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ABSTRACT 

Newly developed technologies have made it feasible to routinely collect highly multiplexed 

(20-60 channel) images at subcellular resolution from human tissues for research and diagnostic 

purposes. Extracting single cell data from such images requires efficient and accurate image 

segmentation. This starts with identification of nuclei, a challenging problem in tissue imaging that 

has recently benefited from deep learning. In this paper we demonstrate two generally applicable 

approaches to improving segmentation accuracy as scored using new human-labelled segmentation 

masks spanning multiple human tissues. The first approach involves the use of “real augmentations” 

during training. These comprise defocused and saturated image data and improve model accuracy 

when computational augmentation (Gaussian blurring) does not. The second involves collection of 

nuclear envelope data. The two approaches cumulatively and substantially improve segmentation 

with three different deep learning frameworks, yielding a set of high accuracy segmentation models. 

Moreover, the use of real augmentation may have applications outside of microscopy. 

 

1. INTRODUCTION 

Tissues are complex assemblies of multiple cell types that interact with each other and with 

structures such as basement membranes and connective tissue in defined geometric arrangements. 

In diseases such as cancer, disruption of cell-intrinsic regulatory mechanisms and the tissue 

environment cause morphological and structural changes over spatial scales ranging from 

subcellular organelles to entire tissue (0.1 to 104 µm).  Microscopy using Hematoxylin and Eosin 

(H&E), Romanowsky–Giemsa stains, and other colorimetric dyes, complemented by 

immunohistochemistry (Immunologists, 1942) has long played the primary role in the study of tissue 

architecture in humans and other organisms (Albertson, 2006; Shlien and Malkin, 2009). In a clinical 

setting, histopathology remains the primary means by which diseases such as cancer are staged 

and managed clinically (Amin et al., 2017). However, classical histology provides insufficient 

molecular information to precisely identify cell subtypes, study mechanisms of development, and 

characterize disease genes. In the past few years, several different methods for highly multiplexed 

tissue imaging have been developed. These yield subcellular resolution data on the abundance of 

20-60 antigens, which is sufficient to subtype cells, measure cell states (quiescent, proliferating, 

dying, etc.) and interrogate cell signaling pathways (Rozenblatt-Rosen et al., 2020a). Methods 

based on immunofluorescence imaging include cyclic immunofluorescence (CyCIF) (Lin et al., 

2018), Multiplexed Immunofluorescence (MxIF) (Gerdes et al., 2013), CO-Detection by indEXing 

(CODEX) (Goltsev et al., 2018), and Signal Amplification By Exchange Reaction (immuno-SABER) 

(Saka et al., 2019). Mass spectrometry-based methods include Imaging Mass Cytometry (IMC) 

(Giesen et al., 2014) and Multiplexed Ion Beam Imaging (MIBI) (Angelo et al., 2014). These 

methods differ in resolution, field of view, and multiplicity (“plex”) but all generate 2D images of 

tissue sections that are typically 5 – 10 µm thick.   

When multiplexed images are segmented and quantified, the resulting single cell data are a 

natural complement to single cell RNA Sequencing (scRNASeq) data, which have had a dramatic 
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impact on our understanding of normal and diseased tissues (Achim et al., 2015; Slyper et al., 

2020). Unlike dissociated RNASeq, however, multiplex tissue imaging preserves spatial information. 

Single cell analysis of data acquired via imaging requires segmentation, a computer vision 

technique that assigns class labels to an image in a pixel-wise manner to subdivide it; this is 

followed by marker quantification on a per-cell or per organelle basis. Extensive work has gone into 

the development of methods for segmenting metazoan cells grown in culture, but segmentation of 

tissue images is a substantially more complex challenge. Cell types, and thus cell sizes and shapes, 

are more diverse in tissues; cells are often closely packed and may be only partly captured by any 

individual section. Segmentation of tissue culture cells has long relied on classical approaches such 

as the watershed algorithm, whose parameters are manually tuned for different cell types. More 

recently, machine learning methods have become standard, paralleling the widespread use of 

convolutional neural networks (CNNs) in image recognition, object detection, and synthetic image 

generation (LeCun, Bengio and Hinton, 2015). 

CNNs are well-suited to image analysis since they automatically extract image features at 

multiple scales at each layer of the neural network. Architectures such as ResNet, VGG16, and 

more recently, UNet and Mask R-CNN (Ronneberger, Fischer and Brox, 2015; He et al., 2018) have 

gained considerable attention for their ability to learn millions of parameters and generalize across 

datasets, as evidenced by excellent performance in a wide range of segmentation competitions, as 

well as in hackathon challenges (Caicedo et al., 2019) using publicly available image sets (Kromp et 

al., 2020; Schwendy, Unger and Parekh, 2020). UNet, in particular, has gained popularity in the 

biomedical imaging domain due to its ease of deployment on Graphical Processing Units (GPUs) 

and its superior performance on previously challenging cell segmentation and tracking datasets. 

One limitation of machine learning on tissue images is a lack of sufficient freely-available data with 

ground truth labelling. Experience with natural scene images (Ronneberger, Fischer and Brox, 

2015) has proven that the acquisition of labels can be time consuming and rate limiting (Gurari et 

al., 2015).  

In both cultured cells and tissues, the localization of nuclei is an optimal starting point for 

segmenting cells since most cell types have one nucleus (cells undergoing mitosis, muscle and liver 

cells and osteoclasts are important exceptions), and nuclear stains with high signal-to-background 

ratios are widely available. The nucleus is generally quite large (relative to the resolution of wide-

field fluorescence microscopes), making it easy to detect at multiple magnifications, and it often lies 

at the approximate center of a cell. Nuclei can be identified in the absence of staining (Chalfoun et 

al., 2014; Stylianidou et al., 2016; Lux and Matula, 2020) but for fluorescence imaging, labeling with 

DAPI (4′,6-diamidino-2-phenylindole) or Hoechst 33342 is common; in transfected cells or 

transgenic animals, fluorescently tagged proteins such as histones can also be used (Al-Kofahi et 

al., 2018; Schmidt et al., 2018; Vuola, Akram and Kannala, 2019; Wang et al., 2019; Kromp et al., 

2020). In classical histology, nuclei are labelled along with other structures using chromogenic dyes 

such as H&E (Al-Kofahi et al., 2010; Qi et al., 2012; Xu, Lu and Mandal, 2014; Chen et al., 2016; Xu 

et al., 2017; Lee and Jeong, 2020; Liu et al., 2020; Shahzad M et al., 2020).  
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Although segmentation is commonly performed using nuclei alone, there are possible 

advantages to using other markers in combination with nuclear stains; for example, Schüffler et al., 

(2015) used multiplexed IMC data and watershed methods for multi-channel segmentation. Methods 

based on random forests such as Ilastik and Weka (Arganda-Carreras et al., 2017; Berg et al., 

2019) also exploit multiple channels for class-wise pixel classification via an ensemble of decision 

trees to assign pixel-wise class probabilities in an image. However, random forest models have 

significantly less capacity for learning than CNNs, which is a substantial disadvantage. The 

possibility of using CNNs with multi-channel data to enhance nuclei segmentation has not been 

widely explored.  

