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Abstract. For large-scale vision tasks in biomedical images, the labeled
data is often limited to train effective deep models. Active learning is a
common solution, where a query suggestion method selects representa-
tive unlabeled samples for annotation, and the new labels are used to im-
prove the base model. However, most query suggestion models optimize
their learnable parameters only on the limited labeled data and conse-
quently become less effective for the more challenging unlabeled data. To
tackle this, we propose a two-stream active query suggestion approach.
In addition to the supervised feature extractor, we introduce an unsuper-
vised one optimized on all raw images to capture diverse image features,
which can later be improved by fine-tuning on new labels. As a use case,
we build an end-to-end active learning framework with our query sugges-
tion method for 3D synapse detection and mitochondria segmentation in
connectomics. With the framework, we curate, to our best knowledge,
the largest connectomics dataset with dense synapses and mitochondria
annotation. On this new dataset, our method outperforms previous state-
of-the-art methods by 3.1% for synapse and 3.8% for mitochondria in
terms of region-of-interest proposal accuracy. We also apply our method
to image classification, where it outperforms previous approaches on
CIFAR-10 under the same limited annotation budget. The project page
is https://zudi-lin.github.io/projects/#two_stream_active.

Keywords: Active Learning, Connectomics, Object Detection, Seman-
tic Segmentation, Image Classification

1 Introduction

Deep convolutional neural networks (CNNs) have advanced many areas in com-
puter vision. Despite their success, CNNs need a large amount of labeled data
to learn their parameters. However, for detection and segmentation tasks, dense
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Fig. 1. Two-stream active query suggestion. Active learning methods transform unla-
beled data into a feature space to suggest informative queries and improve the base
model S. Previous methods optimize their feature extractor (Es) only on the labeled
data. We propose a second one (Eu) trained unsupervisedly on all data to capture di-
verse image features, which can later be updated by fine-tuning with new annotations.

annotations can be costly. Further, in the biomedical image domain, annotations
need to be conducted by domain experts after years of training. Thus, under the
limited annotation budget, it is critical to effectively select a subset of unlabeled
data for annotation to train deep learning models.

Active learning is a common solution that iteratively improves the prediction
model by suggesting informative queries for human annotation to increase la-
bels. There are three main categories of query suggestion approaches that have
been explored for CNNs: uncertainty-based [44,42,52], expected model change-
based [53], and clustering-based methods [43]. However, all these methods use
features extracted from CNNs that are trained on the labeled set (Fig. 1a, →).
For example, core-set [45] uses the last feature space before the classification
layer to find representative queries, and learning-loss [53] takes multiple features
maps to estimate the loss of the model prediction. Therefore, these methods can
be biased towards the feature distribution of the small labeled set. Notably, in
many biomedical image applications, the labeled dataset is far from representa-
tive of the whole dataset due to its vast quantity and great diversity.

To address this challenge, we propose a two-stream active clustering method
to improve query suggestion by introducing an additional unsupervised feature
extractor to capture the image statistics of the whole dataset (Fig. 1a,→). During
active learning, we combine features extracted by both the supervised and un-
supervised streams from the unlabeled data (Fig. 1b). The unsupervised stream
can better select representative samples based on image features even when the
supervised model makes wrong predictions. Given new annotations, we can fur-
ther finetune the unsupervised feature extractor to make the embedding space
more discriminative. For the clustering module, we show that combining the
features from both streams in a hierarchical manner achieves significantly better
query suggestion performance than directly concatenating the feature vectors.

We test our method in the field of connectomics, where the goal is to recon-
struct the wiring diagram of neurons to enable new insights into the workings of
the brain [26,31]. Recent advances in electron microscopy (EM) allow researchers
to collect brain images at nanometer resolution and petabyte scale [21,56]. One
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Fig. 2. Two essential vision tasks in connectomics: (a) object detection of synapses to
quantify the neuronal connectivity strength and (b) semantic segmentation of mito-
chondria to estimate the neuronal activity level. (c) However, the terabyte-level test
data can be 100× larger than the training data, making active learning necessary.

crucial task is to detect and segment biological structures like synapses and
mitochondria for a deeper understanding of neural anatomy and activation pat-
terns [2] (Fig. 2a-b). However, most labeled connectomics datasets [11,30] are
only a few gigavoxels in size, hundreds of times smaller than the unlabeled vol-
ume needed for down-stream biological analysis (Fig. 2c).

With our two-stream active clustering as the key component, we build an end-
to-end framework with a base model and an annotation workflow. Before active
learning, our base model achieves state-of-the-art results on public benchmarks.
Besides, our annotation workflow reduces interactive error correction time by
26%, as shown by a controlled user study. With this framework, we finished the
dense annotation of synapse objects and mitochondria semantic mask for a (50
µm)3 EM image volume (300 gigavoxels) in the rat visual cortex, called EM-R50,
which is over 100× larger than existing datasets. For the evaluation of active
learning approaches on this connectomics dataset, our method improves the
performance of previous state-of-the-art methods by 3.1% for synapses and 3.8%
for mitochondria, respectively, in terms of the accuracy of the region-of-interest
(ROI) proposals. We further perform ablation studies to examine the importance
of different framework components and hyper-parameters. To demonstrate its
broader impact, we also benchmark our method on natural image classification
(CIFAR-10), which outperforms previous state-of-the-art methods by over 2%
under a limited annotation budget ≈ 5% of the total training images.

