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Abstract— The size of image stacks in connectomics
studies now reaches the terabyte and often petabyte scales
with a great diversity of appearance across brain regions
and samples. However, manual annotation of neural struc-
tures, e.g., synapses, is time-consuming, which leads to
limited training data often smaller than 0.001% of the test
data in size. Domain adaptation and generalization ap-
proaches were proposed to address similar issues for nat-
ural images, which were less evaluated on connectomics
data due to a lack of out-of-domain benchmarks. This chal-
lenge aims to push the boundary of out-of-domain general-
ization methods for large-scale connectomics applications.
To facilitate this challenge, we annotated 14 image chunks
from a biologically diverse set of Megaphragma viggianii
brain regions in three whole-brain datasets. Successful al-
gorithms that emerge from our challenge could potentially
revolutionize real-world connectomics research and further
efforts that aim to unravel the complexity of brain structure
and function.

Index Terms— Electron Microscopy, Synapse Detection,
Machine Learning, Point Detection, Connectomics, Brain

I. INTRODUCTION

Neurons are the basic functional units of the brain and are
connected by synapses. Synaptic connectivity constrains infor-
mation flow. Knowing synaptic connectivity is thus essential
for understanding brain function and dysfunction.

Neurons can be long enough to span brain hemispheres
and specifically connect to other neurons with nanometer-sized
synapses. In order to reconstruct whole neurons, along with
synapses, we need imaging methods with both a large field of
view and nanometer resolution. The development of Volume
Electron Microscopy has met these requirements [1]–[5]. As
a result, many terabyte and petabyte-scale image volumes are
being produced [6], [7]. Manual annotation for all the struc-
tures in these datasets is impractical [8]. Techniques involving
machine learning [9], [10], especially Deep Learning [11],
can label such large-scale images automatically with good
accuracy [12].

J. Wu, K. Shinomiya, P. Gunn, and D. Chklovskii are with Flatiron
Institute, New York, NY 10010 USA.

Y. Li and H. Pfister are with Harvard University, Cambridge, MA 02138
USA.

N. Gupta is with Birla Institute of Technology and Science-Pilani,
Vidya Vihar, Pilani 333031, Rajasthan, India

A. Polilov is with Faculty of Biology, Lomonosov Moscow State Uni-
versity, Moscow, 119234 Russia.

D. Wei is with Boston College, Chestnut Hill, MA 02467 USA.

Fig. 1. Synapse detection from 3D electron microscopy (EM) image vol-
ume. (a,b,c) The ZY, XZ, and XY planes of the 3D volume with manually
annotated synapses; (d) 3D point cloud visualization of the annotated
synapses: presynapses represented as yellow dots and postsynapses
as cyan dots and edges connected to the corresponding presynapses.

MICCAI Challenge on Circuit Reconstruction from Elec-
tron Microscopy Images (CREMI) 1 provided annotated
ground truth data for training and performance evaluation.
These efforts had already substantially facilitated computer
vision research and helped the connectomics community to
get more accurate automated neuron segmentation and synapse
detection. However, CREMI still lacks coverage that we aim
to address in this new challenge:
• CREMI dataset images are acquired using Serial Sec-

tion Transmission Electron Microscopy (SS-TEM) with
anisotropic voxel size. One missing task is to develop the
analysis of another advanced imaging method, Focused
Ion Beam Scanning Electron Microscopy (FIB-SEM),
with isotropic voxel size. The voxel size of our images is
8× 8× 8 nm compared with 4× 4× 40 nm in CREMI
images. A detailed comparison of imaging methods is

1https://cremi.org/
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reviewed in [2].
• In real-world connectomic studies, models are normally

trained using a small fraction of the terabyte or petabyte
scale dataset since manual annotation is time-consuming
and tedious. Thus, the ability to generalize is vital
for real-world connectomic applications. Our challenge,
therefore, focuses on testing generalization capability. In
contrast with ground truth data from the same image stack
where the test volumes are close to the training volumes
in CREMI, we built ground truth volumes from three
brain samples and provide a diverse set of test volumes.
In total, we have annotated 14 ground truth volumes
compared with 6 volumes in the CREMI challenge.

• There is a separate synaptic cleft detection task in
CREMI. The synaptic cleft in our images is not clear due
in part to smaller neurons and lower planar resolution.
As a result, it is more challenging to detect post-synaptic
regions in our images.

• For each synapse, CREMI labeled multiple point pairs
across the synaptic cleft and there are many such points
in each presynapse. Since there is no clear synaptic
cleft in our images, but clear presynaptic motifs, also
known as T-bar ribbons in the insect nervous system,
in the bouton, we label one point in each T-bar. Thus,
the distance from pre-synaptic points to corresponding
post-synapses is much longer than the cross-membrane
distance in CREMI. This requires a large field of view in
the machine learning model.

• The mushroom body neurons in insects have distinct
synapses compared to other neurons. No such volumes
were present in the CREMI challenge.

