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The combination of object recognition and viewpoint esti-
mation is essential for effective visual understanding. In 
recent years, convolutional neural networks (CNNs) have 

offered state-of-the-art solutions for both these fundamental 
tasks1–8. However, recent work also suggests that CNNs have a 
hard time generalizing to combinations of object categories and 
viewpoints not seen during training: out-of-distribution (OOD) 
generalization is a challenge. For object recognition, work has 
shown CNNs struggling to generalize across spatial transforma-
tions like two-dimensional (2D) rotation and translation9–11, and 
non-canonical three-dimensional (3D) views12,13. For viewpoint 
estimation, previous work has proposed learning category-specific 
models5,14 or feeding class predictions as input to the model15,16, as 
generalizing to novel categories is a challenging task.

It remains unclear when and how CNNs may generalize to 
OOD category–viewpoint combinations. Figure 1a presents a moti-
vating example: would a network trained on examples of a Ford 
Thunderbird seen only from the front, and a Mitsubishi Lancer 
seen only from the side generalize to predict car model (category) 
and viewpoint for a Thunderbird shown from the side? If so, what 
underlying mechanisms enable such OOD generalization?

In this Article, we investigate the impact of two key factors 
(data diversity and architectural choices) on the capability of  
generalizing to OOD combinations, and the neural mechanisms 
that facilitate such generalization. Concretely, we introduce the 
following discoveries.

The first discovery is that data diversity significantly improves 
OOD performance, but degrades in-distribution performance. 
We investigate the role of data diversity by varying the number of 

in-distribution category–viewpoint combinations, keeping dataset 
size constant. We find that data diversity matters significantly. For 
a constant dataset size, increasing data diversity makes the task 
more challenging, as reflected in the deteriorating in-distribution 
performance. Yet, increasing data diversity substantially improves 
performance on OOD combinations.

The second discovery is that Separate architectures significantly 
outperform Shared ones on OOD combinations unlike in distribu-
tion. We also analyse the performance of different architectures 
in the multi-task setting of simultaneous category and viewpoint 
classification, that is, learning category and viewpoint in Shared 
or in Separate (no layers shared) architectures. Our results reveal 
that Separate architectures generalize substantially better to OOD 
combinations compared with Shared architectures. Also, this 
trend is in stark contrast with the trend for in-distribution com-
binations, where Shared architectures perform marginally better. 
Thus, the belief that Shared architectures outperform Separate 
ones when tasks are synergistic should be revisited17, as their rela-
tive performance strongly depends on whether the test sample is 
in distribution or OOD.

The third discovery is that neural specialization facilitates gener-
alization to OOD combinations. Existing work suggests that OOD 
generalization is facilitated by selective and invariant representa-
tions18–21. However, this has not been demonstrated for deep learn-
ing, and does not extend to simultaneous category and viewpoint 
classification. To address this, we propose the neural mechanism 
of specialization—the emergence of two types of neuron, one driv-
ing OOD generalization for category, and the other for viewpoint. 
This corresponds to neurons selective to a category and invariant 

When and how convolutional neural  
networks generalize to out-of-distribution 
category–viewpoint combinations
Spandan Madan   1,2 ✉, Timothy Henry2,3, Jamell Dozier2,3, Helen Ho4, Nishchal Bhandari4, 
Tomotake Sasaki   5, Frédo Durand4, Hanspeter Pfister1 and Xavier Boix   2,3 ✉

Object recognition and viewpoint estimation lie at the heart of visual understanding. Recent studies have suggested that con-
volutional neural networks (CNNs) fail to generalize to out-of-distribution (OOD) category–viewpoint combinations, that is, 
combinations not seen during training. Here we investigate when and how such OOD generalization may be possible by evalu-
ating CNNs trained to classify both object category and three-dimensional viewpoint on OOD combinations, and identifying 
the neural mechanisms that facilitate such OOD generalization. We show that increasing the number of in-distribution com-
binations (data diversity) substantially improves generalization to OOD combinations, even with the same amount of training 
data. We compare learning category and viewpoint in separate and shared network architectures, and observe starkly different 
trends on in-distribution and OOD combinations, that is, while shared networks are helpful in distribution, separate networks 
significantly outperform shared ones at OOD combinations. Finally, we demonstrate that such OOD generalization is facilitated 
by the neural mechanism of specialization, that is, the emergence of two types of neuron—neurons selective to category and 
invariant to viewpoint, and vice versa.