Contributions. First, we introduce a novel active learning method that incor-
porates information from an unsupervised model to improve the effectiveness of
query suggestions. Second, our method achieves state-of-the-art results for detec-
tion and segmentation tasks on connectomics datasets and image classification
on CIFAR-10. Third, we release the code and a densely annotated connectomics
dataset (100× bigger than current datasets) to facilitate future researches.

2 Related work

Synapse Detection and Mitochondria Segmentation. Synapse detection
and mitochondria segmentation are two popular tasks in connectomics. Due to
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the complex shapes, bounding box-based detection [38] and segmentation [12]
methods can have poor performance. Thus, most previous works for biomedical
vision directly predict the semantic segmentation of the object and generate
bounding-box proposals for the detection task via post-processing.

For synapse detection, previous approaches focus on segmenting the synap-
tic cleft region using hand-crafted image features [25,2,17,19,24,37] or learned
features [39]. To further predict synapse polarity, the direction of information
transmission among neurons, recent works apply random forest classifiers [23,49],
neural networks [18,5,14,34], and combinations [7]. For mitochondria segmenta-
tion, earlier works leverage various image processing techniques and manually-
designed image features [32,50,30,27,46,36]. Recent methods employ 2D or 3D
fully convolutional network architectures [33,6] to regress the semantic mask.

In this paper, we adopt the 3D U-Net [40] model for both synapse detection
and mitochondria semantic segmentation. Incorporating recent deep learning
techniques including residual blocks [13] and squeeze-and-excitation blocks [16],
our model achieves top performance on public connectomics benchmarks.

Active Learning. Active learning methods iteratively query human annotators
to obtain new informative samples to label and then improve the base model.
Transductive active learning [54] aims to improve the later step by training the
base model on the additional unlabeled data with pseudo labels. The similarity
graph among samples [3,35,57] is often used to generate pseudo labels from
manual annotations. We focus on the former step to suggest better queries [45],
where traditional methods use uncertainty-based sampling [42,52], and diversity-
based optimization [9,10]. Tailored for neural networks, recent works explore
ideas of maximizing feature coverage [43], margin-based sampling [55], expected
error-based selection [53] and adversarial learning [8].

Besides the image classification task, active learning has been applied to ob-
ject detection for different image domains [4,48,1]. Roy et al. [41] formulates the
detection task as a structured prediction with novel margin sampling techniques
and Vijayanarasimhan et al. [51] scales up the labeling process with crowd-
sourcing. Kao et al. [20] proposes location-aware measures for query suggestion.
Instead of solely using the feature extractor optimized on the labeled set, our key
insights are to improve query suggestions with unsupervised image information
and fine-tune the learned feature extractor to distinguish ambiguous samples.

3 Active Learning Framework Overview

Our active learning framework for large-scale vision tasks in connectomics has
three components: base model, query suggestion, and annotation (Fig. 3). We
here describe our base model and annotation workflow, leaving the query sug-
gestion method for Sec. 4. Further details are in the supplementary document.

Overview. During active learning on unlabeled images, the base model first pre-
dicts dense probability map and generates regions of interest (ROIs). Then the
proposed query suggestion method extracts features for all ROIs and suggests
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Fig. 3. Overview of our active learning framework. (a) The base model S predicts
semantic masks, which are post-processed to generate ROIs. We align them to the
same orientation for better clustering. (b) Our method adds an additional stream of
unsupervised feature extracted by Eu. We apply hierarchical clustering to partition the
unlabeled data and suggest cluster centers as queries for annotation. (c) Annotators
provide True or False annotations for query samples that are used to fine-tune both
the based mode S (black dashed line) and the proposed Eu (red dashed line).

queries through the two-stream clustering for annotation. With the new annota-
tion, in addition to fine-tuning the base model, we further fine-tune the proposed
query suggestion model to make it more discriminative in query suggestion.

Model Prediction. The base model handles two tasks: synapse detection and
mitochondria segmentation. The irregular shapes make it hard to directly pre-
dict 3D bounding boxes for synapses, while the vast volume quantity makes it
infeasible to conduct pixel-wise annotation for mitochondria. Therefore, follow-
ing common practice for biomedical images, we first predict a dense semantic
probability map and apply connected component labeling with post-processing
to generate ROI proposals. We thus unify two different tasks as judging the cor-
rectness of ROIs in active learning. Since finding false positives from proposals
is more efficient than locating false negatives in the vast volume, we re-balance
the weights between foreground and background pixels to ensure a high recall.

In Fig. 3a, we show an example for synapse detection. Each synapse instance
has a pre-synaptic (purple) and a post-synaptic (cyan) segment, and we predict
a three-channel probability map representing pre- and post-synaptic regions and
their union. We align extracted ROIs to a reference orientation to normalize its
rotation variation. To this end, we select the 2D slice with the biggest area from
the 3D instance, apply the principal component analysis (PCA) of the mask, and
rotate the instance to align its first principal component to the vertical direction.
For synapse, we further make sure the pre-synaptic segment (gray) is on the left.

