNN
architectures?

In this paper, we answer these questions by analyzing pat-
terns of success and failure of DNNs across a range of in-
dividual OoD orientations. To this end, we build upon the
paradigm introduced by Zaidi et al. (2020), in which some
instances of an object category (e.g., a ‘Boeing 777 air-
liner’ is an instance of ‘airplane’ category) are seen from
any orientation during training (ie., fully-seen instances),
while other instances are only seen in few orientations
(ie., restricted-seen instances). This is a simple paradigm
that facilitates analyzing the impact of several key factors
that may influence OoD generalization, such as the num-
ber of fully-seen instances and the in-distribution orienta-
tions of the restricted-seen instances. This paradigm allows
us to more precisely characterize performance challenges
of DNNs for OoD orientations. Figure 1 summarizes the
paradigm that we follow in this work.

To foreshadow the results, we find a pattern of behavior
that is consistent across a diverse set of object categories
(airplanes, cars, lamps, Shepard-Metzler objects) and multi-
ple network architectures. We find that DNNs are only capa-
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Figure 1: Learning paradigm and network’s per-orientation accuracy. (Left) The learning paradigm employed in this work.
Each column is a sample object instance (here from the airplane dataset) and each row is a sample orientation. The training set
includes all orientations for fully-seen instances, and a restricted set of orientations (marked in red) for restricted-seen instances
(in this example, with the airplane’s nose pointing down). The orientations included in the training set are referred to as in-
distribution (pink shading) orientations. Orientations of the restricted-seen instances that are not included in the training set
are referred to as out-of-distribution or OoD (yellow shading). (Right) A visualization of the network’s performance for the
restricted-seen instances by means of per-orientation accuracy. Orientations outlined in red at the center are in-distribution,
while the rest are OoD. The heatmap clearly shows the network’s generalization to OoD orientations, including those which
differ significantly from the in-distribution orientations, but appear as their ‘in-plane’ rotations.

ble of generalizing to new orientations that can be approx-
imated as in-plane 2D rotations of in-distribution orienta-
tions.

2 Generalization-Ready Learning Paradigm
In a natural setting, biological intelligent agents observe in-
stances of an object category from multiple, diverse view-
points. When agents observe a novel object instance, they
are often able to correctly classify the object, leveraging past
experience with other instances of the same or similar cate-
gory seen at same or similar orientations. Inspired by the set-
ting of biological agents, we introduce a learning paradigm
that facilitates analyzing the capabilities of DNNs to gener-
alize across object instances at OoD orientations.

2.1 Fully-seen and restricted-seen instances
We use θ := (α, β, γ), the Euler angles with respect to the
orthogonal axes of a reference coordinate system R3 (Gold-
stein, Poole, and Safko 2002), to express an orientation of
an object instance. We use the convention that α and γ are
bounded within 2π radians, and β is bounded within π radi-
ans. In our paradigm, the following two sets of instances are
included in the training set:
– Fully-seen instances are object instances whose orienta-
tions are unrestricted (we employ uniform sampling along
the three axes of rotations to generate the training set).
– Restricted-seen instances are biased towards a sub-range
of object orientations during training. Specifically, one axis
is allowed to freely rotate, ie., rotate along its full range, and
the other two axes are restricted to within a sub-range of

a defined orientation. Evaluation of OoD generalization is
measured using the networks’ instance classification perfor-
mance on OoD orientations of restricted-seen instances.

Figure 1 portrays our learning paradigm, including an il-
lustration (on the left) of the fully-seen and restricted-seen
sets of instances for the ‘airplane’ category.

2.2 Data diversity

In order to better understand how the proportion of fully-
seen compared to restricted-seen instances affects the net-
work’s generalization performance, we vary the proportion
in the following two ways:
– Proportion of fully-seen instances. We vary diversity in
terms of the number of fully-seen instances N between 20%
and 80% of the total number of instances. The remaining in-
stances are restricted-seen. For a fair evaluation of the effect
of data diversity, the amount of training examples is kept
constant as we vary the data diversity. Also, we always test
with the same 20% of instances that are never part of the
fully-seen set.
– Orientations seen during training. We vary diversity in
terms of orientations by means of setting the ranges of orien-
tations sampled for the restricted-seen instances. We do this
in two ways: 1) choosing different axes to be freely rotat-
ing, which results in different types of orientations in the in-
distribution set, 2) choosing different range-centers for the
other two axes. For example, when rotating on α, sampling
γ from [−0.25, 0.25] or [π/2−0.25, π/2+0.25] or the union
of the two ranges (see Fig. 4a).