The accuracy of segmentation algorithms is crucially dependent on the quality of the original 

images and the absence of artefacts. In practice however, images commonly have at least some 

unavoidable focus or blur artefacts and saturated channels. This is particularly true in the case of 

whole slide imaging in which up to 1,000 sequentially acquired image tiles are used to create 

mosaic images of specimen as large as several square centimeters. Segmentation methods must 

compensate for aberrations commonly occurring in such large images. One way to accomplish this 

is via image augmentation. Image augmentation (Krizhevsky, Sutskever and Hinton, 2012) is a 

method commonly used in the expansion of training sets for machine learning tasks in which a set 

of original images are pre-processed to include random rotation, shearing, flipping, etc. This is 

designed to prevent algorithms from learning irrelevant aspects of an image, such as orientation. 

Image augmentation is also a method for generating training data for images with specific types of 

artefacts including focus problems. To date this has been accomplished by applying various 

degrees of Gaussian blur to the training data (Ahmed Raza et al., 2017; Shorten and Khoshgoftaar, 

2019; Horwath et al., 2020).   

 

1.1 Related work 

One of the earliest methods to extract cells from the background involves specifying a global 

threshold based on the Otsu method (Otsu, 1979) in which a threshold is selected that maximizes 

intraclass variance between two classes. For cell objects that remain clumped and unseparated 

after simple thresholding, the Otsu method is usually replaced with marker-controlled watershed 

segmentation. This entails a distance transform operation on the clumped objects to identify a single 

central ‘seed’ point per object. The presence of multiple seed points per object (cell) results in 

oversegmentation and this can usually be resolved with blurring followed by a regional maxima 

operation. Other methods to identify markers include, but are not limited to, graph cuts or filtering 

with a blob detector (usually a Laplacian of Gaussian filter) (Byun et al., 2006; Xu, Lu and Mandal, 

2014; Xu et al., 2017), level sets followed by mean-shift clustering (Qi et al., 2012), or a filter bank of 

rings (Liu et al., 2016). Many of these methods have been applied to both fluorescence and H&E 

images of tissues and while ground truth labeled datasets are not required, fairly extensive 

parameter tuning and empirical testing is necessary. 
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A variety of neural net and other architectures have been explored to improve detection and 

classification accuracy and expand generalizability to new types of images. Several deep learning 

architectures developed for natural images have been adapted for marker detection in images of 

cells including Fully Convolutional Networks (FCNs) (Lux and Matula, 2020), Visual Geometry 

Group (VGG16) (Wang et al., 2019; Shahzad M et al., 2020), Residual Networks (ResNets) (Lee 

and Jeong, 2020), UNet (Al-Kofahi et al., 2018; McQuin et al., 2018; Schmidt et al., 2018; Wen et 

al., 2018; Vu et al., 2019; Horwath et al., 2020; Lugagne, Lin and Dunlop, 2020), and Mask R-CNN 

(Kromp et al., 2019; Vuola, Akram and Kannala, 2019, 2019; Korfhage et al., 2020; Liu et al., 2020; 

Masubuchi et al., 2020). In classical image analysis, advances in methodology commonly involve 

the development of new algorithms; any changes in parameter settings needed to accommodate 

new data are regarded as project-specific details. In contrast, in machine learning approaches, 

advances in algorithms, learned models and labelled data are all significant; this is particularly true 

as differentiable architectures for deep learning become increasingly standardized and the quality of 

trained models is a key point of comparison. While machine learning algorithms outperform classical 

methods in many image processing applications, model training and evaluation remain substantial 

challenges in the biomedical domain.  

 

1.1.1 Biomedical Image datasets 

Image recognition models are commonly trained on diverse sets of natural images, and 

transfer-style learning is used to improve performance on specific domains. The introduction of the 

ImageNet dataset (Deng et al., 2009) catalyzed the application of deep learning to image analysis 

by providing a set of real-world images along with ground truth annotations. Subsequent 

applications of ImageNet make clear that machine learning models are only as strong as the 

underlying training and validation data.  In biomedical research, segmentation methods for cell lines 

(Caicedo et al., 2019; Kromp et al., 2020; Liu et al., 2020; Torr et al., 2020) have benefited from 

large public datasets such as Expert Visual Cell ANnotation (EVICAN) (Schwendy, Unger and 

Parekh, 2020), Cellpose (Stringer et al., 2020), the Broad Bioimage Benchmark Collection (BBBC) 

(Ljosa, Sokolnicki and Carpenter, 2012), The Cancer Genome Atlas (TCGA) (Xing et al., 2019), and 

Kaggle datasets (Yang et al., 2020). 

Few human-labelled datasets are currently available for highly multiplexed tissue images 

and existing learned segmentation models generally apply only to specific tissue types (Byun et al., 

2006; Al-Kofahi et al., 2010; Qi et al., 2012; Xu, Lu and Mandal, 2014; Roth et al., 2015; Chen et al., 

2016; Liu et al., 2016; Xu et al., 2017; Höfener et al., 2018; Kromp et al., 2020). Moreover, in most 

existing datasets, images comprise H&E and not fluorescence images. One exception is a broad 

23-tissue study that is part of TCGA, however, these annotations are not publicly available. 

Moreover, because only the center of the nuclei (as opposed to the nuclear boundary) was marked, 

TCGA annotations are more suited to cell counting as opposed to segmentation. To address this 

issue, this current manuscript includes a set of tissue images and densely labelled ground-truth 

annotations of whole nuclei. 
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1.1.2 Image augmentation to improve model training 

Deep learning models have a high capacity to learn large numbers of features. This results 

in high accuracy but with a substantial danger of overfitting. The use of augmentation methods 

helps to remedy overfitting by increasing the diversity of the training data (Krizhevsky, Sutskever 

and Hinton, 2012). The most common method employs a combination of translational shifts, 90 

degree rotations, reflections, and affine transformations (Vu et al., 2019; Khadangi, Boudier and 

Rajagopal, 2020; Liu et al., 2020; Lux and Matula, 2020). A few studies have also added elastic 

deformations using B-splines (Ronneberger, Fischer and Brox, 2015; Raza et al., 2019; Torr et al., 

2020). These methods are not unique to microscopy images, however, and only a few studies have 

used augmentation to address variation in the brightness and contrast of otherwise identical images 

(Lugagne, Lin and Dunlop, 2020) or added synthetically generated camera noise and non-cellular 

debris to make model training less sensitive to artefacts (Schmidt et al., 2018; Yang et al., 2020). A 

particularly interesting form of augmentation used by Kromp et al. (2019) involved manually 

separating cells from the background and arranging nuclei in grids with random positions and 

orientations, effectively generating new training examples. The authors found that imposing a grid 

structure did not substantially improve accuracy because cut-out nuclei had hard edges that are 

atypical of fluorescence images. The authors, therefore, used a generative model trained to relate 

images of nuclei to their artificial counterparts – nuclei that had been cut out and placed back on 

their original positions.  