Annotation. We focus on the correctness of ROIs instead of the pixel-level
correctness of the mask. During annotation, an annotator judges the ROI to be
correct if the mask within covers more than half of the ground truth mask in
this ROI. In practice, thanks to the performance of the base model, annotators
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find most predicted instances are unambiguously right or wrong. We built a
browser-based labeling interface, where annotators can click on each suggested
query to change its label, e.g., from True to False (Fig. 3c). For better judgment,
we display both image patches and predicted instance masks to annotators. For
annotation efficiency, we display the selected query samples in a grouped manner
using our clustering results instead of a random order (Sec. 6.3).

4 Two-stream Active Query Suggestion

Compared to previous methods, our two-stream active query suggestion intro-
duces an additional unsupervised feature extractor that is trained on all images
to capture dataset statistics. We then cluster unlabeled data with the two-steam
features and use cluster centers as query samples for annotation (Sec. 4.1). With
new annotations, we further fine-tune the image feature extractor to adjust the
feature space for better query suggestions in the next round (Sec. 4.2).

4.1 Two-Stream Clustering

For the task of deciding the correctness of ROI proposals, we use the predicted
mask from the base model for the supervised stream and its corresponding raw
image for the unsupervised stream. We first apply the feature extractor to reduce
the feature dimension for each stream. Then, we fuse the two-stream clustering
results to partition the unlabeled data into smaller subsets where the samples
share similar features to make the cluster centers more representative.

Feature Extraction Network. We train the feature extraction model through
self-supervision. Specifically, we train a variational auto-encoder (VAE) [22] to
regress the input through a bottleneck network structure (Fig. 4a) and use the
embedded features as the low-dimensional representations. The VAE model con-
sists of an encoder network E and a decoder network D. We use several convolu-
tional layers for the encoder, followed by a fully connected layer to predict both
the mean and standard deviation of the low-dimensional embedding vector. For
the decoder, we use deconvolution (or transposed convolution) layers to learn to
reconstruct the input image from the embedding vector.

The loss function for the VAE is the sum of the `1 reconstruction loss and
the KL-divergence between the distribution of the predicted embedding feature
and the standard normal distribution. In practice, we use samples with a fixed
patch size where the mask or image is rotated and aligned when training the
VAE. We then only use the VAE mean vector as the extracted feature.

Feature Fusion. Given the extracted image and mask features, we propose
two designs of clustering architectures to fuse such two-stream information: late-
fusion clustering and hierarchical clustering (Fig. 4b). Inspired by the two-stream
architecture designs for video action recognition [47], we design a late-fusion
strategy to directly concatenate image and mask features and feed into a clus-
tering module C. We expect that with the combined features from two streams,
the clustering method can better distinguish ambiguous samples.
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Fig. 4. Architectures for the two-stream active query suggestion model. (a) For model
initialization, we train the supervised (Es) and unsupervised (Eu) feature extractors
using VAEs. (b) For two-stream clustering, we compare two design choices to combine
Eu and Es features in an either parallel (late-fusion) or hierarchical manner. The block
Ci denotes the clustering algorithm. (c) For active clustering, we fine-tune Eu with
triplet loss to encourage the learning of discriminative features.

Another strategy is the hierarchical clustering that clusters the mask features
and the image features sequentially. The intuition behind the design is that since
the embedding spaces for both extractors can be very different (e.g., dimension,
and distance scale), the hierarchical approach can alleviate the needs for rebal-
ancing. In the hierarchical clustering, the members of each of the N mask clusters
separated in the first round are further divided into M sub-clusters by apply-
ing the k-means algorithm on the unsupervised image VAE embedding space,
which yields MN clusters in total. We show in Sec. 6.2 that conditioning the
image clustering on the mask features can prevent the image features, which are
of high dimension than mask features, from dominating the results. Therefore
hierarchical clustering can better suggest queries compare to late-fusion.

Query Suggestion. Given the clustering result from either late-fusion or hier-
archical clustering, we run an additional round of clustering (e.g., k-means) with
Q clusters and use the samples with minimum distances to each cluster center
as queries presented to the annotators. Thus the annotator needs to annotate in
total MNQ samples. In the ablation study (Sec. 6.2), we will examine the query
suggestion effectiveness and efficiency with different hyper-parameter choices.

4.2 Active Clustering

Since the encoders are learned in an unsupervised manner, we expect that with
new annotations, we can improve the encoder to encourage the learning of more
discriminative features. Therefore we adaptively adjust the embedding space of
the encoder with new labels to make the clustering module active.

Triplet Loss. We employ the triplet loss [15] to incorporate new label infor-
mation into the encoder. Suppose that we have a set of labeled positive and
negative instances. After randomly select one positive sample xP and one neg-
ative sample xN as anchors, we hope that the third sample x becomes close to
xP and distant from xN if it is positive, and vice versa. This can encourage the
encoders to learn more discriminative features and facilitate query suggestions
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since samples share the same label are closer while different classes are projected
further apart. Following Hoffer et al. [15], we calculate the distances as

dP = ||φ(x)− φ(xP)||2, dN = ||φ(x)− φ(xN)||2, (1)

where φ(x) indicates features extracted from the encoder. We then define the
loss function for adjusting the feature extractor as

LTriplet(x,xP,xN) =

∥∥∥∥ edP

edP + edN
,

edN

edP + edN
− 1

∥∥∥∥2
2

(2)

to minimize dP and maximize dN. Incorporating the triplet loss enables the
active adjusting of the feature space to be more discriminative, which can further
improve the effectiveness of query suggestion.