a - Increasing number of fully-seen instances (In-distribution restricted-seen instances freely rotating on α)

# Fully Seen Instances: 20 / 50 # Fully Seen Instances: 30 / 50 # Fully Seen Instances: 40 / 50

b - Various Slices of the Cube (In-distribution restricted-seen instances freely rotating on γ)

−2.75 ≤ α ≤ −2.36 0 ≤ α ≤ 0.29 2.36 ≤ α ≤ 2.749

Figure 2: Observed generalization in accuracy patterns. The heatmaps show per-orientation accuracy for test samples in-
cluded in a slice of our visualization cube. The dimensions of a full cube correspond to the Euler angles of the rotation α, β, γ.
Outlined in red is the range of orientations that are in-distribution. Orientations outside the red box are out-of-distribution
(OoD). (a) Increased network generalization for OoD orientations, with increasing instance diversity (left to right). Each
heatmap is a slice at α ≈ 0 from three different cubes, each with the indicated number N of fully-seen instances. (b) The gen-
eralization patterns for a different span of in-distribution orientations (−0.25 ≤ α ≤ 0.25,−0.25 ≤ β ≤ 0.25,−π ≤ γ < π)
as outlined by the red box in the middle slice. Each heatmap is from the same cube at the indicated α value (see Fig. 4a).

3 Per-Orientation Accuracy Visualization
We introduce a systematic way to develop an understanding
of DNN behavior in response to OoD examples. The follow-
ing visualization approach provides rich insights and brings
forward hypotheses about DNN generalization behavior.

3.1 Formulation of the visualization
Previous works typically report average performance over
all orientations (Hoiem, Chodpathumwan, and Dai 2012).
In contrast, we evaluate the network’s performance for each
orientation across the entire range of orientations. We de-
fine Ψ(θ) ∈ [0, 1] to be the network’s average classification
accuracy at an orientation θ = (α, β, γ) over the restricted-

seen instances.
To facilitate intuition of Ψ we introduce a visual repre-

sentation for this function. Orientations are continuous val-
ues and are related spatially. We leverage this property in
the following way: We map the range of bounded values
of orientations (α, β, γ) onto a Cartesian coordinate, result-
ing in a cube—the basis of our visualization. We discretize
the continuous space of orientations into cubelets, which are
sub-cubes with a width of 1/20 of the full range of each re-
spective angle (0.1π radians for α and γ; 0.05π radians for
β). We choose this size because the width is sufficiently nar-
row to preserve local behavior in aggregated analysis, while
also being wide enough to include sufficiently large number
of random samples from our dataset in almost every cubelet.



We evaluate our visualization cube only for the restricted-
seen instances, where we average the classification accuracy
across each cubelet to obtain per-orientation performance.
Figure 4a shows this visual representation scheme.

3.2 Observed generalization in accuracy patterns

Our per-orientation accuracy visualization cube reveals in-
teresting patterns, which reflect the network’s behavior at
different orientations. We show slices of the full cube for
easy viewing. Each square slice is an accuracy heatmap ex-
tracted from the cube at a given angle for one of the cube
dimensions. See Figs. 1 and 2. We outline in red the range of
in-distribution orientations, the rest are OoD orientations. To
illustrate the object orientation at a given cubelet, we sample
one representative image and overlay it onto the heatmap at
the location of the cubelet. Across a series of experiments
detailed in the sequel, we observe accuracy patterns that in-
dicate two main aspects of the network’s generalization ca-
pabilities:

Generalization increases with instance diversity. As the
number of fully-seen instances is increased in the train-
ing set, the network overall performance on classifying
restricted-seen instances in OoD orientations markedly im-
proves. Furthermore, the visualization heatmap reveals a
pattern, which develops for this increase in performance and
it occurs for some OoD orientations, but not for others (see
Fig. 2a and Appendix A). A pattern of generalization clearly
develops, becoming more defined and pronounced as the
number of fully-seen instances is increased.

Generalization to in-plane orientations. Visual inspec-
tion of the accuracy heatmaps allows for the recognition of
a reproducible pattern, as well as for generating hypotheses
about the behavior of generalization. We noticed general-
ization to orientations that appeared as 2D rotations of in-
distribution orientations, in the plane normal to the camera
viewing direction. We call these orientations in-plane. The
overlaid object images on-top of the heatmaps in Fig. 2 de-
picts the network’s generalization to orientations which are
image transformations of the in-distribution set (outlined in
red). Figs. 2a and 2b differ in their respective in-distribution
orientations, which yield different patters of generalization
at the respective sets of in-plane orientations (see more ex-
amples in Appendix A).

