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ABSTRACT

Blastomere instance segmentation is important for analyzing em-
bryos’ abnormality. To measure the accurate shapes and sizes of
blastomeres, their amodal segmentation is necessary. Amodal in-
stance segmentation aims to recover an object’s complete silhou-
ette even when the object is not fully visible. For each detected
object, previous methods directly regress the target mask from in-
put features. However, images of an object under different amounts
of occlusion should have the same amodal mask output, making it
harder to train the regression model. To alleviate the problem, we
propose to classify input features into intermediate shape codes and
recover complete object shapes. First, we pre-train the Vector Quan-
tized Variational Autoencoder (VQ-VAE) model to learn these dis-
crete shape codes from ground truth amodal masks. Then, we incor-
porate the VQ-VAE model into the amodal instance segmentation
pipeline with an additional refinement module. We also detect an
occlusion map to integrate occlusion information with a backbone
feature. As such, our network faithfully detects bounding boxes of
amodal objects. On an internal embryo cell image benchmark, the
proposed method outperforms previous state-of-the-art methods. To
show generalizability, we show segmentation results on the public
KINS natural image benchmark. Our method would enable accurate
measurement of blastomeres in In Vitro Fertilization (IVF) clinics,
potentially increasing the IVF success rate.

1. INTRODUCTION

Infertile couples worldwide use In-Vitro Fertilization (IVF) to treat
their infertility. In a typical IVF treatment, clinicians visually inspect
the embryos, select the one that appears most likely to form a viable
pregnancy, and transfer it back to the mother. To aid in embryo selec-
tion, many modern clinics employ sophisticated time-lapse imaging
systems [1]. One feature known to be predictive of an embryo’s via-
bility is the shape and symmetry among the cells in the early devel-
oping embryo, which are known as blastomeres [2]. However, cur-
rent clinical practice visually scores the symmetry at a few distinct
points in time, which is time-consuming, inaccurate, and omits much
information about the embryo, especially when time-lapse imaging
is used. This makes replacing visual symmetry scoring with auto-
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Fig. 1. Amodal Blastomere instance segmentation. (a) We
show an image and its amodal segmentation masks for translu-
cent blastomere cells overlapping with each other. (b) Previous ap-
proaches directly regress the amodal mask from the region of inter-
est (ROIAlign) features. (c) Instead, we first learn a vector quantized
(VQ) shape code from ground truth amodal masks, and then classify
ROIAlign features into these discrete codes.

mated blastomere segmentation (Fig. 1a) a prime candidate for im-
proving clinical IVF practice.

However, while clinics have collected many embryo images
from IVF cycles, most existing blastomere segmentation algo-
rithms [3–7] use hand-crafted features instead of data-driven ap-
proaches. Since hand-crafted methods are tailored to a certain
dataset, they may not be robust on different datasets collected in
varying environments. Moreover, they do not take into account
amodal visual reconstruction, predicting the complete shape of
partially-visible objects.

Many recent deep-learning-based models have been proposed
for amodal segmentation [8–13]. However, these approaches often
do not have prior knowledge of the underlying shape, which makes
the shape difficult to predict from instance observations under dif-
ferent amounts of occlusion. Further, unlike normal instance seg-
mentation, images of an object under different amounts of occlusion



should have the same amodal mask output. Thus, it will be more
robust to classify input features into an intermediate robust repre-
sentation instead of working on the pixel-level. Fig. 1a visualizes
a pair of an embryo image and its ground truth. The cells highly
overlap each other, but their underlying shapes are still predictable.

To exploit this additional information, we propose to learn dis-
crete supervised learning amodal instance segmentation algorithm
for partially-visible objects. From binary masks of our object class,
we create a deep shape prior as an embedding space with a vector
quantized-variational autoencoder (VQ-VAE; [14]). Then, we train
our segmentation model to predict the latent representation of an ob-
ject mask in a bounding box (Fig. 1c).

Segmentation performance of proposal-based instance segmen-
tation methods [15,16] highly depends on the bounding box quality.
In amodal segmentation, occlusion makes having accurate bounding
boxes even more difficult. To tackle this occlusion problem, we add
an occlusion detection module to a backbone network. This allows
our network to propose better bounding boxes by integrating the oc-
clusion information with the backbone features.

We first experiment with a real embryo cell biomedical dataset.
Then, we conduct experiments on natural images of street scenes via
the KINS dataset [17] to show the generalizability of our method.
Our approach of encoding objects outperforms state-of-the-art in-
stance segmentation algorithms [13, 15] on both the translucent
and occluded types of tested partial visibility. In summary, our
contribution is to propose a novel formulation that incorporates
a vector quantized shape code into the amodal instance segmen-
tation pipeline. Additionally, we exploit occlusion information
when detecting and segmenting amodal objects via occlusion detec-
tion, which can be a new direction for amodal segmentation. This
method achieves state-of-the-art performance on not only an internal
biomedical image dataset but also the KINS natural image dataset.