NaTure MacHiNe iNTelligeNce | VOL 4 | FEBrUAry 2022 | 146–153 | www.nature.com/natmachintell146

mailto:spandan_madan@g.harvard.edu
mailto:xboix@mit.edu
http://orcid.org/0000-0002-8957-0004
http://orcid.org/0000-0002-3376-2779
http://orcid.org/0000-0003-4656-3485
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-021-00437-5&domain=pdf
http://www.nature.com/natmachintell


ArticlesNatuRe MaCHiNe iNtelligeNCe

to viewpoint, and vice versa. We show that the CNN generaliza-
tion behaviour trend correlates with the degree of specialization of  
the neurons.

These results are consistent across multiple CNNs and datas-
ets including the natural image dataset iLab-2M22,23, variations of 
MNIST24,25 extended with position and scale, and a challenging new 
dataset of car model recognition and viewpoint estimation—the 
Biased-Cars dataset—which we introduce in this paper. This data-
set consists of 15,000 photo-realistic rendered images of several 
car models at different positions, scales and viewpoints, and under 
various illumination, background, clutter and occlusion conditions. 
With this, we hope to provide a first milestone in understanding 
the underlying mechanisms that enable OOD generalization in 
multi-task learning for category and viewpoint classification.

Datasets for category–viewpoint classification
Most existing datasets with category and viewpoint labels13,26–28 
present two major challenges: (1) lack of control over the distribu-
tion of categories and viewpoints, or (2) small size. Thus, we pres-
ent our results on the following datasets, which do not suffer from 
these challenges:

iLab-2M dataset. iLab-2M22,23 is a large-scale (2 million images), 
natural-image dataset with 3D variations in viewpoint and multiple 
object instances for each category (Fig. 1b). The dataset was cre-
ated by placing toy objects on a turntable and photographing them 
from six different azimuth viewpoints, each at five different zenith 
angles (total 30). From the original dataset, we chose a subset of six  
object categories: bus, car, helicopter, monster truck, plane and tank. 

In Fig. 1b, each row represents images from one category and each 
column images from one azimuth angle. All networks are trained 
to predict one of six category and viewpoint (azimuth) labels each.

MNIST-Position and MNIST-Scale. Inspired by the MNIST- 
Rotation dataset29 which adds rotation to MNIST24,25 images, we cre-
ated two more variants by adding viewpoint in the form of position 
or scale. MNIST-Position was created by placing MNIST images 
into one of nine possible locations in an empty 3-by-3 grid. For 
MNIST-Scale we resized images to one of nine possible sizes fol-
lowed by zero-padding. Images of the digit 9 were left out in both 
these datasets, ensuring nine categories and nine viewpoints classes 
(total of 81 category-viewpoint combinations). Sample images are 
available in the Supplementary Section A.1.

Biased-Cars dataset. Building on other multi-view car datasets for 
viewpoint estimation30,31, we introduce a challenging new dataset 
for simultaneous object category and viewpoint classification—
the Biased-Cars dataset. Our dataset features photo-realistic out-
door scene data with fine control over scene clutter (trees, street 
furniture and pedestrians), car colours, object occlusions, diverse 
backgrounds (building/road textures) and lighting conditions (sky 
maps). Biased-Cars consists of 15,000 images of five different car 
models seen from viewpoints varying between 0–90 degrees of azi-
muth, and 0–50 degrees of zenith across multiple scales. Our dataset 
offers two main advantages: (1) complete control over the joint dis-
tribution of categories, viewpoints and other scene parameters, and 
(2) unlike most existing synthetic city datasets27,32,33 we use physi-
cally based rendering for greater photo-realism, which has been 