This result is a surprising twist to the generally accepted
view. We note that the general view is that networks are
capable of generalizing and therefore performing well only
for images fairly indistinguishable from in-distribution im-
ages. This would imply in our visualization, high accuracy
only for orientations inside and possibly adjacent to in-
distribution orientations (indicated in red in Fig. 2). Never-
theless, our experimentation shows that networks are capa-
ble to generalize to many other orientations beyond those
expected by the general view. We conclude that an alter-
native hypothesis for networks generalization capabilities is
necessary—one that includes in-plane orientations.

4 Model for Per-Orientation Generalization
In this section, we introduce a quantitative predictive model
for the generalization behaviours of DNNs, which we denote
as fw(θ). We evaluate this model by measuring the Pearson
correlation between the performance of the networks in our
experiment and our model, ie., ρ(Ψ(θ), fw(θ)). We choose
the Pearson correlation as a metric because it normalizes
data with respect to amplitude and variance, and therefore
measures patterns of behavior across θ and relative to other
θ, rather than the exact performance for every θ.

We base our model fw(θ) on the hypothesis we derived
in Sec. 3.2, ie., DNNs are capable of generalizing to ori-
entations which are visually similar to the in-distribution
images and to orientations that are in-plane relative to
the in-distribution images. These two components easily
lend themselves to formalization with Euler’s rotation theo-
rem (Goldstein, Poole, and Safko 2002). The theorem states
that any rotation can be uniquely described by a single axis,
which can be represented by a unit vector ê ∈ R3, and an
angle, which is denoted as φ ∈ [0, π] and represents the
amount of rotation around axis ê. We compute ê and φ for
the rotation from an arbitrary orientation θs in the set of in-
distribution orientations of the restricted-seen instance, de-
noted by Ωs, to the orientation of interest θ. We use êθ,θs

and φθ,θs to denote the unit vector (axis) and the angle of
this rotation, respectively.

Component 1: Small Angle Rotation, A(θ). The first
component of the model captures orientations that are vi-
sually similar to those in the training distribution. Visually
similar orientations are those that are arrived at by small ro-
tations from in-distribution orientations, or small φθ,θs

. We
therefore define the first component A(θ) as

A(θ) := max
θs∈Ωs

∣∣∣∣1− φθ,θs

π

∣∣∣∣ ∈ [0, 1]. (1)

The maxθs∈Ωs
operator chooses the in-distribution orienta-

tion that is closest to θ of our interest.

Component 2: In-plane Rotation, E(θ). The second
component of the model captures orientations which appear
as in-plane rotations of in-distribution images. Let c ∈ R3

be the unit vector representing the camera axis. In-plane ro-
tations are those for which the axis of rotation is parallel
to the camera axis. Thus, an orientation appear as an in-
plane rotations of an in-distribution images when c ∈ R3

and êθ,θs
∈ R3 (ie., the vector of object instance rotation)

are parallel. Taking their standard inner product yields the
proximity to being parallel, which is therefore the degree to
which the rotation is in-plane. Thus, we define the second
component E(θ) as follows:

E(θ) := max
θs∈Ωs

∣∣c>êθ,θs

∣∣ ∈ [0, 1], (2)

where c> denotes the transpose of c.

Definition of the Predictive Model. Following the defi-
nitions above, we finally define fw(θ), the predictive model
for generalization per each orientation. The model combines
A(θ) and E(θ) by taking the maximum of their respective
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Figure 3: Object Data Sets. In our experiments we used
three object categories: (a) Airplanes, (b) Cars, (c) Shep-
ard&Metzler (the first two curated from ShapeNet (Chang
et al. 2015); the last generated by ourselves). There are 50
instances per object category (e.g., ‘Concorde’ or ‘Spitfire’
for the Airplanes). Images were rendered from the 3D mod-
els under fixed lighting conditions, but with orientations var-
ied. Objects were centered and fully contained within the
image frame. For fully-seen instances (see Fig. 1), orienta-
tions were uniformly sampled at random using Euler angles
in the range (−π ≤ α < π,−π2 ≤ β <

π
2 ,−π ≤ γ < π).

values (and we therefore also denote it as AE). We choose
to employ the logistic function in order to better match ex-
perimental results:

fw(θ) := max {σ(A(θ);wA), σ(E(θ);wE)} ∈ [0, 1], (3)

where σ(x; (a, b)) = 1/(1 + exp(a(−x+ b))). Note that σ
has two parameters, (a, b), and these are in [0,∞). Thus,
w represents the parameters of the two logistic functions
in equation 3, ie., w = (wA,wE) ∈ [0,∞)2 × [0,∞)2.

