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Abstract—We present VoxAR, a method to facilitate an ef-
fective visualization of volume-rendered objects in optical see-
through head-mounted displays (OST-HMDs). The potential of
augmented reality (AR) to integrate digital information into
the physical world provides new opportunities for visualizing
and interpreting scientific data. However, a limitation of OST-
HMD technology is that rendered pixels of a virtual object can
interfere with the colors of the real-world, making it challenging
to perceive the augmented virtual information accurately. We
address this challenge in a two-step approach. First, VoxAR
determines an appropriate placement of the volume-rendered
object in the real-world scene by evaluating a set of spatial and
environmental objectives, managed as user-selected preferences
and pre-defined constraints. We achieve a real-time solution
by implementing the objectives using a GPU shader language.
Next, VoxAR adjusts the colors of the input transfer function
(TF) based on the real-world placement region. Specifically, we
introduce a novel optimization method that adjusts the TF colors
such that the resulting volume-rendered pixels are discernible
against the background and the TF maintains the perceptual
mapping between the colors and data intensity values. Finally,
we present an assessment of our approach through objective
evaluations and subjective user studies.

Index Terms—Adaptive Visualization, Situated Visualization,
Augmented Reality, Volume Rendering.

I. INTRODUCTION

HE transformative ability of augmented reality (AR) to

fuse the digital world of bits with the physical world of
atoms has provided new opportunities to visualize 3D spatial
scientific data. Over the decades, there have been significant
advances in methods for presenting virtual information to
users. However, in contrast to virtual reality (VR) and mixed
reality (MR), optical see-through (OST) AR has only been
sparsely adopted for scientific visualization [1]. This can be
attributed to a fundamental challenge in OST-AR: virtual
content augmented onto the user’s field-of-view (FoV) blends
with the physical environment. As such, it is possible to
inaccurately perceive the rendered pixels, which is a critical
limitation in scientific visualization. The full potential of AR is
realized when data is effectively visualized with respect to its
referent in the physical space. Towards this goal, methods have
been developed for the intuitive placement [2], [3], visibility
enhancement [4]-[7], and color correction [8], [9] of virtual
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objects rendered in OST head-mounted displays (HMDs),
albeit as separate objectives [10].

A fundamental utility of volume rendering visualization
is exploring and interpreting volume data. Typically, this is
achieved using transfer functions (TFs) that map the intrinsic
values of the data to a spectrum of optical properties, such
as color and opacity. In terms of visual perception, most
existing AR techniques are not adequately designed to address
the challenges of visualizing volume-rendered objects. This
motivated us to design VoxAR — a method for augmenting
volume-rendered objects in OST-HMDs that adapts to real-
world surroundings. Specifically, VoxAR adopts a two-fold
approach: first, it determines an optimal position for displaying
a virtual object in the user’s FoV, based on user-defined
preferences, and second, it adjusts the colors of the TF to
distinguish the rendered volume from the background.

The placement of a virtual object in the scene can signif-
icantly impact data understanding and decision-making [11].
Unlike a controlled desktop setting, spatial locations of virtual
AR visualizations cannot be pre-calculated for the real-world,
and must be determined in-situ. Existing MR frameworks and
toolkits [3], [12] adaptively place virtual objects in the scene
by solving a set of rules and user-defined semantic preferences,
such as distance between the virtual object and its physical
referent, its distance from the FoV, and surface magnetism. To
improve data visual perception in OST-AR, we introduce an
additional measure for the perceptual color difference between
the real-world backdrop and TF colors. VoxAR is designed
using GPU shaders that evaluate all candidate 3D spatial lo-
cations in the FoV in parallel and solve an optimal location that
best satisfies a composite of user-defined semantic preferences,
minimizing environmental limitations.

Following placement, the colors of the input TF may
require further adjustment for discernibility with respect to
the background. Existing solutions to alleviate color blending
can be broadly categorized into contrast enhancement [4],
[5], [9] and re-colorization [13]. However, unlike the nature
of the virtual objects addressed in most existing techniques,
where colors broadly indicate the presence of an attribute,
volume rendering enables reasoning and understanding about
the data attributes through a perceptual mapping of defined
TF colors and the visual output. In VoxAR, we introduce a
novel approach that optimally shifts the input TF to reduce
color blending of the volume-rendered object with the real-
world background while maintaining the visual characteristics
in mapping data attributes. Rather than post-processing, we
perform the TF enhancement prior to the volume rendering
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step. Specifically, we have designed an objective function that
shifts the input TF in the CIE L*a*b* (CIELAB) space such
that it satisfies a set of constraints designed to (1) maximize
the visual color difference between the TF spectrum and the
background colors, (2) maintain color properties similar to
the input TF, and (3) ensure a valid L*a*b* to RGB-space
transformation. Given the 3D search space, we use CMA-
ES [14] as a solver to find the TF color intervals with minimum
objective cost.

We have developed VoxAR as an end-to-end system in
Unity3D game engine for Microsoft Hololens2 OST-HMD,
and demonstrate our results using TF presets from widely used
volume rendering applications. To evaluate the effectiveness of
our approach, we conduct user studies and show that VoxAR
significantly enhances a user’s ability to perceive and analyze
volume-rendering visualizations in AR. In summary, we define
our contributions as follows:

« an end-to-end OST-AR framework for the placement and
adaptive visualization of volume-rendered objects,

« a real-time implementation for solving an optimal place-
ment based on user preferences while minimizing color
overlap with the real-world surroundings,

« a novel method to adjust the TF color based on back-
ground colors while preserving the perceptual mapping
between volume data attributes and the input TF.

II. RELATED WORK

Sec. II-A presents works on adaptive object placement and
its formalized constraint systems, and Sec. II-B discusses
techniques to improve color perception in AR. We have ob-
served that (1) placement and color constraints have not been
effectively explored as a coupled problem, and (2) they do not
satisfactorily address the challenges of volume visualization.

