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def main():

volume  =  load_data_3d(DATA_PATH+'/Zebra.dat)        

enable_viewer(render(volume,x,y)

.range(x=-512:512,y=-512:512)

.split(output,  x=2,y=2)

.dtype(volume,  uchar),

'TFF2',  '3D',  256)

def main():

volume  =  load_data_3d(DATA_PATH+'/

enable_viewer(render(volume,x,y)

.range(x=-512:512,y=-512:512)

.dtype(volume,  uchar)

.split(volume,  x=4)

.merge(composite,'front-to-back')

.halo(volume,1)  ,'TFF2',  '3D',  256)

(A) (B)

(A)  :  Sort-‐Last  Parallel  Rendering  -‐ Input  Split

(B)  :  Sort-‐First  Parallel  Rendering  -‐ Output  Split

Fig. 1. Parallel volume rendering examples using Vivaldi. Simply changing split execution modifier will generate different parallel
rendering results. (A) is sort-last parallel rendering that the input data is split into four pieces along x-axis and distributed over four
GPUs. (B) is sort-first rendering that the same input volume is duplicated over four GPUs but the output buffer is split into four regions.
Rendering from different GPUs are colored differently on purpose.

Abstract—As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and
visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators
are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing
GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power
of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new
domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi’s Python-
like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance
parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-
throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging
from volume rendering to image segmentation.

Index Terms—Domain-specific language, volume rendering, GPU computing, distributed heterogeneous systems.

1 INTRODUCTION

With advent of advances in imaging technology, acquisition of large-
scale volume data has become commonplace. High-performance ac-
quisition devices and computer simulations in medicine, biology, geo-
science, astrophysics, and mechanical engineering routinely produce
terabytes of data per day. In the past few decades, significant research
efforts have developed high-throughput volume processing and visu-
alization techniques on parallel machines. However, most of the re-
search efforts have been focused on improving rendering quality and
speed, and only little attention has been paid to the flexibility and us-
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ability of the resulting programs and systems. The current state of vol-
ume processing and visualization falls into two categories: Off-the-
shelf commercial and open source systems (e.g., [4, 20, 2]) that are
monolithic and difficult to customize, and flexible software libraries
and toolkits (e.g., [23, 1]) that require expert programming skills and
large software development efforts.

This situation has been exacerbated through trends in parallel com-
puting. Modern high-throughput systems are heterogeneous, e.g.,
combining multi-core CPUs with massively parallel GPUs via a sys-
tem bus or network. These distributed heterogeneous systems have
become a commodity such that even small research labs can afford
small-scale computing clusters with multi-core processors and accel-
erators. Experts forecast that the trend to many-core heterogeneous
computing will accelerate and become the de-facto standard for com-
puter hardware [21]. This creates a growing gap between the needs
of domain scientists and their expertise, which is in science and engi-
neering, and not in distributed parallel computing. For example, using
GPUs in a distributed memory system requires learning specific APIs
(Application Programming Interfaces) such as MPI (Message Passing
Interface), OpenCL, or CUDA, which have a steep learning curve even
for computer science majors. Optimizing performance on these sys-
tems demands a deep understanding of the target architectures, care-



ful handling of complex memory and execution models, and efficient
scheduling and resource management.

There have been research efforts to provide high-level programming
APIs for GPU systems [29, 28] but none of them fully address the is-
sues of flexibility and usability for visualization applications. Even
recently introduced domain-specific image processing and visualiza-
tion languages [7, 22, 17] do not fully support distributed heteroge-
neous computing platforms. To address this problem, we developed
Vivaldi , a domain-specific language specifically designed for volume
processing and visualization on distributed heterogeneous systems.

Vivaldi has been specifically designed for ease of use while pro-
viding high-throughput performance leveraging state-of-the-art dis-
tributed heterogeneous hardware. It encompasses a flexible and easy-
to-use programming language, a compiler, and a runtime system. The
language is similar to Python, making it easy to adopt for domain
experts who can focus on application goals without having to learn
parallel languages such as MPI or CUDA. The memory model pro-
vides a simple and unified view of memory without any data trans-
fer code needed to be written by the users. Multiple copies of a data
object can reside across different compute nodes while the runtime
system performs synchronization automatically and transparently via
lazy evaluation and dirty flags. Vivaldi provides domain-specific func-
tions and numerical operators commonly used in visualization and
scientific computing to allow users to easily write customized, high-
quality volume rendering and processing applications with minimal
programming effort. We envision that Vivaldi will bridge the gap
between high-level volume rendering systems and low-level develop-
ment toolkits while providing more flexible and easier customization
for volume processing and visualization on distributed parallel com-
puting systems.

2 RELATED WORK

Volume Rendering Systems Domain scientists often use off-the-
shelf volume rendering systems such as Amira [4], commercial soft-
ware for biomedical data analysis, and Osirix [20], an open-source DI-
COM image viewer that supports some image processing functions.
VisIt [27] and ParaView [2] are open-source systems that support
large data visualizations on distributed systems. Despite the expres-
sive power of these systems, their size and complexity is a barrier to
entry for new users and domain scientists. Even though some of these
systems provide limited programmability via plug-in functions, they
are far from the level of flexibility that Vivaldi is targeting. In addi-
tion, those systems were developed before general-purpose GPUs like
NVIDIA’s Tesla became popular, so they do not support the systems
without OpenGL-enabled GPUs.

Visualization Libraries and Toolkits Open source toolkits, such
as ITK [13] and VTK [23], provide comprehensive collections of vi-
sualization and image processing functions. However, these libraries
have been developed for experienced programmers and are not easy
for domain scientists to employ in their research code. Equalizer [10]
and SPVN [9] provide libraries and frameworks for easy paralleliza-
tion of OpenGL-based rendering code. However, their usage is lim-
ited to graphics tasks and lack memory and execution abstractions for
computing on distributed systems. Voreen [1] is a high-level volume
rendering engine that supports an intuitive dataflow editor for fast pro-
totyping of code. However, Voreen is lacking support for distributed
heterogeneous computing systems and requires users to write shader
code for functionality that goes beyond the system-provided modules.