The ‘S’-like shape of the logistic function allows
for the highest and lowest values of σ(E(θ);wE) and
σ(A(θ);wA) to be close to the highest and lowest values
of Ψ(θ). In addition, it allows for a smooth transition be-
tween these highest and lowest values. Most importantly, the
simplicity of the logistic function allows for fitting while
preserving the interpretability of the model, ensuring that
fw(θ) remains a model related to small angle and in-plane
rotations.

Finally, we fit w with a grid search, finding the optimal
parameters which maximize the score on our evaluation met-
ric, ρ(Ψ(θ), fw(θ)). The range of values for each of wA

and wE is {0.1, 0.2, 0.3, . . . , 1.5} × {1, 2, 3, . . . , 30}. The
outputs of E are saturated and therefore our application of
σ does not work well. We apply an exponential function,
ie., E = E(θ)k, which spreads out its values (we choose
k = 20).

5 Experimental Setup
Datasets. We used ShapeNet (Chang et al. 2015) airplanes
and cars. We curated 50 high quality object instances for
each of these categories. Both airplanes and cars have clear
axes of symmetry, which allow for intuition of how net-
works generalize to OoD orientations. We also experimented

with highly asymmetric objects similar to those tested for
3D mental rotations in (Shepard and Metzler 1971) (denoted
here as Shepard&Metzler objects; Fig. 3).

DNN Architectures. We use four deep convolutional neu-
ral networks in our experiments, namely, ResNet18 (He et al.
2016), DenseNet (Huang et al. 2017), Inception (Szegedy
et al. 2016) and CORnet (Kubilius et al. 2018). The first
three were chosen as they are representative feed-forward
DNNs. The architecture of CORnet is brain-inspired and in-
cludes recurrence at higher layers in addition to convolutions
in lower layers.

More details on the experimental setup, including the
dataset sizes, hyperparameters for training, and hardware in-
formation, are given in Appendix B.

6 Results
We now report the experimental results. For all experiments,
we evaluated five different training distributions of orien-
tations for the restricted-seen instances. These five distri-
butions are depicted in Fig. 4 and results are displayed in
each column of the plots. In the first column (“Rotating on
β”), almost all the in-plane orientations are in-distribution
(note that the airplane’s nose rotates 180° in a concave arc).
In the second column (“Rotating on γ”), the in-distribution
set contains fewer, but still some, in-plane orientations,
namely the nose pointing either down or up. In the third col-
umn (“Rotating on α”), only one in-plane orientation is in-
distribution. Hence, the first three columns evaluate training
distributions as the number of in-plane rotations included in
the training is reduced. The fourth and fifth columns cap-
ture a similar trend with a distribution of orientations not
centered around 0. For the fourth column (“Rotating on α
(γ ≈ π/2)”), almost all the in-plane orientations are in-
distribution, which is analogous to the first column (“Rotat-
ing on β”). The fifth column is the union of the distribution
of the third and the fourth columns.

In the following, we report results on ResNet (the rest of
the networks are in Appendix C). In all figures, each row
of plots indicates the object category. Results are depicted
by the average across three trials (randomizing the object in-
stances that are fully-seen) and the 95% confidence intervals.