Ford Thunderbird, front Mitsubishi Lancer, side Ford Thunderbird, side

a

iLab-2M dataset OOD combinations (held-out) 50% in-distribution combinations

dcb

Fig. 1 | category–viewpoint datasets. a, Our new Biased-Cars dataset: Can a network shown only the Ford Thunderbird from front and the Mitsubishi 
Lancer from side generalize to classify the category and viewpoint for a Thunderbird seen from the side? b, iLab-2M dataset22,23. Each cell represents a 
unique category–viewpoint combination (categories vary between rows, viewpoints between columns) with multiple object instances per category and 
backgrounds. c, Held-out test set of category–viewpoint combinations. Same held-out test set is used to evaluate networks trained with different number 
of in-distribution combinations. d, Biased training set with 50% of category–viewpoint combinations. Number of categories and viewpoints selected is 
always equal.
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shown to help networks transfer to natural image data significantly 
better34,35. Sample images are shown in Fig. 1a. As in26,36, we choose 
to focus on azimuth prediction. The azimuth is divided into five 
bins of 18 degrees each, thus ensuring five category (car models) 
and five viewpoint classes (azimuth bins), for a total of 25 differ-
ent category–viewpoint combinations. More details can be found in 
Supplementary Section A.237,38.

Additional datasets. In the Supplementary Information, we provide 
results on two additional standard datasets—MNIST-Rotation29 and 
the UIUC3D dataset39. Note that the UIUC dataset has a skewed 
joint distribution of category–viewpoint combinations. This makes 
it difficult to run controlled experiments. However, the experiments 
that were possible on this dataset confirm that our findings extend 
to it as well.

For all datasets, networks are trained to classify both category 
and viewpoint simultaneously without pretraining, and the num-
ber of classes for each task is kept equal to ensure equal treatment. 
As shown in the experiments, these datasets are challenging bench-
marks for testing generalization, with a huge scope for improvement 
for state-of-the-art CNNs.

Factors affecting generalization behaviour
Below we present the two factors we study for their impact on gen-
eralization to OOD category–viewpoint combinations: (1) data 
diversity and (2) architectural choices.

Generating train/test splits with desired data diversity. All our 
datasets can be visualized as a square category–viewpoint combina-
tions grid as shown for the iLab dataset in Fig. 1b. Each row rep-
resents images from one category, and each column a viewpoint, 
that is, each cell represents all images from one category–viewpoint 
combination.

For each dataset, we start by constructing an OOD test split—a 
set of category–viewpoint combinations are selected and held out 
from the combinations grid as shown in Fig. 1c. We refer to these as 
the OOD combinations. Images from OOD combinations are never 
shown to any network during training. These images are only used 
to evaluate how networks generalize outside the training distribu-
tion. For a fair representation of each category and viewpoint, we 
ensure that every category and viewpoint class occurs exactly once 
in the OOD combinations, that is, one cell each per row and column 
is selected.

Remaining cells in the combinations grid are used to construct 
multiple training splits with an increasing number of category–
viewpoint combinations, that is, data diversity. For each training 
split, we first sample a set of combinations as shown in Fig. 1d, 
which we call the in-distribution combinations. Then, we build the 
training data-split by sampling images from these in-distribution 
combinations. We ensure that every category and viewpoint occurs 
equally in the in-distribution combinations, that is, equal num-
ber of cells per each row and column. Figure 1d shows the 50% 

in-distribution training split for the iLab dataset. To ensure that we 
evaluate the effect of data diversity and not that of data amount, the 
number of images is kept constant across train splits as the number 
of in-distribution combinations is increased. Thus, the number of 
images per combination decreases as the number of in-distribution 
combinations is increased. Also, note that every network is trained 
with only one of these training splits at a time, that is, data diversity 
is kept constant during training.

Architectural choices. One central question addressed in this 
paper is the impact of architectural choices on the capability to 
generalize to OOD category–viewpoint combinations. While 
many separate models have been proposed for object recogni-
tion and viewpoint estimation40,41, recent years have seen a grow-
ing trend of architectures inspired by multi-task learning, which 
suggests that recognition models can benefit from an understand-
ing of object viewpoint, and vice versa4,5,42–44. These architectures 
often learn a shared representation for both tasks, followed by 
task-specific branches4,43,45.