4.3 Learning Strategy

Inference Phase. (Fig. 3, solid line) For both synapses and mitochondria, the
base model was initially trained on a small manually labeled volume of size
(5µm)3, comparable to public benchmark datasets. We conduct sliding-window
prediction for the large test volume of size (50µm)3 and use the connected com-
ponent algorithm to generate ROI candidates for active learning. The VAE of
the mask encoder Es model is trained on the aligned patches with predicted ob-
ject masks, while the image encoder Eu is trained with image patches uniformly
sampled from the whole volume to capture diverse texture information.

Fine-tuning Phase. (Fig. 3, dashed line) For active clustering, the Eu is initial-
ized by fine-tuning it with labeled patches from the small labeled volume. Then
the queries are generated with two-stream hierarchical clustering by successively
using the latent spaces of both Es and Eu. After query annotation, we fine-tune
the image encoder with new ground truth labels and apply it for future iterations
of query suggestion. For non-active clustering, we conduct the same hierarchical
clustering but use the original Eu trained under a totally unsupervised setting.
In both cases, the new query samples are used to fine-tune and improve the base
model as a standard active learning practice.

5 EM-R50 Connectomics Dataset

With our two-stream active query suggestion method, we annotated, to the best
of our knowledge, the largest 3D EM connectomics image volume datasets with
dense synapses object and mitochondria mask annotation. Specifically, we im-
aged a tissue block from Layer II/III in the primary visual cortex of an adult rat
at a resolution of 8×8×30nm3 using a multi-beam scanning electron microscope.
After stitching and aligning the images on multi-CPU clusters, we obtained a
final volume of 50 µm cube. We also apply deflickering, frame interpolation, and
image de-striping techniques to improve image quality.

Annotation Quantity. All ROIs are annotated by three neuroscience experts,
and we take the majority decision mapped back to the volume as the final
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Fig. 5. EM-R50 connectomics dataset with dense synapse and mitochondria anno-
tation. (a) We compare the size of the densely annotated image volume with other
connectomics datasets (log-scale). To visualize the diversity of instance shape and ori-
entation, we show (b) 3D meshes of synapses and mitochondria within a sub-volume,
and (c) sample 2D image patches with corresponding mask annotations.

label. In total, we obtain around 104K synapses, and mitochondria mask that
occupies around 7.6% of the voxels. Compared to benchmarks like CREMI [11]
and Lucchi [28] in connectomics, EM-R50 dataset is over 150× larger in image
volume size, and over 100× larger in terms of the number of synapse instance.

Instance Diversity. To exhibit instance diversity, we show 3D meshes of all
synapses and mitochondria within a subvolume (Fig. 5b). We use representative
2D slices for each 3D ROIs during annotation, and we show the variation of
instance shape and orientation (Fig. 5c).

6 Experiments on Connectomics Datasets

We first benchmark our query suggestion method against others on the EM-
R50 dataset for the ROI-level accuracy for synapse and mitochondria. Then we
examine the design choices of the proposed method and the whole active learning
pipeline through ablation studies, public benchmarks, and user studies.

6.1 Comparing with State-of-the-art Methods

Dataset and Metric. We randomly sample a subset of ROIs for synapses
and mitochondria from EM-R50 for the benchmark experiments. The number
of samples in the training-test split is 28.7K-10K and 20K-5K for synapse and
mitochondria, respectively. We use the ROI proposal accuracy of the base model
after fine-tuning as the evaluation metric for active learning methods.

Methods in Comparison. We compare our method with random uniform
sampling, core-set [43], and learning-loss [53] approaches under a two-iteration
scenario. For all the methods, after generating queries with a fixed annotation
budget (1,280 instances, ≈ 5% of the training set), we use new labels to fine-tune
the base network and evaluate the updated network prediction.

Results on Synapse. The initial accuracy of the network on the active learn-
ing test split is 0.811. We fine-tune the network using the instances suggested
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Table 1. Active learning performance comparison on our EM-R50 connectomics bench-
mark. Our two-stream query suggestion approach significantly out-perform previous
methods in terms of the ROI proposal accuracy (higher is better).

Method
Synapse Mitochondria

Round 1 Round 2 Round 1 Round 2

Random 0.824 0.871 0.704 0.749
Core-Set [43] 0.847 0.895 0.726 0.767
Learning-Loss1 [53] 0.832 0.889 0.724 0.771

Two-Stream (Ours) 0.892 0.926 0.802 0.809

by different methods from the training set, where it has an initial accuracy of
0.762. To prevent overfitting, we construct mini-batches from the initial labeled
volume with a ratio of 0.25. After first-round fine-tuning, the accuracy of the
synapse proposals is increased to 0.892 for the test set, which outperforms ran-
dom uniform sampling, core-set, and learning-loss (Table 1, Round 1). For our
method, the new annotations are used to fine-tune the image encoder Eu. After
another round of active clustering and fine-tuning the base model, the test ac-
curacy is increased to 0.926, which shows that our method outperforms previous
approaches significantly on synapse detection (Table 1, Round 2).