Languages for GPU Computing Extensive research efforts have
been made to develop high-level computing languages and APIs for
GPUs. Brook for GPUs [6] is an early language that uses GPUs as
streaming processors. CUDA [19] and OpenCL [25] are low-level
C-like languages for single-node systems that require explicit mem-
ory and execution management by the user. Thrust [5] and DAX
toolkit [18] aim high-throughput and scalability of massively data par-
allel computing on many-core systems, such as GPUs, but they do
not extend to distributed systems without explicit parallelization using

MPI. Charm++ [15] is an object-oriented distributed parallel program-
ming library with C++ extensions, which recently added a limited sup-
port of GPU execution, but is low-level compared to Vivaldi and does
not support the GPU code translation. Muller et al. [26] introduced
CUDASA, an extension of CUDA for multi-GPU systems that re-
quires familiarity with CUDA. Zhang et al. [29] introduced GStream,
a streaming API for GPU clusters that is based on C++ and provides
high-level abstraction of task-parallel processing on distributed sys-
tems. However, scheduling and communication have not been opti-
mized and users still need to write GPU code. Vo et al. [28] pro-
posed Hyperflow, a streaming API for multi-GPU systems that is sim-
ilar to GStream. Hyperflow lacks support for distributed systems and
requires native GPU code. Ha et al. [11] proposed a similar stream-
ing framework but focused mainly on optimization strategies for data
communication in image processing pipelines.

Domain Specific Languages for Visualization Domain-specific
language for visualization were first introduced as a graphics shading
language, such as Shade Trees [8] and RenderMan [12]. Scout [16]
is a domain-specific language for hardware-accelerated fixed-function
visualization algorithms. Halide [22] is a domain-specific language
for image processing that mainly focuses on generating optimal code
for different computing architectures rather than providing a simpler
programming environment. Recently, Diderot [7] was introduced as
a domain-specific language for image processing and visualization.
Diderot shares some similarities with our work, but focuses more on
general mathematical operators and does not support distributed multi-
GPU systems.

Our work is inspired by Shadie [17], a domain-specific language for
visualization that uses Python syntax and high-level abstractions for
volume rendering. As the name implies, it centers around the concept
of shaders, which are short, self-contained pieces of code specifying
desired visualization features. Although Shadie is easy to learn and use
for novice users, its lack of general-purpose processing functions and
the concept of shaders significantly impair the flexibility of the sys-
tem. Moreover, Shadie does not support distributed GPU computing.
Vivaldi addresses these issues and is the first domain-specific language
for visualization that supports modern distributed GPU architectures.

3 LANGUAGE DESIGN

The main design goal of Vivaldi is to provide simple and intuitive pro-
gramming abstractions that hide the details of the target system. We
based the language on Python, which has several advantages. First,
the learning curve for new users is low, even for those who do not
have prior programming experience. Second, Vivaldi can import any
of a large number of existing Python packages that extend its use into
a broad range of applications. For example, importing the NumPy and
SciPy packages makes a large collection of numerical functions avail-
able even though Vivaldi does not natively provide them. Lastly, Vi-
valdi users can get help for most programming questions from a wide
array of Python tutorials and from the large Python user community.

3.1 Vivaldi Overview
The target architecture of Vivaldi is a cluster of heterogeneous comput-
ing nodes (i.e., with CPUs and GPUs in each node) with a distributed
memory system. Vivaldi hides the architecture-specific details and
provides abstractions to manage computing resources and memory,
providing a unified high-level programming environment. Users do
not need to know CUDA or OpenCL to use GPU acceleration because
functions written in Vivaldi are automatically compiled to GPU code.
Users also do not need to know MPI because communication between
nodes is automatically and transparently handled by the memory man-
ager in the Vivaldi runtime system.

Vivaldi treats each computing resource, such as CPU or GPU, as an
independent execution unit as long as they are interconnected within
the cluster. Each execution unit is assigned a unique execution ID and
is capable of processing tasks. For example, if there are two CPU
cores and two GPUs in the system, then the CPU cores are assigned
IDs 0 and 1, and the GPUs are assigned IDs 2 and 3. A task is de-
fined by a function, input and output data, and a task decomposition
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Fig. 2. Vivaldi system overview.

scheme. The basic structure of a Vivaldi program is a collection of
functions. The main function is the driver that connects user-defined
functions to build a computing pipeline. Each function call generates
a set of tasks that can be processed in parallel by available execution
units. Fig. 2 shows an overview of the entire system, from compila-
tion to runtime execution. First, the input source code (an example
is shown in Code 1) is translated into different types of native source
code that is stored in Python main, Python functions, and CUDA func-
tions. Tasks are generated based on the code in the main function.
Each task is scheduled to run on one of the execution units dependent
on the scheduling policy. Low-level data communication and function
execution are handled by Python, CUDA, and MPI runtime functions.
We will now discuss each of these language abstractions and features
in more depth.

3.2 Execution Model
Execution of a Vivaldi program requires data and functions. Vivaldi
provides Vivaldi memory objects as a default data type to store val-
ues. A Vivaldi memory object is an n-dimensional array of the same
numeric type defined on a rectilinear grid, and is compatible with a
NumPy array object. Vivaldi memory objects can be created as an
output of a function execution by either user-defined or Vivaldi native
functions (e.g., data I/O functions).

As shown in Code 1, a Vivaldi function is defined by the def
identifier as in Python. There are two different types of functions—
the main function (def main()) and worker functions (e.g., def
mip()). The main function can only be executed on a CPU node, but
worker functions are complied to different target architectures, such
as CPUs or GPUs. Therefore, depending on the execution setup, the
same worker function could be running on different hardware.

Vivaldi memory objects (e.g., volume and result) serve as input
and output buffers for worker functions. Although arbitrarily many
inputs can be used for a function there is only one output object per
function execution. The function execution can be configured using
various execution modifiers using the following syntax:

output = function(input, parameters).execution modifiers

The execution modifiers describe how the output values for each input
element are generated in a data-parallel fashion similar to GL shaders
or CUDA kernels. For example:

• execid : Specifies the execution ID of the unit where the function
is run.