Here, we investigate the impact of learning shared representations 
on the capability of the network to generalize to OOD category–
viewpoint combinations, that is, to extrapolate in the multi-task 
setting of simultaneous category and viewpoint classification. For 
this, we defined two types of backbone agnostic architecture—the 
Shared and the Separate architectures. Figure 2 depicts these archi-
tectures for a ResNet-18 backbone1. In the Shared case, all convo-
lutional blocks are shared between tasks, followed by task-specific 
fully connected layers, while there are no layers shared between 
tasks in the Separate architecture. We also investigated three addi-
tional Split architectures that represent a gradual transition from 
Separate to Shared ResNet-18: the Split-1, Split-2 and Split-3 archi-
tectures. These were constructed by branching ResNet-18 after 1, 
2 and 3 convolutional blocks as shown in Fig. 2. Note that splitting 
at a layer leads to doubling of the number of neurons in that layer. 
In our experiments, we show that this increase in width does not 
provide an advantage.

generalization through selectivity and invariance
Selectivity and invariance of neurons have long been hypothesized 
to facilitate generalization in both biological and artificial neural 
networks19–21,46–50. Neurons are commonly interpreted as image fea-
ture detectors, such that the neuron’s activity is high only when cer-
tain features are present in the image51–55. We refer to this property 
as selectivity to an image feature. Selectivity alone, however, is not 
sufficient to generalize to OOD category–viewpoint combinations. 
For example, a neuron may be selective to features relevant to a cat-
egory, but only so for a subset of all the viewpoints. Generalization 
is facilitated by selective neurons that are also invariant to nuisance 
features. For instance, in Fig. 1a, neurons that are selective to the 
Ford Thunderbird and invariant to viewpoint would have very simi-
lar activity for the Ford Thunderbird on in-distribution and OOD 
viewpoints, thus enabling generalization to category recognition. 

Category

Input

Shared

Viewpoint

Category

Viewpoint

Input

Separate

Input

Category

Split-2

Viewpoint

Fig. 2 | architectures for category recognition and viewpoint estimation. Shared (left), Separate (centre) and Split-2 (right) architectures for resNet-18. 
In the Shared architecture, all layers until the last convolutional block are shared between tasks, followed by task-specific fully connected branches. In the 
Separate architecture, each task is trained in a separate network with no layer sharing. Split-2 presents a middle ground. These architectures are designed 
similarly for backbones other than resNet-18.
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Similarly, generalization to viewpoint estimation can be enabled by 
neurons selective to viewpoint and invariant to category.

Here, we present our implementation for quantifying the amount 
of selectivity and invariance of an individual neuron. Let N be the 
number of categories or viewpoints in the dataset. We represent the 
activations for a neuron across all category–viewpoint combina-
tions as an N × N activations grid, as shown in Fig. 5a. Each cell in 
this activations grid represents the average activation of a neuron 
for images from one category–viewpoint combination, with rows 
and columns representing average activations for all images from 
a single category (for example, Ford Thunderbird) and a viewpoint 
(for example, front), respectively. These activations are normalized 
to lie between 0 and 1 (Supplementary Section B.1). For neuron k, 
we define akij as the entry in the activations grid for row (category) 
i and column (viewpoint) j. Below we introduce the evaluation of 
a neuron’s selectivity score with respect to category and invariance 
score with respect to viewpoint. Viewpoint selectivity score and cat-
egory invariance score can be derived analogously (Supplementary 
Section B.2).

Selectivity score. We first identify the category that the neuron 
is activated for the most on average, that is, the category that has 
the maximum sum across the rows in Fig. 5a. We call this category 
the neuron’s preferred category, and denote it as i⋆k, such that 
i⋆k = argmaxi

∑
ja

k
ij. The selectivity score compares the average 

activity for the preferred category (denoted as âk) with the average 
activity of the remaining categories (āk). Let Skc  be the selectivity 
score with respect to category, which we define as is usual in the 
literature (for example, refs. 56,57) with the following expression:

Skc =
âk − āk

âk + āk
, where âk = 1

N
∑

j
aki⋆kj, āk =

∑
i ̸=i⋆k

∑
ja

k
ij

N(N− 1) (1)

Observe that Skc  is a value between 0 and 1, and higher values of Skc  
indicate that the neuron is more active for the preferred category 
as compared with the rest. Selectivity with respect to viewpoint, 
denoted as Skv, can be derived analogously by swapping indices (i, j).