Results on Mitochondria. Since other structures like lysosome and artifacts
caused by tissue staining and imaging look similar to mitochondria, the initial
accuracy on the unlabeled ROIs is only 0.57. After applying our approach, the
accuracy is improved to 0.809 on the test set, which outperforms core-set [43]
method by 4.2% and the learning-loss [53] by 3.8% (Table 1). We observe that the
accuracy improvement is relatively small for mitochondria at the second active
learning round. This may result from the intrinsic ambiguity of the mitochondria
feature, where even human experts are not confident about the label.

Discussion. Despite the state-of-the-art performance of core-set [43] and learning-
loss [53] on natural image benchmarks, those methods are less effective in han-
dling the connectomics tasks due to two reasons. First, both methods use fea-
tures from the supervised model, which can hardly capture the images features
in the large unlabeled volume. Second, for the learning-loss approach, estimat-
ing the prediction loss with the global-average-pooling (GAP) module can ignore
the useful structure information of objects. Nevertheless, we also compare the
CIFAR-10 image classification benchmark (Sec. 7), where the methods are opti-
mally tuned by the authors, for an even fairer comparison.

6.2 Ablation Analysis of Two-Stream Active Query Suggestion

In this part, we validate our design choices of the proposed two-stream active
clustering module through ablation studies. Since the goal of query suggestion in
active learning is to find the most “representative” samples for annotation, we
perform the experiments to evaluate how different hyper-parameter and design
choices influence the accuracy of annotation under a limited label budget.

1 Please check Sec. S-1 in the supplementary document for model details.
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Table 2. Comparison of design choices for two-stream clustering. We compute the
object detection accuracy by assigning the labels of the cluster centers to other cluster
members. The number of candidates per cluster, Q, is fixed to 5.

Description Random
One-Stream Two-Stream

Mask-Only Image-Only Late-Fusion Hierarchical

Es clusters (N) - - 128 256 1 1 - 64 128 64 32
Eu clusters (M) - - 1 1 128 256 - 2 2 4 8

Total num. (MN) - - 128 256 128 256 256 128 256 256 256
Annotation ratio (%) 2.23 4.46 2.23 4.46 2.23 4.46 4.46 2.23 4.46 4.46 4.46

Accuracy 0.767 0.772 0.805 0.819 0.420 0.578 0.738 0.821 0.826 0.846 0.814

Table 3. Comparison of design choices for active clustering. We show the accuracy w/
or w/o fine-tuning feature extractors. Fine-tuning only Eu shows the best performance
while fine-tuning Es can confuse the encoder, which leads to worse performance.

Active Encoder None Es Eu Eu and Es

Accuracy 0.846 0.830 0.880 0.871

Dataset and Metric. We use the synapse benchmark dataset above to perform
the ablation study. Suppose that after sliding window inference of the detection
model, we have N proposed instances with an accuracy of p. Here p is the
number of correct predictions over the total number of ROIs. By fixing the
annotation budget s, the baseline accuracy is defined by the expectation of the
accuracy that can be achieved by random one-by-one annotation, which is p(1−
s
N ) + s

N . For example, with an initial accuracy of 0.7, randomly annotating
10% of the instances can improve the overall accuracy by 3%, since 70% of the
queries are positive, and no errors can be corrected by annotating them. Then for
evaluating the proposed methods, after annotating the cluster representatives in
the clustering module, we assign the major representative labels to all samples
in that cluster and calculate the label accuracy of the ROIs.

Effect of Two-Stream Clustering. We examine the active learning method
accuracy with respect to the number of clusters and clustering architectures.
Note that we fix the number of representatives Q = 5. Initially, for the instance
proposals generated by the detection model, we assign ‘correct’ labels to all
instances, and the accuracy is 0.762. As shown in Table 2, both with manual
annotation of 4.46% of the data, random annotation can increase the accuracy
by 4.46% × (1 − 0.762) ≈ 0.01, while our clustering module can increase the
label accuracy by around 0.08 in absolute value. Besides, combining two-stream
information with late fusion performs worse than the ‘mask only’ design. This
is because the dimension of image embedding space is 1,000 to achieve reason-
able reconstruction performance, which is much larger than the mask embedding
space (20). Image embedding tends to dominate the result with direct concate-
nation and clustering using the same distance metric.

Effect of Active Clustering. We examine the effect of active clustering for
the feature extractors Eu and Es. There are three choices of the architectures,
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Table 4. Pixel-level evaluation on public connectomics datasets. For synapse, ours
ranks 1st among results in publications on the CREMI dataset (left). For mitochondria,
ours is on-par with state-of-the-art methods on the Lucchi dataset (right).

Synapse CREMI ↓ ADGT ↓ ADF ↓
DTU1 [14] 72.21 106.31 38.11
DTU2 [14] 67.56 109.67 25.46

Base model (Ours) 63.92 97.64 30.19

Mitochondria VOC ↑
Cheng [6] 0.942
Lucchi [29] 0.948

Base model (Ours) 0.937

fine-tuning Es only, fine-tuning Eu only, as well as fine-tuning both Es and Eu.
As indicated in Table 3, fine-tuning only Es decreases the accuracy, because add
supervision can distort the shape priors learned by the mask VAE; fine-tuning
only Eu have a significant improvement over the static hierarchical baseline;
fine-tuning both Es and Eu decreases the Eu only performance, which further
indicate that the shape information learned in Eu by self-supervision already
contains distinguishable information that can be extracted from object masks.
Therefore, we only fine-tuning Eu.