• range : Specifies the size of the output memory object.

• dtype : Specifies the input data type.

• split : Specifies parallel execution by splitting input or/and out-
put memory objects.

• merge: Specifies a user-defined merging function.

A complete list of function execution modifiers is in the supplemental
material.

Code 1. Simple MIP volume rendering example code

1 def mip(volume,x,y,z):
2 step = 1.0
3 line_iter = orthogonal_iter(volume,x,y,step)
4 max = 0
5 for elem in line_iter:
6 val = linear_query_3d(volume, elem)
7 if max < val:
8 max = val
9 return max

10
11 def main():
12 volume = load_data_3d(DATA_PATH+’/CThead.dat’)
13 gid = get_GPU_list(4)
14 result = mip(volume,x,y,z).range(x=0:512,y=0:512)
15 .dtype(volume,short)
16 .execid(gid)
17 .split(result,x=2,y=2)
18 save_image(result,’mip.png’, normalize=True)

Code 1 is an example of Vivaldi source code for MIP (Maximum In-
tensity Projection) volume rendering. mip() is a user-defined worker
function implementing a maximum intensity projection by iteratively
sampling along a ray and returning the maximum value. A volume
ray casting operation can be easily implemented using a Vivaldi iter-
ator (line 3). In this case we are using an orthogonal projection, for
which orthogonal iter() returns a line iterator for a ray origi-
nated from each pixel location x,y and parallel to the viewing direc-
tion. The default eye location is on the positive z-axis looking at the
origin, and the volume is centered at origin. The user can change the
eye location and viewing direction by using LookAt() function. The
location and orientation of volume can also be changed using model
transformation functions, e.g., Rotate() and Translate().

Line 14 is where mip() is executed with various execution modi-
fiers. The range execution modifier generates a 512×512 2D output
image (i.e., a framebuffer) as a result. dtype is used to enforce the
input volume type as short. execid accepts a list of execution IDs gid
that are generated by get GPU list(4) (in this example a list con-
taining four GPU IDs is created). split(result,x=2,y=2) will split the
result buffer (in this case a 2D image) by two along each axis to gen-
erate four tasks that run in parallel. In this example, the number of
execution IDs and the number of tasks are same, so each GPU will
handle a quarter size of the output buffer. We will now discuss task
decomposition in Vivaldi in more detail.

3.3 Parallel Processing Model

Vivaldi supports various parallel processing strategies that map well
to commonly used visualization and scientific computing pipelines. It
natively supports data-parallelism because a user-defined worker func-
tion defines per-element computations for the output memory object.
We will now discuss how task- and pipeline-parallelism are supported
via generation and parallel execution of tasks. By default, a single
function execution maps to a single task. However, multiple tasks
from a single function execution can be generated with the split ex-
ecution modifier, which splits the data in the input and output memory
objects and generates parallel tasks that are managed by Vivaldi’s task
scheduler.

3.3.1 Task Generation

A task is a basic unit of computation defined as a data-function pair,
which consists of subsets of input and output memory objects and a



out = funcA(in).split(in,x=2,y=2) 
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Fig. 3. Task generation strategies and parallel processing modes of Vivaldi using the split execution modifier. For clarity we show a 2D example
with four tasks. Each task is enclosed in a cyan rectangle.

worker function. A task can be processed by an execution unit as-
signed by the task scheduler. Tasks are generated by applying the split
execution modifier to worker functions. Vivaldi provides four differ-
ent types of task generation methods as shown in Fig. 3. The various
parallel processing models discussed below can be implemented using
only a single line of Vivaldi code.

Input Split The input data is split into partitions, and each par-
tition is used to generate an output of same size. Because multiple
output data are generated for the same output region there must be an
additional merging step to consolidate the data. In Fig. 3, funcA is
the worker function and funcB is the merging function that has been
specified using the merge execution modifier. This model works well
for the case when the input data size is very large and the output data
size is relatively small, so splitting the input data can generate multiple
tasks that fit to execution units. Sort-last parallel volume rendering is
a good example of this model because the input data can be an arbi-
trarily large 3D volume but the size of the output data (i.e., the output
image) is small and limited by the screen size.

Output Split The input data is duplicated for each task and each
task generates a subset of the output data. Since the output from each
task does not overlap with other outputs there is no merge function re-
quired. An example of this parallel model is sort-first parallel volume
rendering where each task is holding the entire input data and renders
only a sub-region of the screen, e.g., for parallel rendering onto a large
display wall comprising multiple monitors.

In-and-Out Split with Identical Split Partitions Both input and
output data are split into same number of identical partitions. Because
each task is holding an equally sized and shaped subset of input and
output data, this model applies well to data-parallel problems. For ex-
ample, numerical computing using a finite difference method fits well
to this model because only adjacent neighbor information is required
to calculate finite difference operators. Isosurface extraction is another
example that can be easily mapped to this parallel model. Since each
task only needs to store a small subset of input data, this model can
handle very large input if many parallel execution units are available.

In-and-Out Split with Multiple Inputs and Different Split Par-
titions Multiple input data are split into different partitions, but the
combination of all the input partitions matches the split partitions of
the output data. Case 4 in Fig. 3 shows the two inputs split into two
pieces, each along a different direction, and the output split into four
pieces. Each task stores two pieces of half the input data and a quarter
of the output data. An example of this parallel model is the multiplica-
tion of two matrices, where the first input matrix is decomposed along
the y axis and the second matrix is decomposed along the x axis, which
matches the two-dimensional decomposition of the output matrix.

3.3.2 Task Execution
Vivaldi’s parallel task scheduler is responsible for mapping tasks to
available execution units. Since execution units are connected via net-

work in a distributed system, we must use a scheduling algorithm that
minimizes the communication between different execution units. In
addition, due to the heterogeneity of the execution units, we must con-
sider memory constraints, e.g., GPU memory is usually limited in size
compared to CPU memory. Therefore, we implemented a locality-
aware task scheduler that reduces the memory footprint as much as
possible. The scheduler manages two lists—a task queue to store tasks
to be executed in the order of priority, and an idle list to keep track of
the execution units that are currently idle. The scheduler executes a
task by taking the top-most task (i.e., the task with the highest pri-
ority) in the task queue and assigning it to one of the idle execution
units in the idle list. In this scheduling algorithm we have to consider
two criteria: how to assign priorities to tasks in the task queue, and to
which idle execution unit to assign the chosen task.