Invariance score. A neuron’s invariance to viewpoint captures the 
range of its average activity for the preferred category as the view-
point (nuisance parameter) is changed. Let Ikv be the invariance 
score with respect to viewpoint, which we define as the difference 
between the highest and lowest activity across all viewpoints for the 
preferred category, that is

Ikv = 1−
(
max

j
aki⋆kj −min

j
aki⋆kj

)
(2)

where the range is subtracted from 1 to have the invariance score 
equal to 1 when there is maximal invariance. Invariance with respect 
to category, denoted Ikc , can be derived analogously.

Specialization score. Generalization to category recognition may 
be facilitated by neurons selective to category and invariant to view-
point. Similarly, viewpoint selective and category invariant neu-
rons can help generalize well to viewpoint estimation. This reveals 
a tension when category and viewpoint are learned together, as a 
neuron that is selective to category, cannot be invariant to category. 
The same is true for viewpoint. One way this contradiction may be 
resolved is the emergence of two types of neuron—category selec-
tive and viewpoint invariant, and vice versa. We refer to this as 
specialization. This hypothesis is well aligned with the findings in 
ref. 58, which showed the emergence of groups of neurons contrib-
uting exclusively to single tasks. Thus, in the context of category 
recognition and viewpoint estimation, we hypothesize that neurons 
become selective to either category or viewpoint at later layers as the 
relevant image features for these tasks are disjoint (the category of 
an object cannot predict its viewpoint, and vice versa).

To classify neuron k as a category or viewpoint neuron, we com-
pare its selectivity for both category and viewpoint (Skc  and Skv).  
If Skc  is greater than Skv, then neuron k is a category neuron, other-
wise, it is a viewpoint neuron. Since generalization capability relies 
on both invariance and selectivity, we introduce a new metric for a 
neuron, the specialization score, Γk, which is the geometric mean of 
its selectivity and invariance scores, that is

Γ
k =






√
Skc Ikv if Skc > Skv ( category neuron )

√
SkvIkc if Skc ≤ Skv ( viewpoint neuron )

(3)

Below, we present results that show that the specialization score is 
highly indicative of a network’s performance on OOD combinations.

When do cNNs generalize to OOD combinations?
Below, we summarize our findings from evaluating Separate 
and Shared architectures when tested on unseen images from 
in-distribution and OOD category–viewpoint combinations. See 
Supplementary Section C for experimental details59,60.

For fixed dataset size data diversity enables better OOD gener-
alization but deteriorates in-distribution performance. Figure 3 
presents the geometric mean of category and viewpoint classification 
accuracy for Separate and Shared architectures with the ResNet-18 
backbone, for all datasets. These experiments were repeated three 
times, and here we present the mean performance with confidence 
intervals. For fixed dataset size, increasing in-distribution com-
binations makes the task more challenging as images with each  
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Fig. 3 | generalization performance for Shared and Separate resNet-18 as in-distribution combinations are increased for all datasets. The geometric 
mean of category recognition accuracy and viewpoint estimation accuracy is reported along with confidence intervals (95%). a, MNIST-Position dataset. 
b, MNIST-Scale dataset. c, iLab dataset. d, Biased-Cars dataset.

NaTure MacHiNe iNTelligeNce | VOL 4 | FEBrUAry 2022 | 146–153 | www.nature.com/natmachintell 149

http://www.nature.com/natmachintell


Articles NatuRe MaCHiNe iNtelligeNCe

category and viewpoint become more diverse, leading to some drop 
in accuracy on in-distribution combinations. By contrast, both 
architectures show a significant improvement of their performance 
on images from OOD combinations, as data diversity increases. 
We ensured that this result can not be attributed to having closer 
viewpoint angles between in-distribution and OOD combinations 
as data diversity is increased (Supplementary Section D.1). CNNs 
do not theoretically guarantee viewpoint invariance47, but our result 
provides reassurance that CNNs can become robust to OOD cat-
egory–viewpoint combinations as long as they are shown enough 
diversity during training. Taken together, these results suggest an 
inherent trade-off between getting better on in-distribution combi-
nations and extrapolating to OOD combinations, which is impacted 
by training data diversity. Also, these results add to a growing body of 
work investigating the trade-offs inherent to multi-task learning61,62.