Average Accuracy. Fig. 4b shows the average classifica-
tion accuracy averaged across all orientations, to analyze the
common networks behavior on our datasets. Results clearly
show the drop in accuracy between the top performance for
in-distribution orientations (marked with dashed lines) and
the poor performance for OoD orientations (marked with
solid lines). Also, we observe an increase of the OoD ac-
curacy as the number of fully-seen instances, ie., data diver-
sity, is increased. Recall that the amount of training exam-
ples is kept constant to analyze the effect of data diversity
(see Appendix C for results with varying amount of train-
ing examples). Our results are in accordance to previous
works that already noted the importance of data diversity
to facilitates OoD generalization, in contrast to the number
of training examples (Zaidi et al. 2020; Madan et al. 2020).
Fig. 4b also presents a comparison between using pretrained
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Figure 4: Average accuracy and evaluation of the predictive accuracy model. (a) A visual depiction of the orientations
cube and sample slices illustrating the various in-distribution sets used in our experiments. (b) The average performance for
in-distribution and OoD orientations. Columns refer to the different in-distribution sets. Experiments include: 1) training from
scratch with random weights initialization, 2) training with data augmentation including 2D transformations, and 3) only fine-
tuning networks pretrained on ImageNet. Each experiment was run three times with different restricted-seen instances and
error bars indicate 95% confidence interval. Performance increases with more fully-seen instances, but always far lower for
OoD orientations. (c) The Pearson correlation coefficient (ρ) between the measured network behavior and the different model
components: A (small angle rotations), E (in-plane rotations), and AE (combination of A and E, ie., the full model fw(θ), see
Sec. 4).
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Figure 5: Cross-Category Generalization. Conventions follow Figs. 4b and 4c. Here fully-seen and restricted-seen instances
are from different categories (airplanes and Shepard & Metzler objects) with very different geometries and symmetries. Trends
closely align with those in Fig. 4, which indicates that DNNs are capable of generalization to OoD orientations of instances
whose appearance after geometric transformations behaves quite differently than the in-distribution instances.

weights based on ImageNet, which yields the lowest accu-
racy, and training from scratch on our datasets, which yields
higher accuracy. Including data augmentation during train-
ing (2D rotations and scaling) yields the highest accuracy, as
expected, but there still exists a big gap between OoD and
in-distribution accuracy.

Evaluating the Predictive Model. Recall we evaluate the
predictive model with the Pearson correlation between the
performance of the networks in our experiment and our
model, ie., ρ(Ψ(θ), fw(θ)). Results are presented in Fig. 4c.
We evaluate the model and each of its two components (fit-
ting the parameters for each of them from scratch). The first
two columns and the fourth column in Fig. 4c, show that
all model components highly correlate with the network be-
havior. In these cases, since many in-plane orientations are
in-distribution, little generalization is necessary to perform
well for all in-plane orientations, as predicted in the model
by component E. For the third and fifth columns, the trends
are more illustrative of how generalization to in-plane ori-
entations emerges as we increase the number fully-seen in-
stances, ie., data diversity. Initially, for few fully-seen in-
stances, A is the best predictor for OoD behavior and E is
a poor predictor, ie., the network generalizes to small vari-
ations of in-distribution samples. As the number of fully-
seen instances is increased, A becomes less correlated with
the network behaviour, and E more correlated. This follows
the qualitative results discussed in Sec. 3.2, where as we
increased the number of fully-seen instances, the networks
gained generalization to in-plane rotations. The predictive
model AE (ie., the max of A and E, which is the full model
fw(θ)) is ultimately best correlated with the networks be-
havior, indicating that generalization occurs in regions of
the orientations cube consisting of small-angle as well as in-

plane rotations of the in-distribution orientations. Notably,
these trends hold true across object categories, even though
their symmetries differ, especially with the Shepard & Met-
zler objects. In Appendix C we demonstrate the generality
of these results by experimenting with different network ar-
chitectures, varying the amount of training examples, and
using datasets with object at different scales and with ob-
jects that have stronger symmetries (such as lamps that tend
to be solids of revolution).

Cross-Category Generalization. To further demonstrate
the generality of our conclusions, we extend the previous
results with a set of experiments that alter the paradigm
slightly. Namely, fully-seen instances are from one object
category and restricted-seen instances are from a different
object category. Fig. 5 presents both the average accuracy
and the predictive modeling for these experiments (in this
case only one trial was performed). We specifically chose
to compare cross-category generalization between airplanes
and Shepard& Metzler objects, since their respective ge-
ometries and symmetries are quite different. The results
are largely the same as those described above for single-
category generalization, indicating that DNNs are capable
not only of generalization to OoD orientations for similar
instances, but even to instances whose appearance after ge-
ometric transformations behaves quite differently.

7 Conclusions and Future Works
We have demonstrated that increasing the number of fully-
seen instances (while keeping the number of training exam-
ples constant), results in an increase of the DNN capability
of recognizing instances of objects in OoD orientations that
appear like 2D rotations (in-plane) of in-distribution orien-
tations. Note that this result does not rule out the possibil-



ity that in experimental settings different from ours or with
DNNs with training mechanisms yet to be discovered, there
may also be generalization to orientations that are not in-
plane. Nonetheless, our finding demonstrates that there are
patterns in the failures of DNNs across orientations that can
be clearly characterized.