Task priority based on memory footprint We assign a task four
different types of priority as follows:

• Disk write : The task involves disk write operations that of-
ten lead to deleting unused memory objects after writing back
to disk. Since this task can reduce the memory footprint, it has
the highest priority.

• Memory copy : The task is copying data between execution
units to prepare inputs for other function executions. This task
should be processed earlier so that functions can start as early as
possible to reduce idling time. Therefore, it has a high priority.

• Function execution : Most of tasks fall into this category. The
task generates a new memory object as a result and may delete
some of its input memory objects if they are not referenced by
the program after function execution. This task has a medium
priority.

• Disk read : The task is reading data from disk. This task does
not delete existing memory objects, so it has the lowest priority.

The goal of this task priority scheme is that tasks that may reduce
the dependency to memory objects are processed earlier than other
tasks so that the system can free unused memory objects as much as
possible.

Locality-aware task assignment The scheduler assigns a task to
an idle execution unit as follows:

• When a function is executed, select the execution unit that con-
tains most of the input data.

• When split data objects are going to be merged, select the execu-
tion unit that contains most of the input data.

• When none of above apply, use round-robin assignment.

The goal of this assignment strategy is that execution units that have
reusable data will be favored for function execution.



1   a = load_data_3d(‘data.raw’) 
2   b = funcA(a).execid(1) 
3   a = funcB(b).execid(1) 
4   save_image(a) 
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Fig. 4. Vivaldi memory model. Data synchronization between different
execution units is automatically achieved via lazy evaluation and dirty
flags. Red arrows are data flow paths between execution units for com-
munication, and green arrows are data flow paths inside execution units
for function execution. Active execution units are filled with a diagonal
hatch pattern.

By combining these two criteria, the scheduler can reduce memory
footprint, which leads to more tasks being assigned to execution units,
while minimizing data communication between execution units.

3.4 Memory Model
One of the most difficult aspects of parallel programming on a dis-
tributed memory system is communication between nodes. MPI pro-
vides simplified APIs for message passing between processes, but de-
signing the communication patterns, i.e., how and when to communi-
cate, is still entirely up to the programmers and can easily become a
performance bottleneck of the system. Moreover, since our target sys-
tems are heterogeneous compute clusters, users must handle multiple
layers of deep memory hierarchy with varying communication latency.
Therefore, data communication among heterogeneous nodes posed a
big challenge in developing Vivaldi.

To address this problem, we developed a virtual memory model for
distributed heterogeneous computing platforms. The core idea is that
users do not need to explicitly specify the location of the data, as would
be necessary for CUDA and MPI, but only need to specify where the
computation takes place. The Vivaldi runtime will automatically de-
tect whether a data copy is required or not, and performs the memory
transaction accordingly in an efficient manner. Users develop the pro-
gram as if it were running on a single machine and can treat each input
as a single memory object at any given time, whereas multiple copies
of the same volume may exist on different nodes. The optimal data
location is automatically determined using lazy-evaluation at function
execution time via execution modifiers. Data synchronization between
different execution units is automatically performed behind the scene
using dirty flags.

Fig. 4 shows an example of a basic memory transaction using the
Vivaldi memory model. In line 1, memory object a is created in the
default execution unit (one of the CPU cores) because data loaded
from disk must be stored in CPU memory. Line 2 executes function
funcA(). The input to this function is a and the execution unit to
be used for computation is 1, which is a GPU. When funcA() is
executed, memory object a is copied to the GPU, and the result of
funcA() is stored in the GPU. In line 3, funcB() is executed on
the GPU, but the input is b and the output is a. Since a has been up-
dated in the GPU, the copy of a in the CPU is marked as dirty, but
the actual data is not copied. This is an example of lazy evaluation for
synchronization to minimize data transfer. a in the CPU is updated
with the correct copy of a in line 4 because save image() is a disk
I/O function and the input to this function must reside in CPU mem-
ory. Since a is dirty in the CPU, data synchronization is performed
and the dirty flag is reset.

Based on these simple communication rules we can now explain the
more complicated memory model for parallel computing in Vivaldi.
Fig. 5 is an example of memory transactions for parallel execution us-
ing a data split method. In this example, a single volume is split into
multiple pieces and distributed over different execution units. There-

1   a = load_data_3d(‘data.raw’) 
2   b = funcA(a).execid(1,2,3).split(a,3).split(b,3) 
3   c = funcB(b).execid(1,3).split(b,2).split(c,2) 
4   a = funcC(c).execid(1) 
5   save_image(a) 
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Fig. 5. Data synchronization between different execution units when
data is split. Partially filled memory object are outlined with dotted lines.
Red arrows are data flow paths between execution units for communi-
cation, and green arrows are data flow paths inside execution units for
function execution. Active execution units are filled with a diagonal hatch
pattern. In each row, active execution units run in parallel.

fore, each memory object in an execution unit only consists of a par-
tition of the whole memory object. The main strategy is to minimize
data communication by transferring only necessary data and keep lo-
cal copy of data as long as possible. In the example shown in Fig. 5,
lines 2 and 3 are in-and-out split parallel execution where the input
and output data are split into equal number of subsets. Line 2 leads to
the parallel execution of funcA using three execution units. Memory
object a is divided into three partitions, and each is transferred to a
GPU. Since the output of funcA is also split into three pieces in line
2, the resulting memory object b is also distributed to three GPUs.
Line 3 is a in-and-out split execution using two GPUs. Since the user
selects execution units 1 and 3, each partial memory object b must be
half of the original b. Therefore, each missing piece in execution units
1 and 3 is completed by copying from the partition b in execution unit
2. In Line 4, funcC is executed using c as an input in execution unit
1 and the output is written to a. Since execution unit 1 only contains a
half of c, the other half is transferred from execution unit 3. Then the
output a is stored in execution unit 1 and all the other copies of a are
invalidated by dirty flags. In line 5, a from execution unit 1 is copied
to the CPU to be saved on disk.

