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Fig. S-1. The architecture details of our base model. Due to the anisotropy nature
of the electron microscopy (EM) image stacks, the resolution of the voxels along the
z-axis is about 4× lower than x, y resolution. Therefore we use 2D residual blocks at
the first two stages in the network while putting stacked 3D residual blocks for the
following stages after pooling modules make the voxels roughly isotropic. To ease the
computational burden of 3D convolutions, we fix the maximum number of filters at a
convolutional layer to be 256 (e.g., the 5th block).

We thank the readers for viewing the supplementary document. We provide
further details of our base model (Sec. S-1), annotation interface (Sec. S-2), EM-
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Table S-1. Architectures of the mask and image variational autoencoders (VAEs).
Please note that latent dimension of images are larger because reconstructing original
EM images is harder than reconstructing quantized segmentation masks.

Layers Output Size Mask VAE Image VAE

Conv ×2 112 × 112 3 × 3 kernel ×32
Pool 56 × 56 2 × 2 max pool
Conv ×2 56 × 56 3 × 3 kernel ×64
Pool 28 × 28 2 × 2 max pool
Conv ×2 28 × 28 3 × 3 kernel ×128
Pool 14 × 14 2 × 2 max pool
Conv ×2 14 × 14 3 × 3 kernel ×256
FC-Mean 1 × 1 20 fully-conn 1000 fully-conn
FC-Std 1 × 1 20 fully-conn 1000 fully-conn

FC-Dec 1 × 1 50176 fully-conn
Deconv 28 × 28 2 × 2 kernel ×256
Conv ×2 28 × 28 3 × 3 kernel ×128
Deconv 56 × 56 2 × 2 kernel ×128
Conv ×2 56 × 56 3 × 3 kernel ×64
Deconv 112 × 112 2 × 2 kernel ×64
Conv 112 × 112 3 × 3 kernel ×32
Conv 112 × 112 3 × 3 kernel ×1

R50 dataset (Sec. S-3) and CIFAR-10 classification experiments (Sec. S-4) in
this document.

S-1 Details for the Base Model

U-Net Model. For the detection module, we implement the backbone asym-
metric 3D U-net model [5] with a 3D feature pyramid network (FPN) [4] (Fig-
ure S-1). At the end of each stage (several consecutive residual blocks [1] with
the same number of filters), a squeeze-and-excitation block [2] is added to re-
weight the channel-wise features. Our squeeze-and-excitation block does not use
global average pooling (GAP) identical to the original model for image classifi-
cation, but use standard average pooling to reduce the x, y dimension only by
4× to preserve more spatial information. The output feature maps for each stage
are mapped to 32 channels with a 1×1×1 convolution layer and combined with
point-wise summation (also with up-sampling for low-resolution feature maps).
For synapse polarity mask detection in the JWR dataset, the final convolution
layer has a channel number of 31, while for synaptic clefts detection in CREMI
challenge and mitochondria segmentation, the output channel number is 1.

Variational Autoencoder (VAE) Model. For the clustering module in query
suggestion, we use the same variational autoencoder model (VAE) [3] for both
mask and image input. As shown in Table S-1, we use ‘Conv’, ‘Pool’, ‘FC’, and

1 To post-process synaptic polarity masks: https://github.com/zudi-lin/pytorch_
connectomics/blob/master/connectomics/utils/processing/process_syn.py

https://github.com/zudi-lin/pytorch_connectomics/blob/master/connectomics/utils/processing/process_syn.py
https://github.com/zudi-lin/pytorch_connectomics/blob/master/connectomics/utils/processing/process_syn.py
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‘Deconv’ to denote convolution, pooling, fully-connected, and deconvolution (or
transposed convolution) layers, respectively. The output of the ‘FC-Mean’ layer
is used as the latent vector for clustering. Note that the output of the ‘FC-Dec’
layer is reshaped into a 14× 14× 256 tensor.