A. Visualization and Object Placement

In context-aware MR, virtual experience is dynamically
adapted to context-specific information, based on the applica-
tion goals. For example, contextual information can be derived
from depth information: Google’s DepthLab [15] utilizes depth
information to create believable interactions with the environ-
ment. Microsoft’s FLARE [16] analyzes a scene to generate
location-specific AR layouts based on detected geometry and
surfaces. Location-based data can also provide context. Sys-
tems for situated visualizations, such as SemanticAdapt [17]
and RagRug [18] modify virtual objects based on semantic
associations with real-world objects. VoxAR utilizes a context-
aware approach, generating scene-specific candidate locations
for placement based on color and depth information, and
evaluating spatial and environmental objectives managed as
user-selected preferences and pre-defined constraints.

Many AR authoring systems allow specifying objectives
for automatically determining the behavior of AR objects.
Microsoft’s Mixed Reality Toolkit [19] uses solvers that
compute the position and orientation of AR objects based
on preferences, such as, surface magnetism, constant view
size, etc. Unity MARS [2] uses Reasoning APIs to collect

information about the scene and extracts objects into a higher-
level database of special semantic information, stored as rraits.
Users can construct and assign conditions to AR objects,
which are used to evaluate real-world placements based on
how well the corresponding traits satisfy the conditions. Evan-
gelista et al. have developed AUIT [3] that allows users to
customize the placement process: hook into existing abstracted
data sources, write their own objectives, determine solvers
and when to trigger them, and how to transition between
changing states. Each of these tools can handle goals relating
to transform-related properties of AR objects. In VoxAR, we
extend the scope of the placement objectives to address the
visual properties of the object and scene. Our approach pro-
vides a novel implementation technique for incorporating such
image-based objectives alongside spatial objectives, taking
advantage of specialized shaders for increased efficiency.

B. Visualization Color Enhancement

Solutions to alleviate color-blending can be divided into
hardware [20], [21] and software-based methods. Given the
scope of our work, we describe here software-based tech-
niques. For hardware-based solutions, we refer the reader to
a survey by Itoh et al. [22]. Existing works that address
color blending in OST-HMDs [23] can be broadly catego-
rized as color correction and visibility improvement solu-
tions. Color correction involves sensing background colors and
subsequently subtracting them from the colors of the virtual
content [8]. However, such compensation typically results in
a decrease in brightness. For improved color reproduction,
Hincapi et al. [9] have developed SmartColor, a real-time
algorithm that performs per-pixel background subtraction in
the CIELAB space. The work focuses primarily on text vis-
ibility and achieves real-time by discretizing the color space,
which does not adequately capture the full TF spectrum.
Fukiage et al. [7] have introduced a framework that enables
consistent visibility of semi-transparent objects by measuring
the background color and texture. To accurately align the real-
world background environment to the OST display rendering,
Langlotz et al. [24] have introduced a hardware prototype
that allows pixel-precise radiometric compensation. A major
limitation in applying these approaches to volume rendering
is that they aim to improve per-pixel color blending based on
background luminance and do not consider TF-based color-
component channels. A recent work closest to our goals is
that of Zhang et al. [4]. In this work, the authors present
a constraint-based system to preserve the contrast between
virtual objects and the background and maintain consistency
with the original displayed color. However, their approach is
threshold-intensive. That is to say, for effective results, the
suitable hue thresholds need to be adjusted, especially for
varying backgrounds and TF colors.

While there have been works to improve volume rendering
quality in video see-through AR [25], [26], to the best of
our knowledge, no work sufficiently addresses the challenge
of visibility improvement for volume visualization in OST-
AR. Most approaches address blending as a post-processing
problem, whereas we have designed VoxAR to solve the TF
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Fig. 1. An illustration of the VoxAR pipeline. For a volume to be rendered using an input TF function, in a user’s real-world FoV, VoxAR first determines
an optimal placement. This is evaluated based on an objectives selection set, which the users opt for from our formulated list. The placement scene is then
used to adjust the input TF such that the resultant volume rendering facilitates an effective visualizing experience.

color optimization prior to rendering. Moreover, for techniques
that solve color enhancement in the CIELAB color space,
we noticed that most works assume a valid projection of
their solution to RGB, whereas VoxAR ensures a valid and
perceptually meaningful conversion as part of its constraint.

III. VOXAR DESIGN AND WORKFLOW

We introduce a two-step method that precedes the volume
rendering and augmentation pipeline. First, by evaluating
spatial and environmental objectives, managed as user-selected
preferences and pre-defined constraints, VoxAR finds an ap-
propriate position for placing the virtual object in the real-
world (Sec. IV). Next, it adjusts the input TF colors such
that the resultant volume-rendered object is discernable from
its background. Importantly, this adjustment attempts to best
preserve the perceptual mapping between data attributes and
the colors assigned in the input TF (Sec. V).

One key utility of AR applications is interacting with virtual
objects while navigating the real-world. Constantly adapting
positions and colors during visualization and analysis can
risk introducing inconsistencies in data perception. Thus, to
support changing FoV, following initial placement, VoxAR
performs the TF optimization based on the background colors
surrounding the provided position. Subsequently, it continues
to evaluate the placement objective score with an additional
constraint of maintaining color discernibility of the adjusted
TF. If the objective score falls below a threshold, an alternative
optimal position is suggested to the user. To this end, the user
must first scan a working area, allowing the system to generate
a 3D scene model and evaluate its semantics. VoxAR pipeline
overview is shown in Fig. 1.

IV. VoXAR VISUALIZATION OBJECT PLACEMENT

For a given scene instance, VoxAR solves the placement
of the virtual object in the real-world by (1) determining sets
of candidate locations, (2) analyzing the candidate locations
based on the user-selected objectives, and (3) placing the
object at the location which best satisfies the objectives.