To date, common artefacts such as image saturation and defocus have been addressed 

computationally using image histogram modification and Gaussian blurring (Shorten and 

Khoshgoftaar, 2019; Yang et al., 2020) as well as deliberate defocusing of an actual microscope 

(Ljosa, Sokolnicki and Carpenter, 2012). The BBBC described by Ljosa et al. is primarily derived 

from tissue culture cells or transmission and differential interference contrast (DIC) microscopy of 

model organisms as opposed to human tissues. Ground truth information in Ljosa et al. was also 

generated automatically as opposed to by human annotation, where the latter is likely to be more 

accurate. 

 

1.1.3 Use of stains to aid in segmentation  

In fluorescence microscopy, nuclei are most commonly stained using intercalating dyes such 

as DAPI or Hoechst 33342 (Al-Kofahi et al., 2010; Schmidt et al., 2018; Berryman et al., 2019; 

Vuola, Akram and Kannala, 2019), SiR-DNA (Yang et al., 2020), TO-PRO (Byun et al., 2006), and 

hematoxylin (Al-Kofahi et al., 2010; Qi et al., 2012; Xu, Lu and Mandal, 2014; Chen et al., 2016; Xu 

et al., 2017; Vu et al., 2019; Lee and Jeong, 2020; Shahzad M et al., 2020). When expression of 

recombinant proteins is feasible (e.g., in cell lines), cells expressing fluorescent protein fusions to 

histones (Challen and Goodell, 2008) or spindle components is an effective means to label nuclei 

(Wen et al., 2018; Wang et al., 2019); this has also been done in genetically engineered mouse 

models (Tumbar et al., 2004) but is not relevant to analysis of human tissues. In the case of 
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brightfield or phase contrast imaging, nuclear labels are not utilized (Chalfoun et al., 2014; 

Stylianidou et al., 2016; Schwendy, Unger and Parekh, 2020), but nuclei can often be identified 

based on brightness.  Almost all of these studies have used data from a single imaging channel for 

nuclei localization, which can be problematic when nuclei are diffuse or close together, both of 

which are common in cancer specimens. In general, the results of segmentation are superior using 

fluorescence as opposed to brightfield data (Gurari et al., 2015), but the use of additional channels 

to more precisely define nuclear boundaries by staining for nuclear lamins or nucleoporins, for 

example, has not been broadly explored. 

 

1.2 Contributions 

In this paper, we investigate ways to maximize the accuracy of image segmentation on 

multiplexed tissue data by including different types of information in the images and by augmenting 

the training data. We generate a set of training and test data with ground-truth annotations via 

human inspection of lung adenocarcinoma, prostate-derived fibroblasts, normal tonsil, non-

neoplastic small intestine, colon adenocarcinoma, glioblastoma, and non-neoplastic ovary, and use 

these data to score segmentation accuracy achieved by using three deep learning algorithms: UNet, 

Mask R-CNN, and Pyramid Scene Parsing Network (PSPNet). We introduce a family of models 

termed Universal Models for Identifying Cells and Segmenting Tissue (UnMICST). The three 

frameworks presented here are referred to based on the algorithms they use as UnMICST-U, 

UnMICST-M, and UnMICST-P, respectively. We identify two generalizable and easily implemented 

ways of improving segmentation accuracy. The first involves collecting images of nuclear envelope 

staining (NES) acquired using a cocktail of antibodies against lamins and the nuclear envelope 

protein NUP98 as a complement to standard images of chromatin acquired using DNA-intercalating 

dyes. The second involves adding real augmentations, defined here as intentionally defocused and 

over-saturated images, to the training data to make models more robust to the types of artefacts 

encountered in real tissue images.  

We find that augmentation with real data significantly outperforms conventional Gaussian 

blur augmentation, offering a statistically significant improvement in model robustness to defocused 

artefacts. In general, the use of additional nuclear markers and real augmentation improves 

segmentation across multiple tissue types and generalizes to each of the three tested frameworks. 

Thus, nuclei segmentation models should use staining data for DNA (e.g., Hoechst 33342) and NES 

as well as data with real artefacts. All of the data and models in this paper are made freely available 

for further research (www.synapse.org/#!Synapse:syn24192218/files/). A list of key contributions is 

as follows:   

● Generate and release a range of multiplexed tissue and human-generated ground truth 

annotations for nuclear segmentation 

● Demonstrate that combined use of two markers for identifying nuclei involving a DNA stain to 

visualize chromatin and antibodies to stain the nuclear envelope improves segmentation 

accuracy in multiple settings 
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● Show that segmentation models trained on data containing real artefacts (defocused and 

saturated pixels) outperform models solely based on computational augmentation  

● Demonstrate that these findings generalize to three different deep learning architectures 

(UNet, Mask R-CNN, and PSPNet)  

 

2. Method 

2.1 Sample preparation for imaging 

To generate images for model training and testing, human tissue specimens (from 42 

patients) were used to construct a multi-tissue microarray (HTMA427) under an excess (discarded) 

tissue protocol approved by the Institutional Review Board (IRB) at Brigham and Women's Hospital 

(BWH IRB 2018P001627). Two 1.5 mm diameter cores were acquired from each of 60 tissue 

regions with the goal of acquiring one or two examples of as many tumors as possible (with 

matched normal tissue from the same resection when feasible), as well as several non-neoplastic 

medical diseases and secondary lymphoid tissues such as tonsil, spleen and lymph nodes. Overall, 

the tissue microarray (TMA) contained 120 cores plus three additional “marker cores,” which are 

cores added to the TMA in a manner that makes it possible to orient the image. Slides were stained 

with the following reagents from Cell Signaling Technologies (Beverly MA, USA) and Abcam 

(Cambridge UK).  

 

Target Fluorochrome Species Clone Vendor Cat. No. RRID 

DNA Hoechst 33342 NA NA CST 4082 AB_10626776 

Lamin B2 Alexafluor 647 Rabbit EPR9701(B) Abcam ab200427 AB_2889288 

NUP98 Alexafluor 647 Rabbit C39A3 CST 13393 AB_2728831 

 

Before imaging, slides were mounted with 90% glycerol and a #1.5 coverslip. Prior to 

algorithmic evaluation, the images were split into three mutually disjoint subsets and used for 

training, validation, and testing. 

 

2.2  Acquisition of image data and real augmentations 

The stained TMA was imaged on a INCell 6000 (General Electric Life Sciences) microscope 

equipped with a 20x/0.75 objective lens (370 nm nominal lateral resolution at 550 nm wavelength) 

and a pixel size of 0.325 µm per pixel. Hoechst and lamin-A647 were excited with a 405 nm and 

642 nm laser, respectively. Emission was collected with the “DAPI” (455/50 nm) and “Cy5” (682/60 

nm) filter sets with exposure times of 60 ms and 100 ms, respectively. Whole-slide imaging involved 

acquisition of 1,215 tiles with an 8% overlap, which is recommended for stitching in ASHLAR, a next 

generation stitching and registration algorithm for large images 

(https://github.com/labsyspharm/ashlar). To generate defocused data, we acquired images from 

above and below the focal plane by varying the Z-axis by 3 µm in both directions. To generate 
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saturated images of DNA staining, a 150ms exposure time was used. These two types of 

“suboptimal” data were then used for “real augmentation” during model training, as described below. 