A key question that is derived from our results and will
be tackled in future works is to explain why DNNs gen-
eralize only to in-plane orientations. A hypothesis is that
restricted-seen instances in orientations that are not in-plane
may be too difficult or impossible to recognize (even for hu-
mans). Even though all object instances are distinguishable
at all orientations, as indicated by the high in-distribution
accuracy achieved by the DNNs, it is unclear whether there
is sufficient information to recognize them when they are
restricted-seen instances. Another hypothesis is that orien-
tations that are not in-plane are affected by self-occlusion
and DNNs may particularly suffer from it.

Other key open questions derived from our results are ana-
lyzing the DNN behaviour to more complex transformations
than changes of orientation, including changes of illumina-
tion, texture and shape deformations. Also, we are intrigued
about the neural mechanisms that facilitate recognizing ob-
ject instances in OoD orientations. Some hints towards an
answer were provided by Poggio and Anselmi (2016), as
they demonstrated that neurons that are tuned to an object
category and are invariant to a sequence or orbit of orien-
tations, facilitate recognition of novel object instances. Cur-
rent state-of-the-art network architectures were introduced
by taking into account in-distribution generalization, and not
OoD generalization. Thus, novel network architectures may
be necessary to allow for further gains of OoD generaliza-
tion, and in particular, architectures that facilitate the emer-
gence of invariant representations may be of crucial impor-
tance.

Author Contributions
AC, XB, DH, SM designed research; AC performed exper-
iments with contributions of XB; AC, XB, DH, SM and TS
analyzed data; AC, XB, DH, SM and TS wrote the paper
with contributions of PS; HP and PS supervised the research
with contributions of XB, DH and TS.

Acknowledgments
We are grateful to Tomaso Poggio and Shimon Ullman for
their insightful advice and warm encouragement. This work
was supported by Fujitsu Limited (Contract No. 40008819
and 40009105) and by the Center for Brains, Minds and
Machines (funded by NSF STC award CCF-1231216). PS
and XB are supported by the R01EY020517 grant from
the National Eye Institute (NIH), AC is supported by Fu-
jitsu Research of America, Inc. as an intern and the Yale
Class of 1960 Fellowship, and DH is supported by the Robin
Chemers Neustein Artificial Intelligence Fellows Program.

Conflicts of Interests Statement
The authors declare that the research was conducted in the
absence of any commercial or financial relationships that

could be construed as a potential conflict of interest. Fu-
jitsu Limited funded this study (Contract No. 40008819 and
40009105) and also participated in the study through AC and
TS (AC was the first half of the study at MIT and the second
half at Fujitsu Research of America). All authors declare no
other competing interests.

Data and Code Availability Statement
The raw data and code supporting the conclusions of this
article are publicly accessible upon request.

References
Alcorn, M. A.; Li, Q.; Gong, Z.; Wang, C.; Mai, L.; Ku,
W.-S.; and Nguyen, A. 2019. Strike (with) a pose: Neural
networks are easily fooled by strange poses of familiar ob-
jects. In Proc of the IEEE/CVF Conf on Computer Vision
and Pattern Recognition, 4845–4854.
Angtian, W.; Kortylewski, A.; and Yuille, A. 2021. NeMo:
Neural Mesh Models of Contrastive Features for Robust 3D
Pose Estimation. In Proc of the Int Conf on Learning Rep-
resentations.
Barbu, A.; Mayo, D.; Alverio, J.; Luo, W.; Wang, C.; Gut-
freund, D.; Tenenbaum, J.; and Katz, B. 2019. ObjectNet: A
large-scale bias-controlled dataset for pushing the limits of
object recognition models. In Advances in Neural Informa-
tion Processing Systems, 9448–9458.
Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.;
Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su,
H.; Xiao, J.; Yi, L.; and Yu, F. 2015. ShapeNet: An
Information-Rich 3D Model Repository. Technical Report
arXiv:1512.03012 [cs.GR], Stanford University — Prince-
ton University — Toyota Technological Institute at Chicago.
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Appendix
A Additional Per-Orientation Accuracy