2. RELATED WORKS

Blastomere Segmentation: Traditional methods predict semantic
blastomere masks using hand-crafted features without the instance-
level segmentation. Khan et al. [7] set seeds inside and outside of
cells and optimize Markov random field for segmentation. Rad et
al. [3] and Kheradmand et al. [6] generate blastomere candidates
from extracted edges and select the best candidate in terms of edge
coverage. Sidhu and Mills [4] apply thresholding and morphological
operations to find the regions of blastomeres and find centers of each
cell by measuring distances from pixels to the closest boundary.

Cell-Net proposed by Rad et al. [5] is the closest method to
ours, training a convolutional neural network for cell localization.
Recently, five convolutional neural networks have been trained for
key morphological feature extraction [18], including blastomere
segmentation. However, Cell-Net only predicts blastomere centers
while we perform amodal instance segmentation. Even though the
key morphological feature extraction method outputs masks of blas-
tomeres, it focuses on finding the best setting for the input data using
existing Mask R-CNN [15].

Amodal Instance Segmentation: Li and Malik [8] introduce the
first amodal segmentation method. They predict bounding-boxes
of modal parts of objects using the object detector [19] and extract
segmentation masks using a neural network accepting a pair of an
image and a bounding-box as the input. Qi et al. [13] present an
amodal segmentation dataset, KINS, by annotating the KITTI detec-
tion dataset. They also propose an amodal segmentation network by
adding occlusion classification and amodal segmentation branches
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Fig. 2. VQ-VAE architecture containing the mask encoder, embed-
ding quantizer, and mask decoder networks.

to the Mask R-CNN framework [15].
Vector Quantization in Deep Learning: Vector quantization meth-
ods have been widely used for image compression [20, 21]. van den
Oord et al. [22] proposed a vector quantized variational autoencoder
for image generation. They show that the proposed method gener-
ates more realistic images using learned template codewords.

3. VECTOR QUANTIZED SHAPE CODE

Our goal is to learn a discrete representation of amodal shape masks.
With it, we can re-formulate the amodal instance segmentation as a
classification problem in the low-dimensional latent space. Compar-
ing to previous dense pixel-level mask prediction, the proposed ap-
proach can be robust to occlusion changes and regularized in geom-
etry. To this end, we train a vector quantized variational autoencoder
(VQ-VAE) model on the amodal masks to learn the vector quantized
(VQ) shape code.
Comparing Latent Variable Models: To learn a compact repre-
sentation of the input, variational autoencoder models (VAE) [14]
are commonly used with the Gaussian prior distribution of the latent
variable. VAEs learn a global continuous code of the input with the
mask encoder model E , which can be decoded back for input recon-
struction with the mask decoder model D. To discretize the learned
code, VAE-based clustering methods jointly learn a codebook of em-
bedding vectors that serve as clustering centers. However, as the
learned embedding is global, it takes a large codebook for the input
to find a similar quantized code. It requires an even larger codebook
for a larger number of object categories. VQ-VAEs [22] predict em-
beddings with spatial resolution and jointly learn a global codebook
(Fig. 2). With it, we can use the quantized embeddings to reconstruct
input with a limited codebook size.
VQ-VAE Model: The key component of VQ-VAE models is the
embedding quantizer module. During inference, the mask encoder
first transforms the input binary mask x into a set of latent vectors
e. Then, the embedding quantizer assigns each latent vector to the
nearest code in the pre-trained codebook {q1, . . . ,qK}. Lastly, the
mask decoder transforms the quantized embeddings ê back into a
binary mask.
Learning: The loss function combines a reconstruction loss, a code-
book loss, and a commitment loss. The reconstruction loss is defined
as the cross-entropy loss between input mask x and the reconstructed
mask D(ê). The codebook loss, which only applies to the codebook,
makes the selected codes ê close to the predicted latent vector e. The
commitment loss, which only applies to the mask encoder, forces the
latent vectors E(x) to stay close to the matched codes to prevent ex-
cessive fluctuations of codes. The full VQ-VAE loss function Lv

is

Lv = ∥x−D(ê)∥22 + ∥[e]− ê∥22 + β∥E(x)− [ê]∥22, (1)
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Fig. 3. Overview of amodal segmentation pipeline. We start from
an instance segmentation pipeline, e.g., Mask-RCNN. We add the
occlusion detection module and replace the original FCN with the
proposed VQ-VAE segmentation module. The proposed segmenta-
tion model has two steps: initial mask generation through VQ shape
code prediction and mask refinement for better localization.

where the operator [.] stands for a stop gradient operation that blocks
gradients from flowing into its argument, and β is a hyper-parameter,
which is set to 0.25.