Representative cores for lung adenocarcinoma, non-neoplastic small intestine, normal 

prostate, colon adenocarcinoma, glioblastoma, non-neoplastic ovary, and tonsil were extracted from 

image mosaics and down-sampled by a factor of 2 to match the pixel size of images routinely 

acquired and analyzed in MCMICRO (Schapiro et al., 2021). Images were then cropped to 256 x 

256-pixel tiles, and in-focus DNA and NES were imported into Adobe Photoshop to facilitate human 

annotation of nuclear boundaries. Annotations for contours and background classes were labelled 

on separate layers while swapping between DNA and NES as necessary. To save time, we drew 

complete contours of nuclei and filled these in using the Matlab imfill operation to generate nuclei 

centers. For nuclei at the image borders where contours would be incomplete, we manually 

annotated nuclei centers. As described by Ronneberger et al. (2015), a fourth layer was used to 

mark areas between clumped cells. These additional annotations made it possible to specifically 

penalize models that incorrectly classified these pixels.  

Because original, defocused, and saturated images of DNA were all acquired in the same 

image stack, it was possible to use a single registered set of DNA annotations across all augmented 

image channels. To produce the training set, each image was cropped into 64 x 64 patches, 

normalized to use the full dynamic range, and further augmented using 90-degree rotations, 

reflections, and 20% upscaling. Consistent with the training set, the validation and test sets also 

include defocused and saturated examples but were not augmented with standard transformations. 

The ratio of data examples present in the training, validation, and test set split was 0.36:0.24:0.4. 

For a fair comparison across models, the same dataset and split were used for the three deep 

learning frameworks described in this manuscript (Supplementary Table 1). 

 

2.3 Model implementation 

To facilitate model training, three distinct state-of-the-art architectures were implemented 

and evaluated. They are, in no particular order, UNet, Mask R-CNN, and PSPNet. UNet was 

selected for its prior success in the biomedical domain, Mask R-CNN was selected for its ability to 

perform both object detection and mask generation, and PSPNet was selected for its capacity to 

integrate image features from multiple spatial scales. Training, validation, and test data were 

derived from 12 cores in 7 tissues and a total of 10,359 nuclei in the composition of colon – 1,142; 

glioblastoma (GBM) – 675; lung – 1735; ovarian – 956; fibroblast – 922; small intestine – 1677; 

tonsil – 3252. To maintain consistency of evaluation across segmentation algorithms, segmentation 

accuracy was calculated by counting the fraction of cells in a held out test set that passed a 

sweeping Intersection over Union (IoU) threshold. 
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2.3.1 UnMICST-U model training 

A three-class UNet model (Ronneberger, Fischer and Brox, 2015) was trained based on 

annotation of nuclei centers, nuclei contours, and background. The neural network is comprised of 4 

layers and 80 input features. Training was performed using a batch size of 32 with the Adam 

Optimizer and a learning rate of 0.00005 with a decay rate of 0.98 every 5,000 steps until there was 

no improvement in accuracy or ~100 epochs had been reached. Batch normalization was used to 

improve training speed. During training, the bottom layer had a dropout rate of 0.35, and L1 

regularization was implemented to minimize overfitting (Ng, 2004; Srivastava et al., 2014) and early 

stopping. Training was performed on workstations equipped with NVidia GTX 1080 or NVidia TitanX 

GPUs.  

 

2.3.2 UnMICST-M model training 

Many segmentation models are based on the Mask R-CNN architecture (He et al., 2018); 

Mask R-CNN has previously exhibited excellent performance on a variety of segmentation tasks. 

Mask R-CNN begins by detecting bounding boxes of nuclei and subsequently performs 

segmentation within each box. This approach eliminates the need for an intermediate watershed, or 

equivalent, segmentation step. Thus, Mask R-CNN directly calculates a segmentation mask, 

significantly reducing the overhead in traditional segmentation pipelines. We adopted a ResNet50 

(He et al., 2016) backbone model in the UnMICST-M implementation and initialized the weights 

using pretrained values from the COCO object instance segmentation challenge (Lin et al., 2014) to 

improve convergence properties. For efficient training, we upsampled the original input images to 

800 x 800-pixels and trained a model for 24 epochs using a batch size of 8. The Adam optimizer, 

with a weight decay of 0.0001 to prevent overfitting, was exploited with a variable learning rate, 

initially set to 0.01 and decreased by a factor of 0.1 at epochs 16 and 22. Training was performed 

on a compute node cluster using 4 NVidia TitanX or NVidia Tesla V100 GPUs. For evaluation and 

comparison, we used the model with the highest performance on the validation set, following 

standard practice.       

 

2.3.3 UnMICST-P model training 

We trained a three class PSPNet model (Zhao et al., 2017) to extract cell nuclei centers, 

nuclei contours, and background from a wide variety of tissue types. PSPNet is one of the most 

widely used convolutional neural networks for the semantic segmentation of natural scene images in 

the computer vision field. The network employs a so-called pyramid pooling module whose purpose 

is to learn global as well as local features. The additional contextual information used by PSPNet 

allowed the segmentation algorithm to produce realistic probability maps with greater confidence. 

We used ResNet101 as a backbone. Training of the network was performed using a batch size of 8 

with an image size of 256 x 256-pixels for 15,000 iterations or until the minimum loss model was 

obtained. A standard cross entropy loss function was used during training. Gradient descent was 

performed using the Adam optimizer with a learning rate of 0.0001 and a weight decay parameter of 
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0.005 via L2 regularization. Batch normalization was employed for faster convergence, and a 

dropout probability of 0.5 was used in the final network layer to mitigate overfitting. The model 

training was performed on a compute cluster node equipped with NVidia Tesla V100 GPUs. 

 

2.4 Analysis of multi-dimensional data 

For the analysis shown in Figure 6, a 64-plex CyCIF image of non-neoplastic small intestine 

tissue from the EMIT TMA (https://www.synapse.org/#!Synapse:syn22345748/) was stained with a 

total of 45 antibodies as described in protocols https://www.protocols.io/view/ffpe-tissue-pre-

treatment-before-t-cycif-on-leica-bji2kkge and dx.doi.org/10.17504/protocols.io.bjiukkew. Images 

were segmented using the UnMICST-U model trained on DNA with NES data and real 

augmentations. Mean fluorescence intensities across 45 markers for 27,847 segmented nuclei were 

quantified as described in (Schapiro et al., 2021). E-cadherin positive and CD45 positive cells were 

identified using Gaussian-mixture models on log-transformed data. For multivariate clustering, log-

transformed mean intensities of all single cells of 14 selected protein markers (E cadherin, pan-

cytokeratin, CD45 CD4, CD3D, CD8', RF3, PML, GLUT1, GAPDH TDP43, OGT, COLL4, an 

EPCAM) were pre-processed using Uniform Manifold Approximation and Projection (UMAP) (Becht 

et al., 2019) and clustered using Hierarchical Density-Based Spatial Clustering of Applications with 

Noise (HDBSCAN) (Campello, Moulavi and Sander, 2013). Clusters expressing a high level of both 

E-cadherin and CD45 were identified and overlaid on a false-colored image showing the staining of 

DNA, E-cadherin, and CD45.  