A. Determining Candidate Locations for Placement

The search space for placing a virtual object in the physical
space can be constrained to a finite set of visually distinguish-
able, semantically meaningful, and environmentally favorable

locations in 3D space, and evaluated based on user preferences
and constraints. VoxAR uses two distinct categories of candi-
date locations: surface magnetism [27], [28] and discretized
3D. For placement in discretized 3D, we evaluate regular,
discrete locations within a bounding volume of the working
area using a fixed orientation. However, for surface magnetism,
we additionally consider the object orientation and the scene
surface normals.

To achieve a real-time system, we introduce placement
maps, a texture-based data structure that stores the spatial
information for each scene pixel. A placement map comprises
three textures with the following attributes:

« Validity map: a binary score for pixel evaluation.

« Position map: for a valid pixel, its corresponding 3D

position, mapped to the texture (r, g,b) tuple.

« Rotation map: for a valid pixel, the quaternion of its

normal, mapped to the texture (7, g, b, a) tuple.
This representation allows parallel evaluation of multiple po-
sitions for multiple objectives on a GPU.

Using the inverse projection matrix of the AR HMD camera
1, the placement maps for surface magnetism and discretized
3D are generated as follows. For surface magnetism, a single
placement map PM,,,s consists of:

o position map POS¢(x,y] = I * (x,y, depth(z,y))

o rotation map ROT,s[x,y] = orient(normal(x,y))

o validity map VM, [z, y] = is_surface(x,y)
where depth and normal are externally calculated using the
scanned 3D model of the scene, orient returns a quaternion-
based orientation from a provided normal, and is_surface is a
boolean based on surface detection information.

In contrast, discretized 3D creates multiple placement maps
from a user-specified bounding volume derived from the
camera frustum. Given a discrete set of camera-space values
along the camera positive Z axis {z | z = near+k-interval, k €
Z,near < z < far}, where near, far, and interval can be
adjusted, and single quaternion () representing an orientation
in 3D space, a set of placement maps PM3p = {PM., | Vz; €
z,3PM_,} is generated where:

e position map POS,, [z, y] = I * (z,vy, 2;)

« rotation map ROT ., [x,y] = (Q.z, Q.y, Q.z, Q.w)

o validity map VM, [z,y] =1
In effect, we create a discrete 3D grid of points via placement
maps, with width and height resolution corresponding to the
device FoV, and an adjustable depth resolution based on
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near, far, and interval. Higher depth resolutions consider
more areas in 3D space at the expense of overall system
performance. Although the discretized 3D placement maps
come from the same 3D volume, each placement map is
evaluated by objectives independently of all others.

B. Defining the Placement Objectives

We have identified and implemented a set of objectives
based on our review of adaptive placement-related objectives
[2], [3], [19], [27]. The objectives were chosen by how well
they contribute to the goal of AR volume visualization, with
a primary focus on volume visibility and a secondary focus
on semantically meaningful placement. We have additionally
designed a new color objective for the perceptual contrast
between the TF and real-world background colors.

Below, we describe and formulate the scores for each ob-
jective. Unless otherwise specified, the output of the objective
is a score € [1,0], using:

1, if A and valid
0, otherwise

Score(z,y,\) = { (1
O1 Surface magnetism associates an object against a hori-
zontal or vertical surface or anywhere in the 3D space.
Given the set of placement map types S, where S = {3D,
surface}, the score for each pixel is determined using
Eq. 1 where A is true if the type of the corresponding
placement map has been expressed as a user preference.

02 Point proximity allows users to tether a virtual object to a
3D point in the real-world, (z,, yp, 2p), With a proximity
of maximum distance d,. The score is calculated from
Eq. 1 where A = ||(zp, yp, 2p) — pixel2world(z, y)|| < d,.
The pixel2world(z, y) provides a 3D position using the
placement map’s position map.

O3 Center of screen projection projects the object toward
the center of a user’s FoV. For a device screen space
center, (z5,Yys), and a scaling factor, s, the score map for
this constraint is calculated using:

SCOT@(Z‘,y,S) _ e—a’ a= ||(x,y) —S(%,ys)n (2)

04 Color discernibility is our novel objective that maxi-
mizes the visual difference between the TF and real-world
scene colors. Given an input TF and real-world scene
colors projected in CIELAB, the objective score for each
pixel is its minimum perceptual difference from the TF
(explained in detail in Sec. V). The per-pixel result is
then averaged using a 2D kernel, explained below.

OS5 Visibility ensures the virtual object is not occluded by
scene objects. For a pixel 3D location, its score is
determined by performing oriented ray-cube intersection
tests using a bounding box positioned at the object-sized
2D kernel. Using Eq. 1, A is the intersection test result.

06 Environmental avoids the placement of the virtual object
against challenging environmental conditions (e.g., light
sources that cause OST-HMD projection flushing). For a
visible light source, its pixels are set to 0.

Users can define any combination of objectives. For each
objective, a weight and a constraint level, categorizing it
as requirement or preference, must be specified. A required
objective must always be met. That is, if the placement map
has a validity value of 0, that pixel will not be considered
for placement, regardless of other objectives. We identify
objectives OS5 and O6 as hard constraints since they impact
the effectiveness of the visualization and, therefore, are always
considered with minimum pre-defined weights.

Some objectives, such as O2, evaluate the placement map
on a per-pixel basis. Other image-related objectives, such as
04, require more complex evaluations since rendered volumes
generally take up multiple pixels onscreen. To define a 2D
kernel, we have designed a custom shader that, for each pixel,
calculates the size of the bounding box of the AR object,
centered at the pixel and oriented to the corresponding rotation.