As shown in this relatively complex example, the memory model of
Vivaldi provides an easy and intuitive abstraction for distributed paral-
lel systems. Note that users do not need to explicitly specify execution
IDs. If the execid modifier is not used, then Vivaldi will automatically
assign available execution units that minimize memory transactions.
For example on line 4 in Fig. 5, if execid were not used then execution
unit 1 or 3 would be automatically assigned because only half of c
needs to be transferred. If execution unit 2 were used then the entire
volume c would have to be transferred, which is not optimal. Since
any execution unit can be used, the synchronization process involves
various memory transactions, such as memory copy via PCI express
bus or over the network. These complicated processes are completely
hidden from the user.

3.5 Domain Specific Functions
Vivaldi is specifically targeted for volume processing and visualiza-
tion. We have implemented several domain-specific functions com-
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Fig. 6. Neighborhood iterator examples. Circles are locations where
the iterator traverses. Yellow circles are user-defined (or Vivaldi system
generated) anchor points to determine the traversal region.

monly used for numerical computation and volume rendering, and
each function has been implemented for multiple execution unit ar-
chitectures. We now discuss some example functions. The complete
list can be found in the supplemental material.

Samplers Since input data is defined on a rectilinear grid, Vivaldi
provides various memory object samplers for hardware-accelerated in-
terpolation, for example:

• point query nD() is used to access the data value nearest to
the given location (or sampled at the integer coordinates) from
an n-dimensional memory object.

• linear/cubic query nD() implements fast cubic interpo-
lation based on the technique by Sigg et al. [24]. It is often used
in volume rendering when sampling at arbitrary locations for dis-
crete data defined on an n-dimensional rectilinear grid.

Neighborhood Iterators Many numerical and image process-
ing algorithms, e.g., finite difference operators and convolution fil-
ters, require local information. Vivaldi provides several iterator
abstractions to access neighborhood values near each data location
(see Fig. 6). User-defined iterators are used for iteration on line-
, plane-, and cube- shaped neighborhood regions. Vivaldi’s built-
in viewer-defined iterators are used for iteration on a ray gener-
ated from the center of each screen pixel depending on the cur-
rent projection mode, such as orthogonal- and perspective- pro-
jections. For example, line iter(start,end,step) cre-
ates an user-defined iterator that starts from point start and
moves a distance step along the line segment (start,end).
perspective iter(vol,x,y,step) creates a line iterator for
a line segment defined by the intersection of a viewing ray and the 3D
volume cube to be rendered (see Fig. 6). Code 2 shows an example of
a cube iterator used to implement a 3D mean filter in Vivaldi, where
c is the current voxel location and r is the radius of the (2r + 1)3

neighborhood.

Code 2. 3D mean filter implementation using a cube iterator

1 def mean_filter(vol,r,x,y,z):
2 c = make_float3(x,y,z)
3 cubeItr = cube_iter(c,r)
4 sum = 0
5 for pos in cubeItr:
6 val = point_query_3d(vol, pos)
7 sum = sum + val
8 sum = sum / ((2*r+1)*(2*r+1)*(2*r+1))
9 return sum

Differential Operators Vivaldi provides first and second order
differential operators frequently used in numerical computing.

1. b = func(a).halo(a,1).halo(b,0) 
2. c = func(b).halo(b,1).halo(c,0) 

1. b = func(a).halo(a,2).halo(b,1) 
2. c = func(b).halo(b,1).halo(c,0) 
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Fig. 7. Halo communication. Black line: output buffer region. Blue
line: output buffer region with input halo. Red line: output buffer region
with output halo. Gray region: invaild region. Top row: input halo only.
There is a halo communication because input halo becomes invalid after
function execution. Bottom row: in-and-out halo. Since input halo is
of size 2, there is no halo communication for two consecutive function
execution.

• linear/cubic gradient nD() is a first order differential
operator to compute partial derivatives in the n-dimensional Vi-
valdi memory object using linear / cubic interpolation that re-
turns an n-tuple vector.

• laplacian() is a second order differential operator to com-
pute the divergence of the gradient (Laplace operator).

Shading Models Vivaldi provides two built-in shading models –
phong() and diffuse() – to easily achieve different shading ef-
fects for surface rendering.

Halo Communicators Domain decomposition is a commonly
used parallelization technique in distributed computing. Decompo-
sition can be easily implemented using the split execution modifier,
but there might be additional communication required across neigh-
borhood regions depending on the computation type. For example,
if differential operators are used in an iterative method, then adjacent
neighbor values need to be exchanged in each iteration for correct-
ness of the solution. Extra regions storing neighbor values are called
halo, and optimal stencil code generation techniques for halo commu-
nication have been actively studied by GPU researchers [30]. Vivaldi
also provides the halo execution modifier for automatic and implicit
communication between halos.

Vivaldi supports two types of halos. An input halo is the extra re-
gion around the input data usually defined by the operator size. For
example, if the operation uses a convolution filter with a radius n, then
the input halo size should be n so that the pixels at the boundary can
compute the correct convoluted values (Fig. 7 top with n = 1). An out-
put halo is the extra region around the output region usually used for
running multiple iterations without halo communication. For example,
if a heat equation solver runs n iterations, then in the i-th iteration we
can set the input halo size to n− i and the output halo size to n− i−1.
This is assuming that i ranges from 0 to n− 1, and the Laplacian op-
erator used in the heat equation solver requires a 1-neighborhood (i.e.,
directly adjacent) of values. After the first iteration the n−1 out of n
halo region is still valid and can be used in the next iteration. In other
words, we can read in the halo of size n at the beginning, and run n
iterations of the heat equation solver without halo communication at
all. Fig. 7 bottom is the case with n = 2 and i = 0,1. This in-and-
out halo approach can reduce the communication latency because it
can reduce the number of communication calls so that the overhead of
halo communicator, e.g., halo data preparing time, can be reduced as
well. In addition, we do not need to synchronize between tasks per
each iteration, so the total running time can be reduced as well. Halo
communicator performance will be discussed in Section 6 in detail.