 

3 Results 

Semantic segmentation is a coarse-grained approach to segmentation that assigns objects 

to distinct trained classes, while instance segmentation is fine grained and identifies individual 

instances of objects. We implemented and evaluated two semantic and one instance segmentation 

algorithms (UNet, Mask R-CNN, and PSPNet, respectively) to investigate the relative performance 

of deep learning architectures with different types of training data. We trained each of these models 

(UnMICST-U, UnMICST-M, and UnMICST-P, respectively) on manually curated and labelled data 

from seven distinct tissue types (discussed in section 3.1). The accuracy of each model was 

assessed based on the number of correctly segmented cells relative to the total number using a 

variable intersection over union (IoU) threshold ranging from the least stringent, 0.55, to most 

stringent, 0.8. The IoU (the Jaccard Index) is calculated by measuring the overlap between the 

ground truth annotation and the prediction via a ratio of the intersection to the union of pixels in both 

masks. The greater the IoU, the higher the accuracy, with an ideal value of 1 (although this is very 

rarely achieved). Unlike the standard pixel accuracy metric (the fraction of pixels in an image that 

were correctly classified), IoU is not sensitive to class-imbalance. 
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3.1 – Data sets and ground truth annotation of nuclear boundaries 

It is well established that various cell types in tissues have nuclear morphologies that are 

different from the spherical and ellipsoidal shape observed in cultured cells (Skinner and Johnson, 

2017). Nuclear pleomorphism (variation in nuclear size and shape) is widely used in histopathology 

to grade cancers and has been automated for H&E images using classical machine vision methods 

(Dalle et al., 2009). However, the impact on segmentation accuracy of variation in nuclear 

morphology by cell type and tissue or tumor of origin has not been widely studied for tissue imaging. 

We, therefore, generated training, validation, and test datasets with manually annotated ground-

truth of nuclei contours, centers, and background. These images were acquired from a 120-core 

tissue microarray representing 30 distinct normal and diseased tissue types. After inspecting all 

cores, we found that nuclei morphologies could be placed in at least seven groups by eye. These 

ranged from mixtures of cells that were large vs. small, round cells vs. narrow, and densely and 

irregularly packed vs. organized in clusters. Additionally, there were multinucleated cells (i.e., 

glioblastoma) and weakly stained nuclei (i.e., non-neoplastic ovary). Because ground-truth 

annotation is a laborious process, we focused on distinctive nuclei from a subset of morphologies in 

seven tissue types (lung adenocarcinoma, non-neoplastic small intestine, normal prostate, colon 

adenocarcinoma, glioblastoma, non-neoplastic ovary, and tonsil) from 12 cores representing a total 

of ~10,400 nuclei. 

 

3.2 – Real augmentations increase model robustness to focus artefacts 

To study the impact of real and computed augmentations on the performance of 

segmentation methods, we trained models with different sets of data, involving both real and 

computed augmentations and then tested the data on images that were acquired in focus, out of 

focus or blurred using a Gaussian kernel. We then assessed segmentation accuracy quantitatively 

based on IoU and qualitatively by visual inspection of predicted masks overlaid on image data. Real 

augmentation involved adding additional empirical, rather than computed, training data having the 

types of imperfections most commonly encountered in tissue. This was accomplished by positioning 

the focal plane 3 µm above and below the specimen, resulting in de-focused images. A second set 

of images was collected at long exposure times, thereby saturating 70-80% of pixels. Because 

blurred and saturated images were collected sequentially without changing the stage position, it was 

possible to use the same set of ground truth annotations. For computed augmentations, we 

convolved a Gaussian kernel to the in-focus images with a range of standard deviations chosen to 

cover a broad spectrum of experimental cases (Figure 1A). In both scenarios, the resulting models 

were evaluated on a test set prepared in the same way as the training set.  

In an initial set of studies, we found that models trained on training data having Gaussian 

blur augmentation performed well on Gaussian blurred test data but poorly on the same data when 

it included actual defocused and saturated images. When IoU was quantified for defocused and 

saturated test data, we found that the use of training data having Gaussian blur augmentations 
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improved accuracy only slightly relative to baseline models lacking augmentations (Figure 1B). In 

contrast, the use of training data with real augmentation increased the fraction of cells retained by 

40-60% at an IoU threshold of 0.6; statistically, significant improvement was observed up to an IoU 

cutoff of 0.8 with all three learning frameworks (UnMICST-U, UnMICST-M, and UnMICST-P 

models). To perform a balanced comparison, we created two sets of training data having equal 

numbers of images. The first set contained the original data plus computed 90- and 180-degree 

rotations, and the second set contained original data plus defocused data collected from above and 

below the specimen. We again found that models trained with real augmentations substantially 

outperform rotationally augmented models when tested on defocused test data (Figure. 1C). 

Repeating this experiment with NES yielded the same outcome. Thus, training deep learning 

architectures with real augmentation will generate models capable of outperforming models with 

computed augmentation when data contain commonly encountered artefacts.  

 

3.3 – Addition of NES (lamin B2 and NUP98) improves segmentation accuracy  

When we stained our TMA panel (the Exemplar Microscopy Images of Tissues and Tumors 

(EMIT) TMA) we found that antibodies against lamin A and C (Figure 2A) (which are different splice 

forms of LMNA gene) stained approximately only half as many nuclei as antibodies against lamin B1 

(Figure 2B) or lamin B2 (Figure 2C) (products of the LMNB1 and LMNB2 genes). Staining for the 

lamin B receptor (Figure 2E) exhibited poor image contrast. A pan-tissue survey showed that a 

mixture of antibodies for nucleoporin NUP98 and lamin B2 conjugated to the same fluorophore 

(Alexafluor-647) resulted in nuclear envelope staining (NES) for nearly all nuclei across multiple 

tissues (Figure 2F- H). However, using a mixture of NUP98 and lamin B2 antibodies only some cell 

types, epithelia in colorectal adenocarcinoma for example, exhibited the ring-like structure that is 

characteristic of nuclear lamina in cultured epithelial cells. The nuclear envelope in immune and 

other cells has folds and invaginations (Fischer, 2020) and in our data, NES staining could be 

irregular and diffuse (Fig. 3A & B), further emphasizing the difficulty of finding a broadly useful NES 

stain in tissue. Future studies might therefore explore a wider range of nuclear lamins and 

nucleoporins in diverse tissue and tumor types to further improve cell type coverage and NES 

quality. 

The value of NES images for model performance was assessed quantitatively and 

qualitatively. In images of colon adenocarcinoma, non-neoplastic small intestine, and tonsil tissue, 

we found that the addition of NES images resulted in significant improvements in segmentation 

accuracy based on IoU with all three learning frameworks; improvements in other tissues, such as 

lung adenocarcinoma, were more modest and sporadic (Figure 3A, Lung). For example, for nuclear 

segmentation of fibroblasts in prostate cancer tissue, UnMICST-U and UnMICST-M models with 

NES data were no better than models trained on DNA staining alone. Most striking were cases in 

which NES data decreased performance (UnMICST-P segmentation on prostrate fibroblasts and 

UnMICST-U segmentation of glioblastoma). Inspection of the UnMICST-P masks suggested that the 

segmentation of well-separated fibroblast nuclei was already optimal with DNA images alone (~60% 
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of nuclei retained at IoU of 0.6), implying the addition of NES images afforded little improvement. 