C. Final Placement

Each candidate location in each placement map is evaluated
for each objective, and the per-pixel score is stored in a score
map texture. To determine the locally optimal pixel location
within each score map group, score maps SM are aggregated
using:

0 if ISM;((SM;[x,y] = 0) A H;)

M =
SMagg [,y {27_15Mi[%y]*wi

otherwise
3)

where SM,,, is the aggregated score map, (x, y) is the current
pixel location, SM; is an objective-specific score map, w; is
the corresponding objective weight, and H; is 1 if the objective
for SM; is classified as hard and 0 otherwise.

Finally, the 3D position and rotation of the globally optimal
pixel location is queried from the placement map used to
augment the virtual object in the scene.

D. Re-evaluating Changing FoV

For changing FoV, continuous re-evaluation is needed to
ensure that the user-selected objectives are consistently met.
To achieve this, after initial placement, VoxAR examines the
current placement per second and calculates an aggregate
objective score based on the location the object appears in
the current FoV. When an object is outside the updated FoV,
objectives O1, 04, O5, and O6 maintain their most recent
scores, O3 returns 0, and O2 is re-calculated.

To avoid spontaneous repositioning, a new optimal position
is determined once the current objective score falls below
a defined threshold. It is important to note that to maintain
the perceptual mapping between the TF and data attributes,
VoxAR does not re-adjust the TF. Thus, during re-evaluation,
04, color discernibility, becomes a requirement constraint.

On determining a new position, the user receives a visual
suggestion. If the user accepts, the AR object will be moved
to the new location and, subsequently, re-evaluated. Contrarily,
the suggestion may move, if the location is no longer good, or
disappear, if the prior location score significantly improves.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

© ©6 6 6 06 9ol
(221, 221, 221) (180, 4, 38) ©

(a)

(59, 77, 192)

@ Control point o Sampled point

.| Background ¢, 5
Colors Hull
r ‘ﬁ
£ 1 aof .“\O £H
4 v N N A
H Y - Y &
H \ oF i ~ #t
H = A ~ o Pl
:' \ 2 &
=l . " § A .H‘i ?\ /‘ H,
l ) ] «a: [ = -~ = 6 s ks -
. g =
o;r_ £ = | o e T
2 b :'\..'l L]
" “ | . !,
e A O 1
e \ ‘, | oty
A .("‘ ."I R
T @t af i

L= 100, White

: ..-A\Rad

b, Yeflow

e 40

>
-a, G}@ ) +b, Blue
L=0, Black
CIE L a’b*
hah

i ‘ 3
Ay "

L%

Fig. 2. (a) the linear interpolation of TF colors from its control points. (b) diagram of the CIELAB colorspace. (c) mapping of the TF in (a) from RGB to
CIELAB. (d) - (g) illustrations of the TF constraints: (d) intersection of the adjusted control points with the background region (C1), and the AE calculation
between consecutive and mirror pairs (C2), (e) hue separation (C2), (f) hue measurement (C3), and (g) valid projections between color spaces (C4).

V. VOXAR TRANSFER FUNCTION ADJUSTMENT

In direct volume rendering, TFs classify features within data
by mapping data attributes to optical properties, such as color
and opacity [29]. For the scope of this work, we consider 1D
TFs that map scalar data intensity values to color and opacity.
Typically, 1D TFs are defined using a set of control points
with assigned color and opacity values, which are then linearly
interpolated to construct a complete spectrum (Fig. 2(a)).

To avoid the visual similarity between colors in the real-
world and any color along the interpolated TF spectrum,
we formulate a constrained optimization that aims to: (1)
ensure the colors in the adjusted TF spectrum are perceptually
distinguishable from the background and (2) the color control
points of the adjusted TF reflect visual characteristics similar
to those of the input TF.

A. Defining the Solution Space

To obtain a visually meaningful solution, we solve our
optimization in the CIELAB space [30], a device-agnostic 3D
space, modeled to represent colors as perceived by the human
eye. Specifically, it expresses colors as a measure of percep-
tual lightness, L*, redness-to-greenness, a*, and blueness-to-
yellowness, b* (Fig. 2(b)). Based on this representation, the
distance between two color values, AFyy [31], corresponds
approximately to the change humans see between colors:

2 2 2
W) C(A9Y L (A
where AL, AC, and AH are the CIELAB lightness, chroma,
and hue differences, S, Sc, and Sy are the scaling factors,
and R accounts for the interaction between chroma and hue
differences. We will refer to AFEgy as AFE.

To balance the effect of the size of visual objects size
on color appearance [32], Stone et al. [33] have developed

a model that provides a minimum scaling factor for L*a*b*
that enables effective discernibility of colors more than 50%

AC AH
Tsc Sy
4

of the time. In our implementation, we consider a visual angle
of 1/3° and scale the function interval by 3, as suggested by
Gramazio et al. [34].

B. Optimization Constraints

As an initial step, RGB values from the pixels of the real-
world scene and TF color control points are projected in the
CIELAB space. We have formulated a set of constraints to
determine a penalty cost for each adjusted TF candidate, as
discussed below. Figs. 2(d)-(g) illustrates the computation of
the constraints.

C1 Background discriminability. The primary goal for
adjusting the TF is to minimize interference with the real-
world. Therefore, for the set of colors in the TF candidate,
T’, and the background, B, we define this constraint, I, as:

kEp, if AE(T',B)<d
0, otherwise

I(T,B) = { (&)
where Ep is the constraint penalty score and k is a weighted
factor, explained below. We choose d = 11.5 for the AE
bound as a scaled just-noticeable difference (JND) measure
to cater to the possibility of low opacity TF mapping and
the semi-transparent projection. Existing works [35], [36]
have quantified an empirical benchmark for the minimum
perceptual color difference as 2.3, commonly termed JND.
Based on our initial experiments and pilot user studies, we
empirically determined a scaled factor of JND x5.