4 IMPLEMENTATION

4.1 Development Environment

Vivaldi was mainly implemented in Python with additional NumPy
modules such as os, sys and time. The MPI and CUDA APIs
were used for inter-node communication and GPU execution. We used
CUDA version 5.5 and OpenMPI 1.7.2 which offer direct peer-to-peer
communication and RDMA (Remote Direct Memory Access) for fast
data communication between GPUs. To call MPI and CUDA from
Python we employed the MPI4Py and PyCUDA wrapper packages.
The system was developed and tested on a cluster with three nodes,
one master and two compute nodes connected via a QDR Infiniband
network (although Vivialdi also supports Ethernet network without
GPU direct). Each compute node is equipped with eight NVIDIA
Tesla M2090 GPUs with four octa-core AMD Opteron CPUs and run-
ning the CentOS 6.5 linux operating system and Python 2.6.

4.2 Runtime System

The Vivaldi runtime system runs multiple MPI processes. The main
process is in charge of compilation of the input Vivaldi source code
to intermediate Python and CUDA code. The main manager runs the
parsed main() function line by line using Python’s exec command,
creates tasks, and coordinates task execution. The memory manager,
task scheduler and execution unit processes handle memory creation
and deletion, task distribution, and task execution based on the priority
of tasks and availability of computing resources. There is a dedicated
MPI process that handles data I/O for communication between execu-
tion units and disk access. Each process is waiting for the signal from
other process using MPI.ANY SOURCE.

4.3 Translator

Even though Vivaldi has Python-like syntax, it cannot be executed di-
rectly by the Python interpreter. In addition, worker functions can run
on different target platforms. Therefore, the input Vivaldi source code
is translated into the intermediate code, such as Python for the CPU
and CUDA for the GPU. Then Vivaldi’s runtime system executes the
intermediate code using Python-based APIs, such as PyCUDA, allow-
ing CPU and GPU code to be run seamlessly under a common Python
framework.

To be more specific, there are two types of code translation in
the translator box in Fig 2. First, the main function is translated
to Python code by converting each worker function call with modi-
fiers to a task using runtime helper functions, such as the task and
data management functions (task creator, VIVALDI WRITE,
VIVALDI GATHER, etc. See the supplementary material for details).
Second, Vivaldi’s worker function needs to be translated to target-
specific source code, such as CUDA. We developed a translator con-
sists of three steps. The first step is preprocessing to remove redundant
white space characters and to merge or split lines to avoid ambiguity
during compilation. The second step is parsing to split the code into
logical blocks and to process each line in a block to infer the data type
of each variable based on the operator precedence. Note that Vivaldi
follows implicit data type inference as in Python, so each variable’s
type must be inferred at compile time using the input data type given
by the dtype execution modifier. The last step is code translation in
which Vivaldi’s Python-style code is converted to CUDA code with
explicit variable type declaration. A more detailed description of the
translation process can be found in the supplementary material.

4.4 Memory Management

The Vivaldi memory manager handles the creation and deletion of
memory objects in CPU and GPU memory. Since there is no ex-
plicit malloc or free command in Vivaldi, memory management
is done implicitly based on the smart pointer technique [3] using a
retain counter that keeps track of referencing of memory object and
allows memory release during runtime. Whenever a function starts or
stops using a memory object, its retain counter will be increased or
decreased, respectively. When the retain count becomes zero, then the

scheduler sends release signal to every computing unit so that unnec-
essary memory objects are released right away. For split case, each
subset of memory object maintains its own retain counter so that par-
tial memory object can be freed as soon as it is not used anymore.

4.5 Built-in Viewer
Vivaldi provides a viewer built on PyQt. A regular worker function
can be registered to the viewer, similar to glut display function, by
calling enable viewer() to handle refreshing the screen. A man-
ual transfer function editor is also provided, and the transfer function
value can be accessed via calling transfer() in a worker function.
Since Vivaldi targets GPGPU clusters, rendered image may need to be
transferred to the host or node that has an OpenGL-enabled GPU. An
example code using Vivaldi’s built-in viewer is shown in Fig. 8.

5 EXAMPLES

We have tested Vivaldi on several large-scale visualization and com-
puting applications as shown below.

5.1 Distributed Parallel Volume Rendering
In this experiment, we tested two different parallel rendering schemes
using split execution modifier in Vivaldi. The first example is sort-
last parallel volume rendering, where input data is split and distributed
across multiple execution units and the resulting images are merged
at the end in order of distance from the viewer. The test dataset we
used is from light sheet fluorescent microscopy (LSFM) of a juvenile
zebrafish imaged with two different fluorescent color channels. The
volume size is about 4.8 GB. In this example, we use the input split
method to render the data using four GPUs in parallel. Fig. 8 shows
the Vivaldi code and output image of this dataset.

Vivaldi’s built-in viewer is enabled by enable viewer(),
whose input parameters are a user-defined rendering function
render() and a compositing function composite(). Note that
render and composite functions are user-defined to allow for the im-
plementation of different shading models and compositing rules. In
the render function shown here, two transfer functions are used to as-
sign different colors for each data channel. Since two different color
and alpha values are generated per sampling we implemented a user-
defined color and alpha value selection rule, where two color values
are interpolated by a weighted sum using their alpha values, and the
maximum among two alpha values is chosen as the final alpha value.
Finally, the standard front-to-back alpha compositing is performed by
calling alpha compositing() provided by Vivaldi. Once the
rendered images are generated by the render() function, one per
execution unit, then the final image is generated by compositing the
intermediate rendered images. The compositing rule is implemented
in composite() by passing the front and back pixel values to the
function automatically based on the current viewer’s location and the
relative orientation of the volume. Using this function users do not
need to implement a spatial search data structure (e.g., kd-tree) to re-
solve the order of pixels.

Sort-first parallel rendering – input data is duplicated across multi-
ple execution units and each unit takes care of a portion of the output
image – can also be easily implemented in Vivaldi using the output
split method. A downsampled zebrafish dataset is rendered using four
GPUs in Fig. 1 (B). Since the entire input data must be copied to each
execution unit, the size of the input data for sort-first rendering can be
limited compared to that of sort-last rendering.