4. AMODAL INSTANCE SEGMENTATION PIPELINE

We propose the VQ-VAE segmentation module to improve amodal
instance segmentation. We take the proposal-based instance seg-
mentation approach that contains two modules: object detection and
mask prediction (Fig. 3). We attach an occlusion detection branch
to object detection (Sec. 4.1) and replace previous fully convoluti-
nal network (FCN) with the proposed module for mask prediction
(Sec. 4.2). The whole pipeline is trained end-to-end (Sec. 4.3).

4.1. Object Detection Module

Unlike Faster-RCNN [19], our detection module predicts both
bounding boxes and a binary occlusion map. Detecting locations of
occlusions allows our detection module to predict accurate bounding
boxes for partially visible objects. Using the backbone features, we
estimate probabilities of each pixel being occluded {di} via four
convolution layers. We adopt the binary cross entropy loss:

Lo = −
∑

i∈H×W

{li log di + (1− li) log (1− di)}, (2)

where H ×W is the spatial resolution of the backbone feature map
and li is the ground-truth occlusion label at pixel i. We concatenate
the output of the second-to-last convolution layer and the backbone
feature map to exploit occlusion information in the detection and
segmentation modules.

4.2. VQ-VAE Segmentation Module

As shown in Fig 4, the proposed VQ-VAE segmentation module
has two steps: initial mask generation and mask refinement. It first
generates an initial mask by decoding the predicted VQ-VAE shape
code. Then, the refinement step learns to better align the initial mask
with the visible object boundaries.

Initial Mask Generation: Given the instance-level feature from the
object detection module, we first predict the vector quantized shape
code and use a pre-trained VQ-VAE decoder model to decode it into
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Fig. 4. VQ-VAE segmentation module. We have two segmentation
stages: mask generation and mask refinement. We simultaneously
minimize the two loss functions, Le and Lr.

object masks with complete shapes. We first predict a vector quan-
tized shape code instead of a pixel-level binary mask to capture com-
plete shapes using VQ-VAE. We use three convolution layers and
one fully connected layer to predict codewords of vector quantized
shape code c. We formulate the problem of vector quantized shape
code prediction as a classification problem. For the classification tar-
get, we use the pre-trained VQ-VAE mask encoder E to encode the
ground truth instance mask g as shown in the right block in Fig 4.
One hot encoding makes the encoded mask E(g) as a binary repre-
sentation b. For the codeword classification at each spatial location,
the binary cross entropy loss is defined as

Le = −
∑

i∈M×M×K

{bi log ci + (1− bi) log (1− ci)}, (3)

where M × M is a spatial resolution of a vector quantized shape
code and K is the number of codewords. We then feed the predicted
VQ shape code c into the VQ-VAE mask decoder D to obtain an
initial mask.

Mask Refinement: The vector quantized shape code can be pow-
erful for shape completion, but the initial mask may not be well-
aligned with the detailed object boundary.We add another mask re-
finement step that combines the instance-level feature and the initial
mask feature. To train the refinement decoder, we set its loss func-
tion as

Lr = −
∑

i∈N×N×C

wi {gi log(mi) + (1− gi) log(1−mi)}, (4)

where mi is the probability of a target object occurring at pixel i.
N ×N is a spatial resolution of the output mask and C indicates the
number of object categories. The weight wi is 1 for the channel of
the ground-truth object class, otherwise 0.

4.3. Learning Strategy

During training, parameters in the region proposal network, detec-
tion, mask generation, and refinement modules are updated together
to minimize the sum of the loss functions: L = Lp + αLd + βLo +
γLe + δLr, where Lp and Ld indicate the losses for the region pro-
posal network and the detection module, respectively. Hence, we
train the proposed network in an end-to-end manner. Empirically,
we set the hyper-parameters α = γ = δ = 1 and β = 0.01.



Table 1. Comparison of mAP on the embryo cell dataset.
Metric FCN [15] VQ-VAE (ours)
mAP 66.5% 68.2%

Table 2. Comparison of mAP metric on the KINS dataset [13].
Detection FCN VQ-VAE (ours)
Mask R-CNN 29.3% [15] 30.3%
Mask R-CNN + ASN 31.1% [13] 31.5%

5. EXPERIMENTS

We compare the proposed method with state-of-the-art methods on
a microscopy image dataset and a natural image dataset. We then
perform ablation studies on the natural dataset to better understand
each component and validate our design choices.