To support changing FoV around the initial placement, a
histogram of all colors in the working region is computed.
This is achieved by pivoting a virtual 360°camera at the
placement position and generating a panoramic scene texture.
Naturally, there are many unique colors in the entire scene,
and it can become challenging to find visually non-intersecting
colors. To effectively reduce the number of background colors,
we convert the panorama into superpixels of 10% of the
unique colors in the scene texture. Moreover, we noticed
that background pixels with a low color distribution or are
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physically located far from the object make it difficult for the
solver to converge to a solution. Thus, we represent b € B as
(L*,b*,a*,> " (sn X dy)), where n is the color frequency, s is
the superpixel size, and d is the euclidean distance between the
physical position corresponding to the center of the superpixel
and the object placement position. To reduce the performance
overhead of comparing all the background and adjusted TF
points, we define a convex hull bounding the background
points. Therefore, k in Eq. 5 is the normalized frequency value
x of normalized distance value of the vertex closest to the TF
point intersecting with the hull.

C2 Perceptual characteristics of the TF control points.
To preserve the visual characteristics of the input TF (7'), we
have identified three attributes to compare in candidate TFs:
(1) perceptual color difference, (2) hue separation, and (3)
L*a*b* congruence. We formulate this constraint, P, as:

P(T,T') = wgD(T,T') + w, AT, T') + w,Q(T, T') (6)

with wg, we, and w, as weights for each attribute constraint.
The first term, D(T,T’), measures the perceptual color
difference between control point pairs:

n—1

D(T,T') = Y | AB(ti,tip1) = AE(t, tiy,) | (D)

i=1

where n is the number of control points in the TFs, t € T,
and ¢ € T".

The second term, A(T,7’) maintains a measure of hue
separation between the control points by comparing the angles
between consecutive pairs on the a*b* plane:

n—1
AT, T') = Z ’ Hy (i, tig1) — He (8, 65,1) ’
i=1 ®)

Hy(c1,cp) = cos™? (ClCQ)
o et [le2]

Finally, we noticed that due to consecutive pair-wise com-
parisons, in some instances, the solver would optimize the
cost by interleaving the shape of the TF curve in such a way
that it would satisfy the constraints. Therefore, to preserve the
TF global curvature, we additionally check for its congruence
by performing mirror comparisons of the control points. We
define the third term @), that checks for congruence, as:

n/2

QT T) =" | AE(ti,ta—it1) — AE(t),t, ;) |
=1
n/2

) | Heltistniza) — He(th,th,_i11) |
=1

€))

C3 Similarity to original color tone. For some appli-
cations, it may be important that the adjusted TF retains

the hueness of the input TF. Therefore, we formulate this

constraint, S, to adjust to a user-defined weight, wy, as:
n

S(I,T) = sltn,ty,),

i
s,y = €N Ahaa(e Mn) 2 A
A 0, otherwise

(10)

hap(c) = arctan <Cb* >
Cqg*

where A\, = wshay(t,), hap is the hueness measured in the
a*b* space, and Ahgy is the absolute difference.

C4 CIELAB to RGB projection. Due to the difference in
3D gamut sizes, not all CIELAB values have a valid RGB
projection. Moreover, not considering gamma correction, pro-
jecting the optimization solution from a continuous CIELAB
space to a discrete RGB space, may lose perceptual color
differentiation on the device. Therefore, for a valid and equally
effective adjusted TF in the RGB space, we define V' as:

n n—1
V( vigb) = Wpy Z Pr(t;gb’ i) T Wind Z J (t{r’gb, . t/rgb, i+1)
N - (an
o e
k—1
J(er,02) = Z f(erp(cy, ca,i),lerp(er, co,i + 1))
i=1

1, AFE(lab2rgb(a),lab2rgb(b)) < k JND
fla,b) = :
0, otherwise
(13)

where T;gb is the set of control points from the candidate
T’ projected in the RGB color space. Since TFs are a
continuous interpolation of control points, we formulate Eq. 13
to uniformly sample RGB values in T,’,gb, using a sampling
frequency k, and maintain a reasonable JND value along the
spectrum when reprojected back to the CIELAB space.

C. Solving the TF Adjustment Final Objective

Conclusively, VoxAR solves for an adjusted TF, TF,4; by
minimizing the following objective:

[R, T} — argming [I(T', B) + P(T,T')

T = [RT]T , T=[tr,ta.tn]
TR = [R,T| T (15)

where R € (0p+,0,+,0p<) and T € (L*,a*,b*) are rotation
and translation matrices, respectively. Essentially, we solve
for an optimal transformation of the input TF control points
in CIELAB, such that the adjusted TF would satisfy the
formulated constraints. Given the large search space and
possible solutions, we use Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) [14] as the solver for our objective
function. CMA-ES is an evolutionary algorithm commonly
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Fig. 3. VoxAR TF adjustment results. (a) and (c) show FoVs of the Jet volume rendered using Haze-Cyan input TF (fop) and our VoxAR TF (Bottom), and
the Skull volume rendered using the Diverging input TF (top) and our VoxAR TF (Bottom), respectively. (b) and (d) show plots of the input and VoxAR TF
in the CIELAB (top) space, with the gray hull representing background colors, and HSV (bottom) color space.

used for global optimization of non-linear functions. It is
particularly effective in high-dimensional search spaces and
can handle noisy and non-convex optimization problems.

At each iteration, CMA-ES generates a population of can-
didate R and T according to a multivariate normal distribution
with a mean vector and covariance matrix updated based
on the history of successful candidate solutions. Specifically,
the candidates from a population are used to transform the
input TF and are evaluated using the objective function in
Eq. 14. The best candidate solutions are then selected to form
the next generation, and the mean and covariance matrix of
the multivariate normal distribution are updated accordingly
to bias the search towards promising regions of the search
space. This process is repeated until the maximum number
of iterations or a desired level of convergence is met. Thus,
CMA-ES uses a combination of random search and adaptation
of the search distribution to explore the search space efficiently
and converge to an optimal solution.