6.3 Ablation Analysis of Active Learning Pipeline

Besides the evaluation of the proposed query suggestion method above, we ex-
amine the performance of the other two modules in the whole pipeline.

Model Prediction: Pixel-Level Evaluation. We provide pixel-level evalua-
tions of the base model2 to show its effectiveness on small benchmark datasets
and indicate the necessity of active learning on large datasets. For synaptic cleft,
we evaluate on the CREMI Challenge dataset [11], which contains 3 training and
3 test volumes of the size 1250×1250×125 voxels. The results are evaluated by
two scores: the average distance of any predicted cleft voxel to its closest ground-
truth cleft voxel (ADGT) for penalizing false positives and the average distance
of any ground-truth cleft voxel to its closest predicted cleft voxel (ADF) for pe-
nalizing false negatives. The final ranking criterion (CREMI score) is the mean
of ADGT and ADF over the three test volumes. For mitochondria, we evaluate
the model on the Lucchi dataset [30], which contains 1 training and 1 test vol-
umes of size 1024×768×165 voxels. We use the standard VOC score, which is
the average of the Jaccard index of the foreground and background pixels.

For synaptic cleft, our proposed model outperforms previous leading methods
by 5% and ranks 1st among published results on the public leaderboard (Table 4,
left). For mitochondria, our model achieves comparable results to the previous
state-of-the-art methods [6,29], with ∼1% difference (Table 4, right). The results
suggest that our base model is strong enough to enable a fair comparison of the
following active learning methods on the large-scale benchmark dataset.

Model Prediction: Recall. As objects are sparse in the images, correcting false
positive is much easier than finding false negatives. Thus we rebalance the loss
and reject batches without foreground pixels with a 95% probability to heavily

2 Architecture details are shown in Fig. S-1 in the supplementary document.
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Fig. 6. User study on annotation through-
put. The box plots show the median and in-
terquartile range of the number of annotated
instances in a fixed time frame of 30 minutes.

penalize false negatives as in Heinrich et al. [14]. In return, the instance-level
recall for synapses on a fully labeled validation volume is 0.94 (IoU threshold is
0.5), which is adequate for the ROI-based active learning experiments.

Annotation: Query Display Order. To speed up the annotation, we sort the
suggested query samples by their cluster indices and distance from their cluster
centers. Such cluster-based query display order potentially allows participants
to scan and identify false predictions faster, as patches with similar features are
grouped closer than those in a random ordering. For evaluation, we performed
a user study with novices as a single factor between-subjects experiment.

From the EM-R50 dataset, we randomly select 2.1K synapses, with 211 are
false predictions. We recruited 20 novice participants and asked them to annotate
as many synapses as possible within the 30-minute time frame after a 10-min
proper instruction on the task. Each participant was randomly assigned to either
our clustering method or random ordering of the synapses.

Our clustering method allows study participants to annotate synapse with
higher throughput, 930±237 synapses, compared to the random order, 670±224
(Fig. 6). Besides the efficiency improvement, the cluster-based query display
order leads to a slight average accuracy improvement: for users with clustering
0.728± 0.087 compared to the random ordering with 0.713± 0.114.

7 Application to Natural Image Classification

The proposed two-stream active query suggestion can be applied to image classi-
fication in the active learning setting. Instead of the predicted mask encoded by
a VAE model, we use the class label prediction as the supervised stream feature.

Dataset and Metric. CIFAR-10 has 60K images of size 32×32 pixels, with
50K for training and 10K for testing. Each image has a label from one of the ten
classes. For evaluation, we use the top-1 classification accuracy on the test split.

Methods in Comparison. We use the same training protocol as Yoo et al. [53]
for a fair comparison. For query suggestion methods, we compare with random
uniform sampling, core-set [43], and learning-loss [53] approaches. For the active
learning pipeline, we run a five-round comparison. We first uniformly sample 1K
samples from the training set as the initial pool. After training the classification
model, we apply different query suggestion approaches and label additional 1K
samples from the unlabeled pool. Then we train the model from scratch again
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Fig. 7. Active learning results on the
CIFAR-10 dataset. The accuracy im-
provement of our approach over previous
state-of-the-art methods is most signifi-
cant when training with a limited number
of samples (2k and 3k out of total 50k im-
ages), similar to the annotation budget for
EM-R50 (≈ 5%). Mean and standard de-
viation are estimated from 5 runs. We also
show that the accuracy saturates after ten
iterations of query suggestion (Fig. S-4 in
the supplementary material).

and conduct another round of query suggestion and labeling. We iterate the
process until the total number of labeled samples reaches 5K.

Implementation Details. For classification, we use the same ResNet-18 model
as Yoo et al. [53]. During training, we apply data augmentation, including ran-
dom crop and horizontal flip, and image normalization. During active learning,
the number of training epochs is 200, and the mini-batch size is 64. The learn-
ing rate of the SGD optimizer is initially 0.1 and decreased to 0.01 after 160
epochs. For indicating the effectiveness of the unsupervised stream, we only use
the two-stream clustering module of our query suggestion method. We pre-train
the unsupervised stream feature with a VAE on all the training images with a
latent dimension of 32. At the clustering phase, we fix the number of clusters at
the output space and VAE latent space to be 50 and 20, respectively.