5.2 Distributed Numerical Computation
Many numerical computing algorithms can be easily implemented and
parallelized using in-and-out split and halo functions in Vivaldi. We
implemented an iterative solver using a finite-difference method for
3D heat equations in Vivaldi and compared it with a C++ version to
assess the performance and usability of Vivaldi. As shown in Code 3,
Vivaldi version only requires 12 lines of code for a fully-functional
distributed iterative heat equation solver on a GPU cluster. The equiv-
alent C++ version, provided in the supplemental material, required at
least roughly 160 lines of code (only when CUDA and MPI related



// Ray-casting with two transfer functions 
def render(volume, x, y): 

 step = 1 
 line_iter = orthogonal_iter(volume, x, y, step) 
 color = make_float4(0) 
 tcol1 = make_float4(0) 
 tcol2 = make_float4(0) 
 val = make_float2(0) 
 for elem in line_iter: 
  val = linear_query_3d(volume, elem) 
  tcol1 = transfer(val.x,1) 
  tcol2 = transfer(val.y,2) 
  tcol.xyz = (tcol1.xyz*tcol1.w + tcol2.xyz*tcol2.w) 
       /(tcol1.w + tcol2.w) 
  tcol.w = max(tcol1.w, tcol2.w) 
 // alpha compositing 
 color = alpha_compositing(color, tcol) 
 if color.w > 254: break 
 return RGBA(color) 

 
// Merging output buffers (Sort-Last) 
def composite(front, back, x, y): 
        a = point_query_2d(front, x, y) 
        b = point_query_2d(back, x, y) 
        c = alpha_compositing(a, b) 
        return RGBA(c) 
 
def main(): 

 volume = load_data_3d(‘zebrafish.dat', out_of_core=True) 
 enable_viewer(render(volume,x,y).range(x=0:1024,y=0:1024) 
        .dtype(volume, uchar) 
        .split(volume, z=4) 
        .merge(composite,'front-to-back’) 
        .halo(volume,1) ,'TFF2', '3D', 256) 

Fig. 8. Vivaldi code and output for a sort-last distributed parallel volume rendering of a two-channel LSFM dataset of a juvenile zebrafish on a GPU
cluster using an input split task generation scheme and two transfer functions. Brain and nerve systems are rendered in green, while other regions
are rendered in gray, blue, and red.

lines are counted) in addition to requiring knowledge of CUDA and
MPI.

Code 3. Iterative 3D heat equation solver

1 def heatflow(vol,x,y,z):
2 a = laplacian(vol,x,y,z)
3 b = point_query_3d(vol,x,y,z)
4 dt = 1.0/6.0;
5 ret = b + dt*a
6 return ret
7
8 def main():
9 vol = load_data_3d(DATA_PATH+’data.raw’,float)

10 list = get_GPU_list(8)
11 n = 10
12 for i in range(n):
13 vol = heatflow(vol,x,y,x).range(vol).execid(list)

.split(vol,x=2,y=2,z=2).halo(vol,1).dtype(
vol,float)

5.3 Streaming Out-of-Core Processing

Vivaldi can process large data in a streaming fashion. We imple-
mented a segmentation algorithm to extract cell body regions in elec-
tron microscopy brain images using Vivaldi. The segmentation pro-
cessing pipeline consists of 3D image filters such as median, stan-
dard deviation, bilateral, minimum (erosion), and adaptive threshold-
ing. The input electron microscopy dataset is about 30 GB in size
(4455× 3408× 512, float32). Vivaldi’s disk I/O function provides
an out-of-core mode so that a large file can be loaded as a stream of
blocks and distributed to execution units. As shown in Fig. 9, the
user enables the out-of-core mode using the load data 3D() and
save image() functions. The remaining code is the same as in-core
code. The halo and split modes can be used in out-of-core processing.
The streaming I/O will attach halo data to each stream block when
loading the data, and the number of tasks will be generated based on
the parameters to split. Note that this implementation uses in-and-
out split and in-and-out halo to prevent halo communication between
function execution (i.e., any task can be processed from median to
threshold functions in order without communicating with other tasks).

6 DISCUSSION

6.1 Performance Evaluation
In order to assess the parallel runtime performance of Vivaldi, we se-
lected three examples for benchmark testing. Since there are no simi-
lar domain specific languages to compare against, we compare against
equivalent C++ code. The three benchmark program we used are:

Volren A distributed GPU volume renderer using an isosurface
rendering using Phong shading model. We tested sort-first (output
split) volume rendering for the input volume of size roughly 2 GB and
the output image of 1920×1080 full HD (High-Definition) resolution.
We used the step size 2 for ray marching.

Bilateral A 3D bilateral filter processing a 512× 512× 1512
floating-point 3D volume. We implemented a bilateral filter using
C++, CUDA, and MPI for the comparison. We tested a single itera-
tion of bilateral filtering with the filter size 113. This is an example of
a highly scalable algorithm because the bilateral filter is a non-iterative
filter and there is no communication between nodes during filter exe-
cution.

Heatflow A 3D iterative heat flow simulation on a 512× 512×
1512 floating point 3D volume using a finite-difference method. Simi-
lar to the bilateral benchmark code, we implemented an iterative solver
using C++, CUDA, and MPI for the comparison. In this example, we
used in-and-out halo of size 10 and the total number of iteration is 50,
so halo communication is performed once every 10 iterations. This
example is demonstrating scalability of our system when halo com-
munication is involved.

We ran each program using 1, 2, 4, 8, and 12 GPUs for testing
scalability. The results are shown in Table 1.

Volren is a benchmark program to test Vivaldi’s parallel volume ren-
dering performance. Although volume rendering algorithm is a scal-
able problem, its strong scaling performance on a distributed system
was less ideal. For example, using 8 GPUs results in about 5 times
speed up, which is mainly due to the communication overhead. Since
our cluster system has GPGPU boards that do not have OpenGL ren-
dering capability, Vivaldi must transfer the rendered images back to
the host node per every frame to display on the screen, which is an
expensive operation.