VI. IMPLEMENTATION

We demonstrate VoxAR on Microsoft HoloLens2, and de-
veloped using Unity3D [37] and VTK’s holographic remote
rendering feature [38] for volume rendering. While the place-
ment objectives are evaluated on the GPU, our TF adjustment
is implemented on the CPU. Thus, after receiving a placement
result from the HMD, VoxAR solves the adjusted TF on a
compute server and passes the result to VITK for volume
rendering. Using the Microsoft Mixed Reality Toolkit (MRTK)
holographic remoting feature [39], the volume-rendered result
is sent to the HMD over a wireless network. Furthermore, the
coupled MRTK and VTK system allows users to perform basic
volume interactions — in our case, rotation — which is then
communicated to VTK for re-rendering and, subsequently,
reprojection in AR. VoxAR assumes certain features, such as
depth information and spatial mapping, to be obtained using
the HMD’s API (such as MRTK). Additionally, many AR
toolkits are capable of surface detection, classifying specific
surfaces as walls, floors, tables, and more.

VII. RESULTS AND EVALUATION

We now discuss the results of VoxAR, including findings
from a user study we conducted to assess the system. Since
the results, as seen through an OST-HMD, cannot be shown
as images, we use the MRTK additive shader on the HoloLens
Mixed Reality Capture to exhibit the visual quality of the
rendered semi-transparent pixels. For this work, we have used
the following TF presets (with control points):

« Red-White-Blue (Diverging), 3 control points:
E T

. Haze-C%an, 17 control iointsz
o Continuous Viridis, 256 control Eoints:
e Continuous Inferno, 256 control Eoints:

For all TF adjustments, we used a large value of k = 10
and w,, = 10 for C1 background discernibility and C4
CIELAB to RGB projection weights, respectively, to avoid
invalid solutions that may need manual correction. All other
weights, wq, Wq, Wq, and wjnq, were set to 0.5. We set CMA-
ES to run the optimization for a maximum of 20 iterations.
We refer the reader to a mixed-reality video capture of our
results in the supplementary material.

In Fig. 3, we demonstrate examples of VoxAR used for
scientific visualization. Fig. 3(a) top shows a gas combustion
volume rendered using the Haze-Cyan TF in a hallway.
Following placement — using objectives O3 center screen and
01 discretized 3D — VoxAR adjusts the TF such that the
low-density gas particles, at the lighter end of the input TF,
blending with the wall and floor, becomes visually contrasting,
as shown in Fig. 3(a) bottom. Fig. 3(b) top shows the input
and VoxAR TFs projected in the CIELAB space. The gray
hull represents the real-world colors, captured in 360°centered
at the VoxAR placement position. It can be seen here that
VoxAR adjusts the TF to avoid intersection with the real-world
colors while maintaining the perceptual shape of the input
TF. Moreover, Fig. 3(b) bottom shows the HSV projection of



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

the input and VoxAR TFs. This example can be extended to
situated-AR visualizations, where experts may wish to analyze
simulation data connected to its physical referent or location.

Fig. 3(c) top and bottom demonstrate a head CT volume ren-
dering, using an input diverging TF and the VoxAR adjusted
TF, respectively, projected in a clinic examination room, using
surface magnetism objective O1. Here, we also demonstrate
C3, hue similarity. Using A, = 20, VoxAR TF adjusts the
needed hue amount in the input TF to avoid background color
intersection (Fig. 3(d)). This shows that VoxAR can enhance
the integration of AR-based medical visualization, specifically
in scenarios where medical experts may want to observe and
project data in the surroundings or refer to the patient without
a blocking video-see-through device. Moreover, the ability
of VoxAR TF adjustment to preserve perceptual mapping
of colors to data attributes facilitates the sensitive need to
visualize medical data as accurately as possible.

For volumes with surface features, it is common practice
to design TFs with multi-point transparency (alpha) values to
extract nested structures within the data. Fig. 4 compares the
visualization of a tooth anatomy — the outer membrane (D),
crown (@), and pulp 3 - rendered using an input diverging
TF Fig. 4(a) and the VoxAR adjusted TF Fig. 4(b). The alpha
values are assigned to visualize the crown and pulp inside
the tooth membrane. It can be seen here that the VoxAR TF
reduces color blending of the semi-transparent enamel with
the background in surface-like shaded rendering.

Furthermore, we compare our technique with the most
recent work in AR color enhancement by Zhang et al. [4]
(using Ag = 0.4, as suggested in the publication). Fig. 5(a)
shows a synthetic volume of shapes with data intensities spread
uniformly across the data ranges, rendered using the Haze-
Cyan TF. While [4] aids in recovering the shapes blended
in the background, highlighted using the dotted annotation
in (b), their algorithm does not retain the color consistency
of the TF, as pointed out using the arrow. This is because
[4] performs a pixel-wise operation of the virtual object
against its corresponding background color. By designing an
algorithm that precedes the volume-rendering step, VoxAR,
in contrast, takes a more wholesome approach and deter-
mines an optimized color spectrum by evaluating all the
background colors simultaneously. The improvement in color
contrast and color consistency using VoxAR is shown in
Fig. 5(c). To emphasize the importance of a volume-render-
specific approach, in Fig. 5(d)-(f), we demonstrate [4] and
VoxAR to visualize a neuron volume in a biology lab space.
For an input inferno TF Fig. 5(d), it can be seen that the
main objective of the enhancement optimization in [4] is to
contrast the virtual object pixels from the underlying real-
world pixels. In contrast, VoxAR is more meaningful as it does
not perform a pixel-wise enhancement but an overall color-
to-color enhancement, preceding the rendering pipeline. This
becomes more significant for changing FoV, where the VoxAR
rendered volume will maintain its rendering result.