Results. Our proposed method outperforms the random uniform sampling and
core-set methods, and is higher or comparable to the recent learning-loss ap-
proach (Fig. 7). Empirically, when the number of training samples is around 5%
of the whole dataset (i.e., 2K, and 3K out of 50K training images), our method
achieves 2-3% improvement upon the learning-loss approach.

8 Conclusion

In this paper, we demonstrate the effectiveness of our proposed two-stream active
query suggestion method for large-scale vision tasks in connectomics under the
active learning setting. Besides the state-of-the-art results on the connectomics
data, we show its applicability to a natural image classification benchmark. We
evaluate each module of our active learning pipeline through public benchmarks,
ablation studies, and user studies. As a use case, we build a connectomics dataset
from a (50 µm)3 cubic tissue with dense annotation of synapse and mitochondria.

Acknowledgments. This work has been partially supported by NSF award
IIS-1835231 and NIH award 5U54CA225088-03.



Two Stream Active Query Suggestion 15

References

1. Abramson, Y., Freund, Y.: Active learning for visual object detection (2006) 4
2. Becker, C., Ali, K., Knott, G., Fua, P.: Learning context cues for synapse segmen-

tation. IEEE TMI (2013) 3, 4
3. Belkin, M., Niyogi, P.: Using manifold stucture for partially labeled classification.

In: NIPS (2003) 4
4. Bietti, A.: Active learning for object detection on satellite images. Tech. rep.,

Technical report, Caltech (2012) 4
5. Buhmann, J., Krause, R., Lentini, R.C., Eckstein, N., Cook, M., Turaga, S., Funke,

J.: Synaptic partner prediction from point annotations in insect brains. arXiv
preprint arXiv:1806.08205 (2018) 4

6. Cheng, H.C., Varshney, A.: Volume segmentation using convolutional neural net-
works with limited training data. In: ICIP (2017) 4, 12

7. Dorkenwald, S., Schubert, P.J., Killinger, M.F., Urban, G., Mikula, S., Svara, F.,
Kornfeld, J.: Automated synaptic connectivity inference for volume electron mi-
croscopy. Nature methods 14(4), 435 (2017) 4

8. Ducoffe, M., Precioso, F.: Adversarial active learning for deep networks: a margin
based approach. ICML (2018) 4

9. Dutt Jain, S., Grauman, K.: Active image segmentation propagation. In: CVPR
(2016) 4

10. Freytag, A., Rodner, E., Denzler, J.: Selecting influential examples: Active learning
with expected model output changes. In: ECCV (2014) 4

11. Funke, J., Saalfeld, S., Bock, D., Turaga, S., Perlman, E.: Circuit reconstruction
from electron microscopy images. https://cremi.org (2016) 3, 9, 12

12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017) 4

13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016) 4

14. Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J., Saalfeld, S.: Synaptic cleft seg-
mentation in non-isotropic volume electron microscopy of the complete drosophila
brain. MICCAI (2018) 4, 12, 13

15. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: International
Workshop on Similarity-Based Pattern Recognition (2015) 7, 8

16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018) 4
17. Huang, G.B., Plaza, S.: Identifying synapses using deep and wide multiscale recur-

sive networks. arXiv preprint arXiv:1409.1789 (2014) 4
18. Huang, G.B., Scheffer, L.K., Plaza, S.M.: Fully-automatic synapse prediction and

validation on a large data set. arXiv preprint arXiv:1604.03075 (2016) 4
19. Jagadeesh, V., Anderson, J., Jones, B., Marc, R., Fisher, S., Manjunath, B.:

Synapse classification and localization in electron micrographs. Pattern Recog-
nition Letters 43, 17–24 (2014) 4

20. Kao, C.C., Lee, T.Y., Sen, P., Liu, M.Y.: Localization-aware active learning for
object detection. ACCV (2018) 4

21. Kasthuri, N., Hayworth, K.J., Berger, D.R., Schalek, R.L., Conchello, J.A.,
Knowles-Barley, S., Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T.R., et al.:
Saturated reconstruction of a volume of neocortex. Cell 162(3), 648–661 (2015) 2

22. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. ICLR (2013) 6
23. Kreshuk, A., Funke, J., Cardona, A., Hamprecht, F.A.: Who is talking to whom:

synaptic partner detection in anisotropic volumes of insect brain. In: MICCAI
(2015) 4

https://cremi.org


16 Z. Lin et al.

24. Kreshuk, A., Koethe, U., Pax, E., Bock, D.D., Hamprecht, F.A.: Automated de-
tection of synapses in serial section transmission electron microscopy image stacks.
PloS one 9(2), e87351 (2014) 4

25. Kreshuk, A., Straehle, C.N., Sommer, C., Koethe, U., Cantoni, M., Knott, G.,
Hamprecht, F.A.: Automated detection and segmentation of synaptic contacts in
nearly isotropic serial electron microscopy images. PloS one 6(10), e24899 (2011)
4

26. Lichtman, J.W., Sanes, J.R.: Ome sweet ome: what can the genome tell us about
the connectome? Current opinion in neurobiology 18(3), 346–353 (2008) 2

27. Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate
subgradient descent with working sets. In: CVPR (2013) 4