Unlike Volren, Bilateral is a strongly scalable problem since there is
no communication between execution units, and Vivaldi shows a lin-



def main(): 
    vol = load_data_3d('em.dat','float',out_of_core=True) 
    vol = median(vol,x,y,z).range(vol,halo=15).halo(vol,18).split(vol,x=8,y=4).dtype(vol,float) 
    vol = stddev(vol,x,y,z).range(vol,halo=12).halo(vol,15).split(vol,x=8,y=4).dtype(vol,float) 
    vol = bilateral(vol,x,y,z).range(vol,halo=7).halo(vol,12).split(vol,x=8,y=4).dtype(vol,float) 
    vol = minimum(vol,x,y,z).range(vol,halo=5).halo(vol,7).split(vol,x=8,y=4).dtype(vol,float) 
    vol = threshold(vol,x,y,z).range(vol,halo=0).halo(vol,5).split(vol,x=8,y=4).dtype(vol,float) 
    save_image(vol,'result.raw',out_of_core=True) 
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Fig. 9. Streaming out-of-core processing for cell body segmentation in a 3D electron microscopy zebrafish brain image. (a): input data, (b): median
filter, (c): standard deviation, (d): bilateral filter, (e): minimum operator (erosion), (f): adaptive thresholding, (g): volume rendering of segmented
cell bodies.

Table 1. Running time of benchmark programs (in seconds). The speed up factor is shown in parentheses.

Program Version Lines GPU 1 GPU 2 GPU 4 GPU 8 GPU 12
Volren Vivaldi Sort-First 33 2.44 1.37 (1.8×) 0.86 (2.8×) 0.47 (5.1×) 0.37 (6.6 ×)

Bilateral Vivaldi 35 94.23 47.22 (1.9×) 23.77 (3.9×) 11.85 (7.9×) 7.89 (11.9×)
C++ 160 ∼ 92.38 47.36 (1.9×) 24.30 (3.8×) 12.46 (7.4×) 8.53 (10.8×)

Heatflow

Vivaldi input halo 12 11.19 5.84 (1.9×) 3.47 (3.2×) 2.09 (5.3×) 1.65 (6.7×)
Vivaldi in-and-out halo 12 11.17 5.72 (1.9×) 3.02 (3.6×) 1.68 (6.6×) 1.25 (8.9×)

C++ input halo 160 ∼ 11.32 5.72 (1.9×) 2.63 (4.3×) 1.47 (7.6×) 1.05 (10.7×)
C++ in-and-out halo 160 ∼ 11.33 5.77 (1.9×) 3.02 (3.7×) 1.58 (7.1×) 1.19 (9.4×)

ear scaling, even better than hand-written C++ code. This shows many
image and volume processing algorithms can be accelerated using Vi-
valdi on distributed systems.

Heatflow is not strongly scalable because there is inter-node halo
communication that becomes the dominant cost as the data size de-
creases. In this test, Vivaldi showed the scaling performance compa-
rable to that of C++ version when in-and-out halo communication is
used. However, C++ version did not show performance gain in in-
and-halo communication. In fact, in contrary to our expectation, halo
size 1 performed slightly better than halo size 10 because halo com-
munication in manually written C++ code using MPI is already op-
timal. Vivaldi showed about 20 to 25% performance increase when
in-and-out halo communication is used with multiple execution units.
This can be explained that Vivaldi’s automatic halo communication
involves complicated memory copy overhead to deal with halos with
arbitrary shapes, and in-and-out halo communication can reduce this
overhead due to reduced halo communication calls.

6.2 Limitations
Even though Vivaldi provides a unified view of the memory object for
distributed processing, a gather operation from arbitrary memory lo-
cations is not well defined when the data is processed in out-of-core
mode. In that case, only a subset of the entire data resides locally,
and random access across arbitrary nodes can be extremely inefficient.
Strictly speaking, this is not a limitation of Vivaldi but of a class of
streaming and out-of-core processing problems. The solution for this
problem is using pre-defined neighbor access functions, such as iter-
ators, and halo regions such that accessing local neighborhood values
and communication can be done efficiently.

The current version of Vivaldi only supports regular grids, e.g., im-
ages and volumes, because GPUs favor data-parallel processing. In
the future, we plan to implement functions and iterators for process-
ing of data on unstructured grids. The current Vivaldi is well-suited to
ray-casting approaches to visualization because rasterization rendering
primitives, e.g., lines and polygons, are not provided, although one can
use OpenGL with Vivaldi (via PyOpenGL) to render polygons. In ad-
dition, the current Vivaldi is compatible only with NVIDIA GPUs due
to the adaptation of PyCUDA , which can be mitigated by employing

architecture-independent APIs such as OpenCL.
We observed some performance issues with Python, especially

loops and memory access, because native Python is not optimized for
performance. This issue could be resolved using C-based runtime en-
gines, similar to other Python-based APIs such as SciPy [14].

7 CONCLUSIONS

In this paper, we introduced a novel domain-specific language for
volume processing and visualization on modern distributed heteroge-
neous parallel computing systems, such as GPU clusters. The pro-
posed language is based on Python grammar and completely hides pro-
gramming details of memory management and data communication
for distributed computing. Vivaldi also provides high-level language
abstraction for parallel processing models commonly used in visual-
ization and scientific computing. Therefore, users can easily harness
the computing power of the state-of-the-art distributed systems in their
visualization and computing tasks without much of parallel program-
ming knowledge. We assessed the usability and performance of the
proposed language and runtime system in several large-scale visual-
ization and numerical computing examples.

In the future, we will focus more on performance optimization of
task scheduling and data communication algorithms targeting large-
scale distributed systems (i.e., supercomputers). Vivaldi for loosely-
coupled distributed computing, i.e., grid and cloud computing, would
be an interesting future work. Extending Vivaldi to other parallel ar-
chitectures, such as Intel’s Many Integrated Core (MIC) architecture,
AMD’s Accelerated Processing Unit (APU), and mobile GPUs, is an-
other research direction to explore. We are also planning to support
a larger class of visualization primitives other than volumes, such as
vectors, polygons, graphs, etc. Vivaldi interpreter will be an useful
add-on feature for quick prototyping of code, too.
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