In Fig. 6, we demonstrate VoxAR placement for a small
working region with varying colors, a surface, and a point
defined at the scene’s center with proximity assigned to cover
the area. The evaluation was conducted for a TF overlapping

VoxAR TF

1

D

Fig. 4. Surface-like shaded rendering of a tooth volume showing the crown
@ and pulp @ enclosed in the enamel membrane (D), visualized using (a)
diverging TF and (b) the adjusted VoxAR TF.

Fig. 5. For a Viridis TF in (a), (b) is the result using [4], and (c) is the
VoxAR result. The white dotted annotation shows that both [4] and VoxAR
improve visibility against the background, however, VoxAR maintains the TF
color consistency, as seen on the color bar pointed by the arrow. Likewise,
for an inferno TF in (d) rendering the neuron dataset, (e) is the result using
[4], and (f) is the VoxAR result.

with the background, shown in Fig. 6(a). For objectives O4
color discernibility and O1, VoxAR places the volume on the
surface and in front of the green background, away from the
overlapping yellow color (Fig. 6(b)). In contrast, for O2 point
proximity and O1 anywhere in 3D, VoxAR places the volume
in front of the blue background (Fig. 6(c)).

Finally, we demonstrate VoxAR placement updates for
changing FoV. For a change from the green to blue FoV in
Fig. 7(a), (b) shows the initial placement for the green FoV.

Fig. 6. Evaluation of VoxAR surface placement. For an input TF to be
positioned in a scene with colored placeholders and a surface shown in (a),
(b) and (c) demonstrate the results based on the objectives provided.
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Fig. 7.
(left) and VoxAR TF (right). (b) Placement update for the green to blue FoV.

(a) Engine rendered at VoxAR position, using input diverging TF

As the user moves to the blue FoV, the placement score drops
below a defined threshold of 80% of the original score, and
a new optimal placement is suggested to the user using a
bounding box shown in Fig. 7(c). The volume is updated to
the new position upon performing a pinching gesture.

A. User Study

For our user study, we recruited 16 participants: 11 males
and 5 females, aged between 19 and 35 (Mean: 27.6+4.7). No
participants were color-blind. Since this work is specifically
for volume rendering visualization, we required the partici-
pants to have an understanding of volume rendering and TFs.

a) Experiment Design: The study was carried out in two
sequential parts. First, each participant was asked to place the
Engine volume in a simulated 3D scene using one of two pre-
defined objective combinations (Part I). The Engine dataset
was modified to contain cube and sphere volume primitives
(explained later in this section). We divided the setup, so two
participants had the same objective combination. Moreover, we
ensured that the 3D scene and objective combination resulted
in similar difficulty for each setup.

Next, we computed an adjusted TF for the user-configured
placement and a VoxAR placement using the same objectives.
As a result, we generated four scenarios:

S1 User-configured placement + input TF, (UP+OTF)

S2 User-configured placement + its VoxAR TF, (UP+VTF)
S3 VoxAR placement + input TF, (VP+OTF)

S4 VoxAR placement + VoxAR TF, (VP+VTF)

For each scenario, participants performed two tasks (Part II):

T1 Count the number of volumetric primitives of type X.
T2 Count the number of volumetric primitives of type Y that
have an intensity value in the range I.

Part I: Each participant was shown a photogrammetry-
reconstructed [40] 3D scene in Unity and asked to find an
optimal placement for a volume that is either on (1) a surface
area or (2) anywhere in the view 2.5m from a given point, and
for both, placed as close to the center of the FoV as possible.
To aid the participants with the objectives, we provided 3D
visuals in the scene as shown in Fig. 8 (a).

Fig. 8. Screenshot of the visual cues provided to the participants for Part
I. The transparent "honeycomb’ texture marks valid surface areas, the purple
region indicates out-of-bound, and the green dot indicates screen center.

Part II: We conducted the study using HoloLens2 and
adopted a within-subject design with two independent vari-
ables. Specifically, for each participant, we presented four
scenarios, S1 to S4, and asked them to complete tasks T1 and
T2 for all the scenarios. To avoid learning, the Engine volume
was modified for each scenario to include cube and sphere
volumes of randomized frequency (with a total cube+volume
count of 10), positions, sizes ranging between 10 x 10 x 10
and 20 x 20 x 20 voxels, and intensity values between 0 -
255 (see Fig. 8 (b) for an example). We used the diverging
TF for S1 and S3, and for ease of identifying intensity ranges
in T2, we binned the TF colors into five uniform-sized bins.
Moreover, for counterbalancing our findings, each participant
was presented S1 to S4 in a random order.

Before starting Part II, we first performed eye and display
calibration of the HoloLens, followed by a warm-up session
to help the participants familiarize themselves with using the
HMD. During warm-up, they were shown a different volume
and TF and were asked to practice the hand-gesture-based
rotation interactivity. At the start of each trial, the participants
were seated where the pre-defined FoV was measured for Part
I and were asked to respond to the tasks “as accurately and
efficiently as possible.” Based on our current implementation
of the VoxAR system, the participants were only allowed to
rotate the volume. After every trial, the participants were asked
a series of qualitative questions.

b) User Study Results: We present an evaluation of
VoxAR by analyzing the quantitative and qualitative responses
for T1 and T2, for all scenarios, based on Absolute Error and
Task Completion Time. For our analysis, we define S1 (UP
+ OTF) as the baseline condition and use it to compare with
(UP+VTEF), (VP+ OTF), and (VP+VTF).