28. Lucchi, A., Li, Y., Smith, K., Fua, P.: Structured image segmentation using ker-
nelized features. In: ECCV (2012) 9

29. Lucchi, A., Márquez-Neila, P., Becker, C., Li, Y., Smith, K., Knott, G., Fua, P.:
Learning structured models for segmentation of 2d and 3d imagery. IEEE TMI
(2015) 12

30. Lucchi, A., Smith, K., Achanta, R., Knott, G., Fua, P.: Supervoxel-based segmen-
tation of mitochondria in em image stacks with learned shape features. IEEE TMI
(2012) 3, 4, 12

31. Morgan, J.L., Lichtman, J.W.: Why not connectomics? Nature methods 10(6),
494 (2013) 2

32. Narasimha, R., Ouyang, H., Gray, A., McLaughlin, S.W., Subramaniam, S.: Auto-
matic joint classification and segmentation of whole cell 3d images. Pattern Recog-
nition (2009) 4

33. Oztel, I., Yolcu, G., Ersoy, I., White, T., Bunyak, F.: Mitochondria segmenta-
tion in electron microscopy volumes using deep convolutional neural network. In:
Bioinformatics and Biomedicine (2017) 4

34. Parag, T., Berger, D., Kamentsky, L., Staffler, B., Wei, D., Helmstaedter, M.,
Lichtman, J.W., Pfister, H.: Detecting synapse location and connectivity by signed
proximity estimation and pruning with deep nets. arXiv preprint arXiv:1807.02739
(2018) 4

35. Parag, T., Ciresan, D.C., Giusti, A.: Efficient classifier training to minimize false
merges in electron microscopy segmentation. In: ICCV (2015) 4

36. Perez, A.J., Seyedhosseini, M., Deerinck, T.J., Bushong, E.A., Panda, S., Tasdizen,
T., Ellisman, M.H.: A workflow for the automatic segmentation of organelles in
electron microscopy image stacks. Frontiers in neuroanatomy 8, 126 (2014) 4

37. Plaza, S.M., Parag, T., Huang, G.B., Olbris, D.J., Saunders, M.A., Rivlin, P.K.:
Annotating synapses in large EM datasets. arXiv preprint arXiv:1409.1801 (2014)
4

38. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015) 4

39. Roncal, W.G., Pekala, M., Kaynig-Fittkau, V., Kleissas, D.M., Vogelstein, J.T.,
Pfister, H., Burns, R., Vogelstein, R.J., Chevillet, M.A., Hager, G.D.: Vesicle: vol-
umetric evaluation of synaptic interfaces using computer vision at large scale. arXiv
preprint arXiv:1403.3724 (2014) 4

40. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: MICCAI (2015) 4

41. Roy, S., Namboodiri, V.P., Biswas, A.: Active learning with version spaces for
object detection. arXiv preprint arXiv:1611.07285 (2016) 4



Two Stream Active Query Suggestion 17

42. Scheffer, T., Decomain, C., Wrobel, S.: Active hidden markov models for informa-
tion extraction. In: International Symposium on Intelligent Data Analysis (2001)
2, 4

43. Sener, O., Savarese, S.: Active learning for convolutional neural networks: A core-
set approach. ICLR (2018) 2, 4, 9, 10, 13

44. Settles, B.: Active learning literature survey. Tech. rep., University of Wisconsin-
Madison Department of Computer Sciences (2009) 2

45. Settles, B.: Active learning literature survey. 2010. Computer Sciences Technical
Report (2014) 2, 4

46. Seyedhosseini, M., Ellisman, M.H., Tasdizen, T.: Segmentation of mitochondria in
electron microscopy images using algebraic curves. In: ISBI. pp. 860–863. IEEE
(2013) 4

47. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recog-
nition in videos. In: NIPS (2014) 6

48. Sivaraman, S., Trivedi, M.M.: Active learning for on-road vehicle detection: A
comparative study. Machine vision and applications (2014) 4

49. Staffler, B., Berning, M., Boergens, K.M., Gour, A., van der Smagt, P., Helm-
staedter, M.: Synem, automated synapse detection for connectomics. Elife (2017)
4

50. Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E., Pfister, H.:
Segmentation fusion for connectomics. In: ICCV (2011) 4

51. Vijayanarasimhan, S., Grauman, K.: Large-scale live active learning: Training ob-
ject detectors with crawled data and crowds. IJCV (2014) 4

52. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for
deep image classification. IEEE TCSVT (2017) 2, 4

53. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 93–102 (2019) 2, 4,
9, 10, 13, 14

54. Yu, K., Bi, J., Tresp, V.: Active learning via transductive experimental design. In:
Proceedings of the 23rd international conference on Machine learning. pp. 1081–
1088 (2006) 4

55. Zhang, Y., Lease, M., Wallace, B.C.: Active discriminative text representation
learning. In: AAAI (2017) 4

56. Zheng, Z., Lauritzen, J.S., Perlman, E., Robinson, C.G., Nichols, M., Milkie, D.,
Torrens, O., Price, J., Fisher, C.B., Sharifi, N., et al.: A complete electron mi-
croscopy volume of the brain of adult drosophila melanogaster. Cell (2018) 2

57. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian
fields and harmonic functions. In: ICML (2003) 4