With UnMICST-U masks in glioblastoma, the problem appeared to involve atypical NES 

morphology, which is consistent with a high level of nuclear pleomorphism and the presence of 

“giant cells,” both of which are well-established features of high-grade glioblastoma (Kros, 2011; 

Louis et al., 2016). We also note that NES data alone was marginally inferior to DNA staining as a 

sole source of training data and should therefore be used in combination with images of DNA 

(Supplementary Figure 1). In sum we conclude that training on image data that also includes NES, 

a morphological and molecular feature of nuclei distinct from DNA staining, broadly but not 

universally results in improvements in segmentation accuracy 

 

3.3b – Combining NES images and real augmentation has a cumulative effect on 

segmentation accuracy  

To determine whether real augmentation and NES combine during model training to achieve 

superior segmentation precision relative to the use of either type of data alone, we trained and 

tested models under four different scenarios (using all three learning frameworks; Figure 4). We 

used images from the small intestine, a tissue containing nuclei having a wide variety of 

morphologies, and then extended the analysis to other tissue types (see below).  Models were 

evaluated on defocused DNA test data to increase the sensitivity of the experiment. In the first 

scenario, we trained baseline models using in-focus DNA image data and tested models on unseen 

in-focus DNA images. With tissues such as the small intestine, which are challenging to segment 

because they contain densely-packed nuclei, scenario A resulted in slightly undersegmented 

predictions. In Scenario B and for all subsequent scenarios, defocused DNA images were included 

in the test set, giving rise to contours that were substantially misaligned with ground truth 

annotations and resulting in higher undersegmentation. False-positive predictions and imprecise 

localizations of the nuclei membrane were observed in areas devoid of nuclei and with very low 

contrast (Figure 4A). When NES images were included in the training set (Scenario C), nuclear 

boundaries were more consistent with ground truth annotations, although false-positive predicted 

nuclei still remained. The best performance was observed when NES images and real augmentation 

were combined: accurate nuclear boundaries were well aligned with ground truth annotations in 

both shape and in size. Observable differences in the placement of segmentation masks were 

reflected in improvements in IoU: for all three deep learning frameworks, including NES data and 

real augmentations increased the fraction of nuclei retained by 50% at an IoU threshold of 0.6 

(Figure 4B). The accuracy of UnMICST-P (blue curve) trained on in-focus DNA data alone was 

higher than the other two baseline models at all IoU thresholds, suggesting that UnMICST-P has a 

greater capacity to learn. UnMICST-P may have an advantage in experiments in which staining the 

nuclear envelope proves difficult or impossible.  
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3.4 – A combination of NES and real augmentations results in improved models across 

multiple tissue types 

To determine if improvements in segmentation could be extended to multiple tissue types we 

repeated the analysis described above using only three scenarios for training, while testing both on 

in-focus (Figure 5A) and defocused images (Figure 5B). Scenario 1 used in-focus DNA images for 

training (blue bars), scenario 2 used in-focus DNA and NES images (red bars), and scenario 3 used 

in-focus DNA and NES images plus real augmentation (green bars). While the magnitude of the 

improvement varied with tissue type and test set (panel A vs B), the results as a whole support the 

conclusion that including both NES and real augmentations during model training confers 

statistically significant segmentation with multiple tissue types and models. The accuracy boost was 

greatest when models performed poorly (e.g., in scenario 1 where models were tested on 

defocused colon image data; Figure 5B, blue bars), so that segmentation accuracy became 

relatively uniform across tissue and cell types.  

 

3.5 – Applying UnMICST to highly multiplex tissue images 

To evaluate the overall impact of the innovations described above, UnMICST models with 

and without real augmentations, NES data, and computed augmentations were used to segment six 

tissues as a set, including in-focus, saturated and out-focus images  (balancing the total amount of 

training data in each case). A 1.7-fold improvement in accuracy was observed at an IoU of 0.6 for 

the fully trained model (i.e. with NES data and real augmentations; Figure 6A). Inspection of 

segmentation masks also revealed more accurate contours for nuclei having a wide range of 

shapes. The overall improvement in accuracy was substantially greater than any difference 

observed between semantic and instance segmentation frameworks. 

We then tested a fully trained UnMICST-U model on a 64-plex CyCIF image of non-

neoplastic small itestine tissue from the EMIT TMA (Figure 6B). Staining intensities were quantified 

and on a per-cell basis, and the results visualized using Uniform Manifold Approximation and 

Projection (UMAP; Figure 6C). Segmentation masks were found to be well-located with little 

evidence of under or over-segmentation (Figure 6D). Moreover, whereas 21% of cells with 

segmented nuclei stained positive (as determined by using Gaussian-mixture model) for the 

immune cell marker CD45, and 53% stained positive for the epithelial cell marker E cadherin, less 

than 3% were positive for both. No known cell type is actually positive for both CD45 and E 

cadherin, and the very low abundance of these double-positive “cells” is evidence of accurate 

segmentation. When we examined some of the 830 double positive cells (blue dashed circle in 

Figure 6C) we found multiple examples of a CD3+ T cell (yellow arrowheads; light yellow dots in 

Figure 6E) tightly associated with or between the epithelial cells of intestinal villi (green “kiwi” 

structure visible in Figure 6E). This is consistent with the know role of the intestinal epithelium in 

immune homeostasis (Allaire et al., 2018). In these cases, the ability of humans to distinguish 

immune and epithelial cells relies on prior knowledge, multi-dimensional intensity features and 
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subtle differences in shape and texture – none of which were elements of model training. Thus, 

future improvements in tissue segmentation are likely to require the development of CNNs able to 

classify rare but biologically significant spatial arrangements, rather than simple extension of the 

general purpose segmentation algorithms described here. 

 

3.6 – Some tissue still pose a challenge for nuclei segmentation  

Of all the tissue types annotated and tested in this paper, non-neoplastic ovary was the most 

difficult to segment (Supplementary Figure 2A). We also observed that the addition of ovarian 

training data to any of the three models also trained on data from other tissues caused a decrease 

in model accuracy when tested against other images from those tissues (Supplementary Figure 

2B). We speculate that this reflects the highly irregular morphology, poor image contrast, and dense 

packing of many non-neoplastic ovarian cell nuclei as compared to colon adenocarcinoma 

(Supplementary Figure 2 C,D).  We found that increasing the resolution by oversampling the 

image (at 0.325 microns/pixel) only marginally improved our ability to discern nuclei. We have 

previously imaged ovarian cancers at even higher resolution (60x/1.42NA sampled at 108 nm pixel 

size; (Färkkilä et al., 2020) using optical sectioning and deconvolution and inspection of these 

images showed that discernibility between nuclei remains poor and that multiple cells are often 

found stacked on top of each other in a single 5 µm section.  Additional research, possibly involving 

different NES antibodies will be required to improve performance with ovarian and other difficult to 

segment tissues. Until then, caution is warranted when combining training data from tissues with 

highly irregular nuclear morphologies. 