Visualization (Section 3)
We include several more qualitative results in addition to
those presented in Sec. 3. These provide further insights
for the hypothesis that networks generalize to small angles
and in-plane orientations. The first set shows similar results
with different object categories (Fig. 6 and 7). The second
shows similar generalization capabilities with varying in-
distribution sets (Fig. 8, 9 and 10). The final set demon-
strates the generalization capabilities when data augmenta-
tion is applied during training (Fig. 11), which effectively
includes in-plane rotations of restricted-seen orientations in
the training set, extending the in-distribution set. The fol-
lowing list provides a summary of all the additional per-
orientation accuracy visualizations provided:
• Additional Datasets

– Fig. 6: Car Dataset, Rotating on α
– Fig. 7: Shepard & Metzler Dataset, Rotating on α

• Different In-Distribution Sets
– Fig. 8: Airplane Dataset, Rotating on α, (γ ≈ π/2)

– Fig. 9: Airplane Dataset, Rotating on α, (γ ≈ π/2 ∪
γ ≈ 0)

– Fig. 10: Airplane Dataset, Rotating on β
• Data Augmentation During Training

– Fig. 11: Airplane Dataset, Rotating on α, Data Aug-
mentation During Training

B Experiment Details (Section 5)
Network Architectures We test with four deep convolu-
tional neural networks, using a learning rate of 0.001 for the
Adam Optimizer (Kingma and Ba 2017):
• ResNet18 (He et al. 2016) (batch size - 230),

https://pytorch.org/vision/stable/models.html#
torchvision.models.resnet18

• DenseNet (Huang et al. 2017) (batch size -
64), https://pytorch.org/vision/stable/models.html#
torchvision.models.densenet121

• Inception (Szegedy et al. 2016) (batch size -
98), https://pytorch.org/vision/stable/models.html#
torchvision.models.inception v3

• CORnet (Kubilius et al. 2018) (batch size - 128, learning
rate - 0.0001), https://github.com/dicarlolab/CORnet

Batch sizes were chosen to be as large as possible while
still fitting the model, the batch of images and forward-pass
computations in memory. Learning rates were chosen from
10x, x ∈ {−1,−2,−3,−4,−5} to be as large as possi-
ble while ensuring that OoD generalization remained stable.
Each network was trained for 10 epochs. After this point in-
distribution performance was stabilized at 100% and OoD
performance reached an asymptote.

Dataset Size Each dataset is 200K images, 4K image for
each of the 50 object instances. A training epoch iterates
through every image in the dataset once.

Hardware details Experiments were run with one CPU,
25GB of memory and on several generations of Nvidia
GPUs with a minimum of 11GB of memory.

C Additional Results (Section 6)
We provide additional evidence across different conditions
that further strengthen the conclusions in the paper:

Network architectures. We show consistent results with
different network architectures, namely DenseNet, Incep-
tion and CORnet. Fig. 12 compares the accuracy of the
network architectures. While all them perform similarly in-
distribution, for OoD Inception and DenseNet tend to per-
form best and CORnet the worst. The OoD accuracy of all
networks tends to increase as the data diversity is increased.
We also evaluate the model for per-orientation generaliza-
tion. Fig. 13, 14 and 15, show the Pearson correlation of the
model and the per-orientation accuracy for DenseNet, Incep-
tion and CORnet, respectively. Results are consistent with
the results of ResNet presented in the paper.

Training regimes. In the paper we reported the accuracy
of ResNet trained with data augmentation and pretrained in
ImageNet. Fig. 16 and 17 evaluate the predictive model of
the per-orientation accuracy. As expected, for the network
trained with data augmentation, the in-plane component of
the model (E) is more prominent, even for small amount of
data diversity. This is because data augmentation facilitates
generalization to in-plane orientations as they are included
in the training set. For the network pretrained in ImageNet,
the model behaviour is the same as when the network is
trained from scratch, ie., generalization to in-plane orien-
tations emerges when data diversity is increased.

Amount of training examples. We verify that conclu-
sions in the paper are not dependent on the number of train-
ing examples. Fig. 18a shows that decreasing the number
of training examples to half leads to a decrease of both in-
distribution and OoD accuracy, and Fig. 18b shows that the
per-orientation behaviour of the network is the same with
half of the data.