Absolute Error: We define absolute error as the average
measure of how much the answers of the participants differ
from the correct answer. Fig. 9 shows a plot of this measure
for each scenario, averaged over the total number of trials.
Based on this result, we can see that the end-to-end VoxAR
technique, placement optimization followed by TF adjustment,
significantly decreases the mean absolute error. That is to say,
for both tasks, the participants were able to perform the data
analysis tasks more accurately. Compared to UP+OTF, VoxAR
reduces the mean absolute error by 65.8% and 69.6% for
T1 and T2, respectively. An application of Friedman’s test
confirmed that there is a significant effect on the recognition
of an element of volumetric objects: Q=16.9; p<.001 for T1
and (Q=12.8; p<.01 for T2. Pairwise comparisons using the
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Fig. 10. Comparison of mean task completion time between T1 and T2 for
all scenarios (95% confidence interval).

Nemenyi post-hoc test indicate that the difference between
the baseline (UP+OTF) and ours (VP+VTF; VoxAR) in both
of the tasks is significant (p=0.001; p=0.021, respectively).
In observing the reasons for the difference, we noticed that,
as shown in Fig. 11, the background blending made the
participants prone to missing smaller primitives (as marked
by the blue ring). Moreover, given the similarity of the red
TF color with the background, most users misconceived the
hole in the volume as a primitive (marked by the white ring).
However, using the VoxAR TF, participants could deduce that
the appearance of the background color represents a hole.
The findings also confirm that using either of the VoxAR
components, placement optimization or TF adjustment, can
improve data perception in OST-AR.

Task Completion Time: Next, we measure the task com-
pletion time of the two tasks over the total number of trials,
as shown in Fig. 10. The results show that VoxAR reduces
the time taken to complete each task by 58.1% and 39.5%,
on average, respectively. An application of Friedman’s test
shows that there is a significant effect on the completion
time (Q=24.5; p;.001 for T1) (Q=13; p;.005 for T2). Pairwise
comparisons using the Nemenyi post-hoc test indicate that the
difference between UP+OTF and ours, VP+VTF and VoxAR,
is significant (p=0.001; p=0.007, respectively).

10

Fig. 11. An example of instances where VoxAR TF aided users to better
perceive data, compared to the input TF.

¢) Subjective Feedback: To collect findings for perceived
performance, effort, and the certainty of the two tasks, we
asked qualitative questions based on the Semantic differential
scale [41], at the end of each task. Each question consisted
of ratings ranging from O to 5, and was anchored by bipolar
adjectives. A higher rating indicated that the participant was
more confident in their abilities or had a higher positive
response towards the condition. The results did not show a
uniform tendency across questions. However, the lowest rated
condition among all participants was consistently UP+OTF
(Mean: 3.3 4+ 1.2). The mean ratings of our full method
(VP+VTF) was 3.67, and the other two conditions (UP+VTF
and VP+OTF) were rated similarly (3.65, 3.79, respectively).

B. System Performance

We used an Intel Xeon Bronze 3106 CPU with 64GB of
RAM and an Nvidia Quadro RTX 6000 as the remote render
server. On average, VoxAR placement achieved framerates
above the HoloLens target framerate of 60Hz [42]. Consid-
ering surface placement alone, VoxAR achieves > 80fps, de-
pendent on placeable surfaces in view. For 3D placement, we
achieve 70-80fps; considering both, we achieve 53-65fps. The
performance of VoxAR regarding surface placement is more
stable, given that the system only needs a single placement
map. Performance regarding 3D placement is more variable
as it is negatively correlated with the resolution of the 3D
space considered. The VoxAR TF adjustment is CPU-based
and has an O(n) time complexity, depending on the number
of TF control points. The diverging TF with 3 control points
took 5s, whereas the Viridis TF, which is a continuous TF and
has the maximum number of control points (255) took 15s to
optimize. As TF adjustment occurs only once, the system can
perform in real-time after initial placement.

VIII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

This paper presented VoxAR, a two-step approach for
enhancing volume rendering visualization in OST-HMDs. Our
method combines spatial and environmental constraints with
user preferences to find an optimal placement for the volume
at runtime. Once placed, it adjusts the input TF to improve its
visual distinctiveness with the real-world background, while
also maintaining the perceptual mapping between the data
attributes and the input TF colors. Furthermore, we have
provided a solution to extend the VoxAR method for changing
FoV, thus supporting a key utility of AR applications to
allow interactivity. To evaluate VoxAR, we have demonstrated
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potential applications and compared our technique with recent
work in OST-AR color enhancement. We also carried out a
user study, and its findings suggest that VoxAR facilitates
effective and efficient user performance when conducting
volume rendering-related comprehension tasks in OST-AR.

In solving a novel challenge for AR-based scientific visual-
ization, VOxAR faces several limitations. Some are hardware-
related. For instance, OST-HMDs cannot project dark colors,
such as black, thus limiting the lower luminance range of TF
color options. Additionally, many OST-AR devices do not
contain a dedicated GPU, thus affecting our shader-driven
performance and needing to offload our volume rendering
pipeline. However, recently, Magic Leap released their second
generation OST-AR HMD [43], which allows global (the entire
view) and segmented (area where digital content appears)
visor dimming. According to the manufacturers, this utility is
designed to improve visibility of virtual content across bright
ambient light conditions, such as outdoors or operating rooms.
To this end, for future work, we intend to examine how the
visor-dimming feature can optimally aid in color enhancement.

At the technique level, although we address changing FoV,
further challenges for dynamic scenes need to be addressed.
Specifically, converging to a solution becomes difficult as
the color spectrum in the background surrounding the initial
placement broadens. As such, we aim to investigate the possi-
bility of dynamically adapting the TF colors for immediate
yet changing backgrounds, such that the TF update would
minimally affect the perceptual mapping of its colors to the
data attributes. This also implies studying the impact of such
changes on data analysis and reasoning during real-time and
dynamic visualization adaptation.

In its current state, VoxAR focuses primarily on alleviating
color blending and does not account for the relationship
between color and alpha TF, with respect to the background.
We plan to investigate this relationship to ensure consistent and
robust visualization of semi-transparent volumes and nested
structures in surface-like shading.
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