• CREMI provides manual cell labeling for all the volumes
that are used in the synapse detection evaluation. In
contrast, we do not have manual labels for cells making
them unavailable for training and quantitative evaluation.

In short, an immense diversity of neurons and synapse
textures exists and it is challenging to maintain consistent
accuracy across regions in the whole brain. Here, we focus
on testing the generalization capability of algorithms. We hope
that successful algorithms emerging from this challenge would
reduce the required amount of ground truth volumes in real-
world connectomics projects.

II. DATA AND CHALLENGE

A. Dataset Design

Task description. In the Megaphragma brain, a chemical
synapse consists of a presynaptic terminal, accompanied by an
electron-dense motif called a T-bar, and multiple postsynaptic
sites characterized by electron-dense regions (Fig. 2). We de-
fine two computational tasks. (1) Presynaptic T-bar detection:
predict the center location of presynaptic T-bar structure from
input image volumes. (2) Postsynaptic site detection: predict
the postsynaptic site locations given the presynaptic T-bar
locations and the input image volumes.
Data acquisition. We focus on Megaphragma viggianii be-
cause it has both a small brain size and complex behaviour.
These wasps have evolved anucleate neurons, likely due to

Fig. 2. Images from three specimens. The columns of images are XY,
XZ, and YZ planes from left to right. The images are from specimens
one to three from top to bottom. The arrows indicate T-bars identified
in the section. The red arrows indicate T-bars from mushroom bodies
specifically.

the selective pressure that has driven miniaturization [13]. The
scientific significance is detailed in previous publications [13]–
[15]. The whole head of Megaphragma was stained with heavy
metal and embedded in resin [16]. Subsequently, the sample
was imaged using enhanced Focused Ion Beam Scanning
Electron Microscope (FIB-SEM) [17]–[19] with an isotropic
voxel size of 8× 8× 8 nm.

We make the following design choices:
• Cross-sample variation. We imaged three brain specimens

that are illustrated in Figure 2. We densely annotated
14 image chunks, each of which has 400 × 400 ×
400 voxels: three chunks are from specimen one, three
chunks are from specimen two, and eight chunks are from
specimen three.

• Cross-region variation. Different brain regions include
MB, AL, PLP, GNG, CBL, etc. In order to challenge the
generalization capability of machine learning models, we
provide annotations for one volume per region above for
the third specimen.

• Challenging cases. In the mushroom body, multiple
Kenyon cell terminals connect to an output neuron termi-
nal, making a rosette-like structure. Presynaptic terminals
of Kenyon cells in a rosette lack platforms and are smaller
than typical T-bars.

• Dataset split. In summary, we will use five volumes for
training and validation, and nine volumes for testing. To
evaluate the out-of-domain performance of models, we
split the eight annotated volumes in the third specimen
into 5/3 for train/test. Users can split the training set to
some validation set themselves. We use the three volumes
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Fig. 3. Statistics of ground truth in each volume.

in the first and second specimens as challenge tests.

Data annotation. We used CATMAID [20] and NeuTu [21]
with DVID [22] to annotate the presynapses and postsynapses
using point pairs. We annotated each T-bar with a point and
connected it with PSDs - PostSynaptic Densities. Figure 1
illustrates the point annotation results in an image chunk. In
synapse annotation, each T-bar is associated with correspond-
ing postsynaptic terminals to represent a synaptic connection
(Fig. 1). A T-bar glyph should be placed at the connecting
point of the platform and the pedestal. A large platform may
have contacts with more than one pedestal, in which case each
contact point should be annotated as a separate T-bar. Profiles
are annotated as postsynapses if PSDs are clearly visible. If
PSDs are not recognizable due to image quality, all bodies
within 40nm from the edge of the platform are considered to
have PSDs.
Data statistics. As illustrated in Figure 3, we performed some
basic statistical analysis in all the ground truth volumes. There
are about 225±103 T-bars and about 1735±1253 PSDs in each
volume. There are about 7±3 PSDs connecting to each T-bar.
The T-bar density is about 4.7±2.1 per µm3 and the PSD
density is about 31.2±12.0 per µm3.

B. Challenge Design

Submission method. For submission, participants should cre-
ate a .zip file that includes dense predictions for each task. The
write-up should also include an algorithm speed assessment
following the template released by the committee and should
state if any public datasets were used (for pre-training, transfer
learning, etc.). No code is required for submission.
Life cycle type. The challenge will continue to accept submis-
sions after the deadline for continuous benchmarking. Results
submitted after the deadline will not be included in the prize
competition and the publication of the challenge.
Publication policy. The three top-performing teams are eli-

gible to participate in a joint publication with the committee
submitting to IEEE Transactions on Medical Imaging (TMI).
There is a fixed maximum of two authors per team. The
committee may also invite teams that submit particularly novel
solutions to join as co-authors.

Organizer participation policy. Committee members will not
participate in the challenge but only provide baseline results.

Award policy. A certificate will be awarded to challenge top-3
teams (1 winner and 2 runner-ups). Three iPads with different
configurations will be awarded to the top-3 teams.