Object Scale. In all presented experiments the objects ap-
pear at the same scale. We verified that the conclusions in
the paper are not dependent on this factor. We generated a
dataset in which the fully-seen instances appear at different
scales, from 65% of the image to 100% of it. The restricted-
seen instances appear only at 85% of the image size. Thus, in
this experimental setting OoD generalization requires tack-
ling scale and orientation. Fig. 19a shows the OoD for dif-
ferent testing scales. We observe that the accuracy decreases
as the scale of the object instance is more dissimilar from the
scale in the training set (note that the maximum is at around
85%, which is the in-distribution of the restricted-seen in-
stances). The drop of accuracy is relatively small though,
which suggests that the network learned some degree of ro-
bustness to changes of scale. We also observe that the OoD
accuracy increases for all scales as the data diversity is in-
creased. Regarding the Pearson correlation of the model and
the per-orientation accuracy, in Fig. 19b we observe similar
trends as with the experiments without scale variations.

https://pytorch.org/vision/stable/models.html#torchvision.models.resnet18
https://pytorch.org/vision/stable/models.html#torchvision.models.resnet18
https://pytorch.org/vision/stable/models.html#torchvision.models.densenet121
https://pytorch.org/vision/stable/models.html#torchvision.models.densenet121
https://pytorch.org/vision/stable/models.html#torchvision.models.inception_v3
https://pytorch.org/vision/stable/models.html#torchvision.models.inception_v3
https://github.com/dicarlolab/CORnet


Symmetric objects. Finally, we also verify that the con-
clusions in the paper are not dependent on the symmetry
properties of the object. In principle, symmetry should fa-
cilitate generalization to OoD orientations due to more sim-
ilarity across in-distribution and OoD orientations. It could
also harm OoD generalization if the in-distribution orienta-
tions are more similar between them due to symmetry. We
experimented with a dataset of lamps as most of these ob-
jects are solids of revolution, which are highly symmetrical.
We use the lamps 3D models in ShapeNet in the same way
as we used the airplanes and cars. Fig. 20a shows examples
of instance of lamps (note that most of them are solids of
revolution, and when seen from the top, they have an infinite
amount of axis of symmetry). Fig. 20b shows that the OoD
accuracy increases as the data diversity is increased. Fig. 20c
shows that the predictive model of the per-orientation accu-
racy has the same trends as for the rest of the objects except
in the cases when rotating on α. This is explained by ob-
serving that when rotating on α the restricted-seen instances
all look exactly the same due to the symmetry of the lamp.
Thus, the training set is not really diverse even though the
lamps are being rotated.



−1.96 ≤ α ≤ −1.57 0 ≤ α ≤ 0.39 1.96 ≤ α ≤ 1.57

Figure 6: Car Dataset, Rotating on α

−1.96 ≤ α ≤ −1.57 0 ≤ α ≤ 0.39 1.96 ≤ α ≤ 1.57

Figure 7: Shepard & Metzler Dataset, Rotating on α

−1.96 ≤ α ≤ −1.57 0 ≤ α ≤ 0.39 1.96 ≤ α ≤ 1.57

Figure 8: Airplane Dataset, Rotating on α, (γ ≈ π/2)



−1.96 ≤ α ≤ −1.57 0 ≤ α ≤ 0.39 1.96 ≤ α ≤ 1.57

Figure 9: Airplane Dataset, Rotating on α, (γ ≈ π/2 ∪ γ ≈ 0)

−2.75 ≤ α ≤ −2.36 0 ≤ α ≤ 0.39 2.36 ≤ α ≤ 2.75

Figure 10: Airplane Dataset, Rotating on β

N = 20 N = 30 N = 40

Figure 11: Airplane Dataset, Rotating on α, Data Augmentation Applied During Training



Figure 12: Average Accuracy for Various Architectures

Figure 13: Correlation Between Proposed Predictive Models and Experimental Results for DenseNet

Figure 14: Correlation Between Proposed Predictive Models and Experimental Results for Inception



Figure 15: Correlation Between Proposed Predictive Models and Experimental Results for CORnet

Figure 16: Correlation Between Proposed Predictive Models and Experimental Results for ResNet, with Data Augmen-
tation During Training

Figure 17: Correlation Between Proposed Predictive Models and Experimental Results for Pretrained ResNet
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Figure 18: ResNet with 1/2 Training Data: (a) Average Accuracy (b) Correlation Between Proposed Predictive Models
and Network Trained with 1/2 of the Data
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Figure 19: ResNet with Random Scaling During Training: (a) Average Accuracy (b) Correlation Between Proposed
Predictive Models and Experimental Results
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Figure 20: Lamps Dataset, ResNet: (a) Examples of lamp instances (b) Average Accuracy (c) Correlation Between Pro-
posed Predictive Models and Experimental Results
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