5.1. Experiment Setup

Comparison methods: For amodal instance segmentation, we can
use different object detection pipelines, e.g., Mask R-CNN [15].
With the same pipeline, the proposed VQ-VAE segmentation module
is compared with the fully convolutional network (FCN).

Metrics: We use mean average precision (mAP), which is standard
for object instance segmentation [23]. Let APk denotes a predicted
segmentation as correct if its mask intersection over union (IoU) is
higher than k. mAP score is the average of {APk} where k ranges
from 0.5 to 0.95 at 0.05 intervals.

5.2. Main Results on Embryo Cell Images

IVF clinicians predict embryo transfer success by visually observing
cell properties like size, granularity, and cleavage (cell split) tim-
ing. Cell segmentation of embryo images would automate this prop-
erty collection for more efficient prediction. Note that our method
is more interpretable by clinicians compared to predicting a single
number (cell count) from the input image [24].

Data: We use subsets of embryo images [18] whose number of cells
varies from two to eight. Each image is with a spatial resolution of
500×500 pixels. Note that we exclude one cell images to evaluate
amodal instance segmentation methods. We use 7,054 images for
training and 4,617 for testing. We find that cells are highly overlap-
ping and only partially visible. The size of cells varies as cells cleave
and shrink.

Results: Table 1 compares the results of our proposed algorithm
with Mask R-CNN [15]. We report mean average precision (mAP)
for the evaluation of the cell segmentation methods. The proposed
algorithm outperforms the baseline methods by 1.7%. We believe the
performance gain is from the vector quantized segmentation mod-
ule and the occlusion detection. The vector quantized segmentation
module makes predicted masks to be in-distribution so that we can
always have blastomere-looking masks. On the other hand, learning
occlusion detection flourishes the embeddings from the backbone.

5.3. Additional Results on Natural Images

To demonstrate our method’s general applicability, we test on an
amodal instance segmentation dataset for natural images with a

Table 3. Ablation study on the KINS dataset [13].
Setting mAP
VQ-VAE 28.1%
VQ-VAE + Refinement 29.8%
VQ-VAE + Refinement + Occlusion map 30.3%

greater diversity of shapes.

Data: The KINS dataset [13] is a benchmark for amodal in-
stance segmentation algorithms, which is originally from the KITTI
dataset [25]. It consists of 7,474 training and 7,517 test images of
driving scenes. The annotated objects belong to one of 7 object
classes: pedestrian, cyclist, car, van, tram, truck, and misc-vehicle.
The KINS dataset provides both amodal and inmodal ground-truth
annotations.

Results: Table 2 lists mean average precision metrics of the results
of the proposed algorithm with Mask R-CNN [15] and Mask R-CNN
+ ASN [13]. Our proposed algorithm performs better than the con-
ventional FCN method on both Mask R-CNN and Mask R-CNN +
ASN pipelines. It demonstrates that our model is generalizable and
thus can be applied to other amodal segmentation tasks.

Ablation Study: We perform two ablation studies on the KINS
dataset. We chose KINS over the embryo dataset for more general
analysis since the objects in KINS have more diverse shapes. We
use Mask R-CNN in these studies. First, we remove the occlusion
detection branch (VQ-VAE + Refinement). To this end, we train the
network without the loss function for occlusion detection Lo. Sec-
ond, we exclude the refinement decoder in the segmentation module
(VQ-VAE). To train the network without the refinement decoder, we
minimized the embedding loss Le only. We compare these two set-
tings with the full architecture (VQ-VAE + Refinement + Occlusion
map) on the KINS dataset. Table 3 lists the mAP scores for each
ablation setting. Our full architecture performs 0.303 mAP, which
is better than the other settings. It indicates that all our components
are necessary for accurate amodal segmentation. The inferior per-
formance of the setting without refinement comes from the lack of
low-level features.

6. CONCLUSION

We proposed an image segmentation method for blastomere in-
stances, which outputs complete masks of cells automatically. We
show that it is effective to learn a mapping from the bounding box
features to a shape prior embedding space from a VQ-VAE. This
allows us to cope with translucent cells. We also show the benefits of
occlusion detection for amodal object detection and segmentation.
Our method is applicable for any partially visible objects, not only
cells but also geometric shapes, cars, or pedestrians. Experimental
results on the embryo and KINS demonstrated that our proposed
algorithm outperforms state-of-the-art object instance segmentation
methods [13, 15].

Our future works include application to other objects in nat-
ural scenes and expanding to biomedical problems that suffer oc-
clusions, such as human blood cell segmentation. We also suggest
proposal-free amodal segmentation networks with the center predic-
tion to achieve real-time running speed. Lastly, by adopting genera-
tive adversarial networks [26], we might be able to learn shape priors
better.
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