Accessibility. Because the committee will only be releasing
some small image chunks, there is no need for external
computing resources.

III. BASELINE AND EVALUATION

A. Baseline Method

Training. As illustrated in Figure 4, we built a baseline method
using 3D U-Net [23], [24]. For T-bar detection training,
random 3D image patches are sampled, augmented and fed
into the network. The annotated points are then transformed
into voxel cubes with a size of three voxels. For postsynaptic
detection, a presynapse is sampled from the ground truth
dataset and the image patch around the presynapse cropped
out and used as input for network. The network then predicts
the postsynaptic probability map directly. The 3D U-Net
architecture was modified from a previous synapse detection
method [25]. All kernel sizes are changed to isotropic.

Predicting presynaptic T-bars. For the inference of T-bars,
we scan the image volumes using a 3D sliding window using
chunkflow [26]. The window patches overlap with each other
by 50% yielding eight fold coverage of each voxel. The
overlapping network output patches are blended together to
produce a probability map. To find T-bar locations, we detect
local maxima in the probability map.

Predicting postsynaptic sites. For the inference of postsy-
napses, we scan all the detected T-bars, extract the surrounding
image patch, and perform the network inference to produce the
postsynapse probability map using chunkflow [26]. Finally, we
detect postsynapse points using the same algorithm to detect
local maxima.

B. Evaluation Metrics

Participants will be required to submit their results, de-
tection of presynaptic T-bar and postsynpatic sites including
their connectivity, for evaluation. The detection accuracy of a
submission will be evaluated by first solving an assignment
problem minimizing the Euclidean distance between detected
synapses and ground truth synapses to find true matches, and
then calculating the F1-score. Formally, given a set of detected
synapses (D) by participants and a set of ground truth synapses
(G), we want to find a bijection f : D → G to minimize the
following cost function:∑

d∈D

C(d, f(d)), (1)
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Fig. 4. Baseline method using 3D U-Net. (a) Training of T-bar detection network. The patches are randomly sampled so that some patches might
not contain any T-bar. (b) Training of post-synapse detection network. The T-bar is in the center of each patch and a fixed patch with a central point
is used as a channel of input patch. Note that the illustration is 2D while both the patches and network are 3D and of isotropic size.

where C(·) denotes the Euclidean distance of a matched pair.
Next, F1-score is defined as:

F1 =
2TP

2TP + FP + FN
, (2)

where TP is the true positive, FP is the false positive, and FN
is the false negative.
Task 1: Presynaptic T-bar detection. Detected T-bars are
considered to be potential matches to the ground truth T-
bars. After solving the assignment problem, an unmatched
detected T-bar will be counted as one FP, an unmatched ground
truth T-bar will be counted as one FN, and a falsely matched
presynapse pair as one FP and one FN. The presynapse
detection accuracy will be expressed as the F1-score calculated
using TPs, FPs, and FNs. Notably, we use a threshold to
determine the falsely matched pairs. If the distance between
the detected T-bar and the matched ground truth T-bar in a
pair exceeds the threshold, this pair will be considered as a
false match.
Task 2: Postsynaptic sites detection. Since our data involves
one-to-many synapse connections, for each matched T-bar
pair, we compare its connected postsynapses by solving the
assignment problem mentioned above. An unmatched but
detected postsynapse will be counted as one FP, an unmatched
ground truth postsynapse will be counted as one FN, and a
falsely matched postsynapse pair will be counted as one FP
and one FN. The F1-score for postsynapse detection can be
computed using TPs, FPs, and FNs.
Ranking mechanism. To determine each participant’s position
on the leaderboard, we will use the arithmetic mean of F1-
scores of Task 1 and Task 2 as the overall score.

IV. PLAN AND SCHEDULE

Schedule. The committee has set the following dates:
• 2023.01.31: Website launch on https://codalab.org/; re-

lease of training and test data in H5 format; release of
evaluation code, example submission, and utility func-
tions

• 2022.01.31-2023.03.31: Registration and submission pe-
riod

• 2023.03.31: Leaderboard release and invitation for work-
shop manuscript submission

• 2023.04.18: Presentations at the workshop of ISBI 2023

Estimated number of participants. We expect between 10-
20 teams to participate for the following reasons:
• The prior MICCAI 2015 CREMI challenge on synapse

detection drew more than 10 teams. Thus, we expect at
least a similar turnout for our challenge.

• 3D object detection is an established paper submission
track for major biomedical image analysis conferences.
For MICCAI 2022 alone, there were more than 25
accepted papers [27]. This path toward authorship will
likely catch the attention of prospective participants that
may otherwise not be interested.

• In addition, as volumes in our dataset have big domain
gaps, we expect general machine learning researchers in
domain adaptation will be interested to develop novel
methods through our challenge.

• Dr. Wei, one of our organizers, led the ISBI 2022 MitoEM
challenge for 3D instance segmentation that drew 20
participants. He will reach out to the microscopy image
segmentation and detection community for our challenge.
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