 

4 Discussion 

In this paper, we show that the use of real image augmentation and data on the morphology 

of the nuclear envelope (NES) improves the accuracy of nuclear image segmentation in a range of 

tissue and tumor types. We show that this is true with three different deep learning frameworks 

based on instance segmentation (UnMICST-M) or semantic segmentation (UnMICST-U and 

UnMICST-P). The generality and utility of our findings are further enhanced by the use of whole-

slide fluorescence microscopy technologies being developed in multiple laboratories for large-scale 

atlasing projects such as Human Tumor Atlas Network (HTAN) and Human BioMolecular Atlas 

Program (HubMAP) (HuBMAP Consortium, 2019; Rozenblatt-Rosen et al., 2020b; Lin et al., 2021). 

Augmenting training data with intentionally defocused and saturated images significantly improves 

segmentation accuracy across multiple tissue types, whereas conventional computational 

augmentation (inclusion of a Gaussian blur during training) does not. The use of NES images in 

training also results in a statistically significant improvement for most tissue types. Based on 

segmentation performance, NES staining is not a substitute for DNA staining – it should instead be 

used in conjunction with DNA. Combined use of real augmentation and NES data during model 

training results in a substantial and cumulative improvement in performance, making segmentation 

robust to differences in modeling framework and data quality in all but one of the tissues tested. 
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Moreover, we show that these improvements pertain not only to test data generated for this study, 

but also the real-world task of segmenting high dimensional images of resected human tissues. 

We find that the three deep learning models tested are broadly similar in performance when 

judged by IoU and direct inspection of segmentation masks, with UnMICST-M somewhat better than 

UnMICST-U overall. Thus, instance segmentation may have advantages over semantic 

segmentation. However, the slightly better performance of UnMICST-P with DNA-only training data 

suggests that deeper semantic segmentation may be helpful when training data are limited. These 

differences were all smaller in magnitude and more scenario-specific than improvements observed 

when training involved real augmentation and NES data. From a machine learning perspective, the 

addition of images to the training data is expected to improve model performance. Experimental 

feasibility is less clear. A key tradeoff is that the greater the number of fluorescence channels used 

for segmentation, the fewer channels available for the collection of data on other functional markers. 

Fortunately, the development of highly multiplexed imaging has made this less relevant because 

collection of 20-40 or more image channels (each corresponding to a different fluorescent antibody) 

has become routine using techniques such as CyCIF. This makes it straightforward to reserve two 

channels for segmentation. Moreover, adding labelled NES antibodies to highly multiplexed tissue 

imaging studies has a negligible impact on cost. The cost-benefit ratio of extra segmentation data is 

different in high content screening of cells in multi-well plates, for which inexpensive reagents are 

generally essential.  

As a means other than DNA staining of identifying nuclei, components of the nuclear lamina 

and nuclear envelope are obvious choices. These proteins comprise a dense network of 

intermediate filaments that forms a prominent ring just inside the nuclear envelope. However, 

identifying antibodies that stain multiple cell types and tissues is not trivial because lamin isoforms 

are differentially expressed. The best combination for NES that we have identified is a mixture of 

antibodies against lamin B2 and the nuclear pore protein NUP98, but further study of other markers 

is warranted, particularly in ovarian tissue. Lamins have a wide range of possible functions in cancer 

and have been documented to change in expression levels and morphology with disease state 

(Sakthivel and Sehgal, 2016). Thus, imaging lamin is likely to provide valuable biological information 

in addition to improving segmentation (Bell and Lammerding, 2016). Abnormal nuclear morphology 

is an important feature of cancer cells with established diagnostic utility (Uhler and Shivashankar, 

2018). 

 Our discovery that real augmentation outperforms computed augmentation may have 

general significance outside of the field of microscopy. With any high-performance camera system, 

real out-of-focus blur is more complicated than Gaussian blur. In microscopy, this arises from light 

scattering and diffraction, and in tissue imaging, the use of non-immersion objective lenses results 

in a large refractive index mismatch between the air surrounding the lens and the glass slide. Thus, 

the appearance of out-of-focus blur differs when the microscope focal plane is above and below the 

specimen. In other settings, optical aberrations might have different causes but the overall concept 

would be the same. The collection of images for real augmentation does not impose a major burden 
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on data collection for model training since only one set of ground truth annotations needs to be 

curated. Areas of future investigation of real augmentation in microscopy include different settings 

for correction collars, inhomogeneous light sources, and stage jitter. We note, however, that blur is 

the most common problem encountered with well-aligned instruments and can never be fully 

eliminated: some cells will always be out-of-focus when imaged by widefield epifluorescence 

microscopy. It will also be useful to determine whether a kernel can be derived from real 

augmentation to make them computable, but our preliminary studies suggest that this will not be 

trivial. 

As part of the current work, we are releasing all training and test images, their segmentation 

masks and annotations, and real augmentations for multiple types of tissue (tonsil, ovary, small 

intestine and cancers of the colon, brain, lung, prostate) via the EMIT resource; models are released 

as components of the UnMICST model resource (www.synapse.org/#!Synapse:syn24192218/files/). 

Both resources are maintained by the HTAN consortium and lay the groundwork for future 

improvements in models and training/test data. Crowdsourcing may help to overcome a limitation in 

the current study, which does not extend to all 34 tissue types in the EMIT dataset. This derives 

primarily from the high burden imposed by ground-truth labeling.  

 

4.1 Conclusion 

This paper makes three primary contributions to the growing literature on the segmentation 

of multiplexed tissue images, which is an essential step in single-cell data analysis but remains a 

substantial technical challenge. First, we show that it is often possible to increase segmentation 

accuracy by including additional channels on nuclear morphology. Second, we show that real 

augmentations involving the use of defocused and saturated images during model training improve 

segmentation accuracy to a significant extent whereas Gaussian blurring does not. Third, we create 

labeled training data for multiple tissue types and three different deep learning models. These 

models are a good starting point for performing image segmentation on tissue data collected in 

ongoing projects and can be further enhanced by the addition of new training data.   