Learning-Loss Module. The main insight of the learning-loss module [6] is
to suggest the samples with the highest estimated prediction errors of the main
tasks (e.g., classification, and detection). For implementation, the design choice
is to combine several feature maps from the CNN backbone with global average
pooling (GAP) and fully connected layers. Following the design choices of the
original learning-loss module [6], we combine the outputs from the four stages,
as shown in Figure S-1 (before dimension reduction denoted by 1× 1× 1 conv).
The number of channels of the four feature maps is {256, 128, 64, 32}, and the
latent dimension of the learning-loss module is 32. Finally, a fully-connected
layer maps the concatenated feature vector into a single scalar as the estimated
loss of the main task. As suggested by Yoo et al. [6], the energy function is the
relative difference between pairs of samples in a batch to discard the change of
the absolute loss scale during training.

Fig. S-2. Synapse annotation interface: randomly ordered view.

S-2 Details for the Annotation Interface

As shown in Figure S-2 and S-3, we select the representative 2D slice of the 3D
object (synapse in this example) and align them along the vertical axis in the
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Fig. S-3. Synapse annotation interface: clustered view (ours).

interface for human proofreading. Both the re-aligned gray-scale image and the
composite image with predicted masks are shown to annotators. The synapses
are either randomly ordered or sorted by the clustering result in the mask VAE
space. For each object, we first assume it to be ‘correct’ and mark as green. If
an annotator clicks it once, the color will be switched to red and recorded as a
‘wrong’ prediction. If an annotator clicks it twice, it will be marked as white and
annotated as an ‘unsure’ one. We display synapses and mitochondria in a 10×10
grid view. After finishing each page, an annotator just needs to click the ‘done’
button at the end of the page. For the comparison of the human annotation, we
let half of the annotators annotate synapses displayed by random ordering. The
other half of the annotators annotate synapses sorted in accordance with the
clustering result. The unsure synapses and mitochondria are further proofread
by showing multiple slides to make more confident decisions.

S-3 Details for the EM-R50 Dataset

Below is a more detailed description of the EM-R50 (Electron Microscopy im-
ages of Rat with a volume size of (50 µm)3) dataset with dense synapses and
mitochondrion annotation.

Image Acquisition. We started with harvesting the whole brain tissue by tran-
scardial perfusion of a functionally-imaged adult rat. The primary visual cortex
of the rat was subsequently sectioned by a vibratome and further dissected into
a 1 mm3 tissue block. The block was then prepared using a reduced-osmium
staining protocol followed by resin embedding of the entire piece of the cortex.
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Fig. S-4. Active learning experiments on CIFAR-10 image classification. The accuracy
improvement of our proposed method is most significant with a relatively small number
of samples (2k and 3k out of total 50k images, highlighted with the orange rectangle),
which is consistent with our observations on the EM-R50 connectomics datasets. The
performance tends to saturate after ten iterations. Mean and standard deviation are
shown from 5 runs.

A custom ATUMtome was used to cut and collect serial sections in 30 nm thick-
ness on a continuous length of carbon-coated Kapton tape. Segments of tape
were adhered to silicon wafers to create an ultrathin-section library. Wafers were
then optically imaged for individual section positioning and focus mapping. Au-
tomated EM image acquisition was finally carried out in the determined region
in each serial section at a spatial resolution of 4nm×4nm using a multi-beam
scanning electron microscope throughout the wafers. We then post-process the
raw images and create the EM-R50 dataset with a spatial resolution of 8×8×30
nm3 for each voxel.

Annotation Consistency. In order to ensure the accuracy of the dataset, each
detected instance is proofread by two annotators independently. We notice their
agreement is over 98% for both synapses and mitochondria, which shows the
accuracy of the constructed dataset.

Dataset Statistics. We annotated around 104K synapses and 72K mitochon-
dria in the 50 cubic micron volume. The synapse density is 0.832 instance/µm3,
and mitochondria occupy 7.6% of the volume in terms of the number of pixels.

S-4 Details for the CIFAR-10 Experiment

In addition to the five-round CIFAR-10 active learning experiments shown in the
main paper where the annotation budget (∼ 5%) is similar to the annotation
budget for the JWR50 connectomics dataset, we also conducted ten-round active
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learning experiments (Figure S-4). Besides achieving better performance under
the same limited budget, our method is still higher or on par with previous
state-of-the-art approaches when the performance saturates.
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