With the rapid growth of multiplexed tissue imaging and digital pathology, the generation of 

high-performance segmentation models for real pathology data has immediate utility. Our data 

suggest that the current generation of models work well with lung adenocarcinoma, in which nuclei 

are generally circular and well separated, and colorectal cancers, in which residual glandular 

morphology results in elliptical and generally well-aligned nuclei. However, segmentation remains 

challenging in ovarian tissue and glioblastoma, and additional experimental and computational work 

is required to improve model accuracy. This might include the validation of additional morphological 

markers and the generation of improved training data through the annotation of higher-resolution 3D 

images. Our analysis of errors remaining when multiplexed images of tissues such as small 

intestine tissue are segmented using optimized UnMICST models suggests that many errors have a 

subtle biological basis. Development of additional “physiology aware” machine-learning models may 

be necessary to reduce these apparent errors. 
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Figure 1: Comparing the use of real augmentations (defocused and overexposed images) 

and Gaussian blur. A) Schematic diagram showing the approach comparing test images on 

models trained with Gaussian-blurred or defocused image data. Higher contrast probability maps 

signify more confidence – areas of interest are highlighted with red arrows. Corresponding 

probability maps indicate a model trained with defocused images performs better on defocused test 

images than a Gaussian-blurred model. Scale bar denotes 20 micrometers. B) Plots show that 

incorporating real augmentations (red curve) into the training set is statistically significantly superior 

to training sets with Gaussian blur (yellow curve) and without real augmentations (blue curve) for 

UnMICST-U, UnMICST-M, and UnMICST-P. Simulating defocused images with Gaussian blur is 

only marginally better than not augmenting the training data at all. C) Comparing UnMICST-U model 

accuracy when the training dataset size was held constant by replacing defocused augmentations 

(red curve) with 90 and 180 degree rotations (blue curve).  

 

Figure 2: Comparing different nuclear envelope stains in colon adenocarcinoma. A-E) 

Showcasing lamin A/C, lamin B1, lamin B2, NUP98, and the lamin B receptor in the same field of 

view. Lamin B1 and B2 appear to stain similar proportions of nuclei while lamin A/C stains fewer 

nuclei. The stain against the lamin B receptor was comparatively weaker. Lamin B2 (F) and NUP98 

(G) are complementary and, when used in combination, maximize the number of cells stained. H) 

Composite of lamin B2 (purple) and NUP98 (green). Scale bar denotes 100 micrometers.  

 

Figure 3: NES with DNA improves nuclear segmentation. NES – nuclear envelope staining. 

Assessing the addition of NES as a 2nd marker to DNA on segmentation accuracy on a per tissue 

and per model basis. A) Variable IoU plots comparing the DNA-only model (blue curve) and the 

DNA + NES model (red curve) across frameworks. Adding NES increased accuracy for densely 

packed nuclei such as colon, small intestine, tonsil, and to some extent, lung tissue. Error bars are 

standard errors of mean. B) Representative grayscale images of tissues stained with DNA and NES 
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comparing their variable morphologies, followed by UnMICST-U mask predictions (green) overlaid 

onto ground truth annotations (purple). In tissue with sparse nuclei, such as fibroblasts from prostate 

tissue, NES did not add an additional benefit to DNA alone. In tissues where NES does not exhibit 

the characteristic nuclear ring, as in glioblastoma, the accuracy was similarly not improved. Scale 

bar denotes 20 micrometers. 

 

Figure 4: Combination of NES and real image augmentations on segmentation performance. 

NES - nuclear envelope staining. A) Models trained with in-focus DNA data alone produced 

probability maps that were undersegmented, especially in densely-packed tissue such as small 

intestine (Scenario A). When tested on defocused data, nuclei borders were largely incorrect 

(Scenario B). Adding NES restored nuclei border shapes (Scenario C). Combining NES and real 

augmentations reduced false positive detections and produced nuclei masks better resembling the 

ground truth labels (Scenario D). Scalebar denotes 20 micrometers. Table legend shows conditions 

used for each scenario A-D. B) Graphs compare the accuracy represented as the number of cells 

retained across varying IoU thresholds with all models from UnMICST-U (top), UnMICST-M 

(center), and UnMICST-P (bottom). In all models, more nuclei were retained when NES and real 

augmentations were used together during training (yellow curves) compared to using NES without 

real augmentations (red curves) or DNA alone (blue curves).  

 

Figure 5: Assessing different training strategies on A) in-focus and B) defocused test data 

for different tissue types. A) In all tissue types apart from GBM, the addition of NES (red bars) 

and the use of real augmentations combined with NES (green bars) in training data offered superior 

accuracy compared to using DNA alone (blue bars). B) When the models were tested on defocused 

data, all tissues (including GBM unexpectedly) showed benefits resulting from using NES (red bars) 

combined with real augmentations (green bars). The line plot indicates highest accuracy achieved 

for each tissue when tested on in-focus data from panel A. 

 

Figure 6: Applying UnMICST models to highly multiplexed image data. A) Accuracy 

improvement of UnMICST models trained with and without NES (nuclear envelope staining) as 

compared to DNA alone, and real augmentations as compared to computed blur (GN; Gaussian 

noise). To balance training dataset size, GN was substituted for NES data and computed 90/180 

degree rotations were substituted for real augmentations.  B) A 64-plex CyCIF image of a non-

neoplastic small intestine TMA core from the EMIT dataset. Dashed box indicates region of interest 

for panels D and E. C) UMAP projection using single cell staining intensities for 14 marker proteins 

(see methods). The color of the data points represents the intensity of E-cadherin (top left) or CD45 

(bottom left) across all segmented nuclei. Density-based clustering using HDBSCAN identified 

distinct clusters (each denoted by a different color) that were positive for either E-cadherin or CD45 

as well as a small number of double-positive cells (blue dashed circle). D) Enlarged region of yellow 

dashed box from B showing segmentation mask outlines (magenta) overlayed onto DNA channel 
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(green). E) Composite image of DNA, E-cadherin, and CD45 of the same region. Nuclei centroids 

from segmentation denoted by brown dots. Cells positive for both E-cadherin and CD45 (from blue 

dashed circle in panel C are marked with yellow arrows and yellow dots. Inset: enlarged view of 

boxed region showing overlapping immune and epithelial cells.   

 
 

SUPPLEMENTARY FIGURES 

Supplementary Figure 1: NES data does not substitute for DNA in model training. Test results 

when training was performed on DNA (blue curve) and lamin (red curve) individually as single 

channels for A) UnMICST-U, B) UnMICST-M, and C) UnMICST-P.  

 

Supplementary Figure 2: Assessing the use of normal ovarian data in model training. A) 

Normal ovarian tissue performed the worst with respect to segmentation accuracy among all 

annotated tissues. Using NES and real augmentations conferred a modest benefit. B) The 

segmentation accuracy across all tissues was lower when ovarian data was included in the training 

set (blue curve) as opposed to excluded (red curve). C) Images showing that annotation of normal 

ovarian nuclei from DNA is a challenging task, even with NES staining at four times the nominal 

resolution (0.325 microns per pixel and with a 20x/0.75 objective lens). D) In contrast, colon was 

straightforward to annotate, particularly with NES staining, which forms a distinct halo around the 

nuclear periphery. 

 

 

Supplementary Table 1: Data set size and composition across disjoint training and testing data 

splits. The model used for training is indicated in the left-hand column and was identical across all 

three segmentation architectures.  

 

Model Training Set Size Test Set Size 

In-focus DNA  3636 217 

In-focus DNA + NES 3636 217 

In-focus DNA + Real Augmentations 21,816 1,302 

In-focus DNA + NES + Real 

Augmentations 

21,816 1,302 

In-focus DNA + Gaussian blur 14,544 868 

   

DNA + Real Augmentations 5,100 645 

DNA + 90o/180o rotations 5,100 645 

DNA + NES + Real Augmentations 5,100 645 

DNA + NES + 90o/180o rotations 5,100 645 
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