Even though the geometric mean of category and viewpoint 
classification increases consistently with increased in-distribution 
combinations, individual accuracy for these tasks does not always 
increase consistently (Supplementary Section D.2). We attribute 
this to the randomness in the selection of in-distribution and OOD 
combinations. Furthermore, the relative accuracy of the two tasks 
varies depending on the dataset, and no task is consistently harder 
than the other across all datasets.

Separate architectures generalize significantly better than Shared 
ones in OOD combinations unlike in distribution. A striking find-
ing that emerged from our analysis is the contrast in the trends of the 

in-distribution and OOD performance. While both architectures per-
form well on new images from in-distribution combinations, Separate 
architectures outperform Shared ones by a very large margin on OOD 
combinations. For the ResNet-18 backbone, this result can be seen 
consistently across all four datasets as shown in Fig. 3. Supplementary 
Section D.2 shows that Separate also outperforms Shared for category 
and viewpoint classification individually. Note that previous works 
have shown that Shared architectures are superior for synergistic 
tasks, as networks can share features among tasks. These works test 
on the same combinations as seen during training (in-distribution), 
and when we do so, we also observe that Shared architectures per-
form the same or slightly better than Separate ones (Fig. 3 dashed 
lines). Thus, our results reveal that the relative performance between 
Shared and Separate depends not only on the synergy between tasks, 
but also whether the evaluation is in distribution or OOD.

We extended our analysis to Separate and Shared architec-
tures with different backbones, namely ResNeXt63, WideResNet 64,  
Inception v32 and the DenseNet3, as shown in Fig. 4a,b. As can 
be seen, Separate architectures outperform Shared ones by a large 
margin for all backbones, which confirms that this result is not 
backbone specific. Investigating further, we experiment with Split 
architectures, and as can be seen in Fig. 4c,d, there is a consistent, 
gradual dip in the performance as we move from the Separate to 
the Shared architectures. Thus, generalization to OOD category–
viewpoint combinations is best achieved by learning both tasks 
separately, with a consistent decrease in generalization as more 
parameter sharing is enforced.
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To make sure that Separate architectures do not perform better 
due to the added number of neurons, we made the Shared-Wide 
architecture by doubling the neurons in each layer of the Shared 
ResNet-18 network. As Fig. 4c,d shows, this architecture per-
forms very similarly to the Shared one (see additional results in 
Supplementary Section D.3). This is in accordance with previous 
results that show that modern CNNs may improve in performance 
as the width is increased but to a limited extent65,66.

In the Supplementary Information, we provide a number of 
additional controls that support the generality of our results. 
Concretely, we show results for different number of training images 
(Supplementary Section D.4), viewpoint estimation for four new car 
models and category prediction for new viewpoints (Supplementary 
Section D.5), and the order in which category and viewpoint are 
learned (Supplementary Section D.6). We also present results on 
additional datasets (Supplementary Section D.7) and architectures 
(Supplementary Section D.8)67,68.

How do cNNs generalize to OOD combinations?
We now analyse the role of specialized (that is selective and invari-
ant) neurons in driving generalization to OOD category–viewpoint 
combinations.

Specialization score correlates with generalization to OOD cat-
egory–viewpoint. We first investigate the emergence of category 
and viewpoint neurons in the final convolutional layer of the net-
works. Figure 5b,c shows the percentage of neurons of each type in 
Shared and Separate architectures as in-distribution combinations 
are increased. As can be seen, all neurons in the category and view-
point branches of the Separate architecture become specialized to 
category and viewpoint respectively. But in the Shared case, as the 
network is expected to simultaneously learn both tasks, both kinds 
of neurons emerge at a ratio of about 50%. We found that this ratio 
depends on the relative weight of loss terms for the two tasks. When 
using a different weight from the optimal in terms of maximum geo-
metric mean accuracy, the 50% ratio of specialized neuron becomes 
unbalanced. For a small number of in-distribution combinations, 
the ratio of specialized neurons may also be impacted by the relative 
difficulty of two tasks, with more neurons becoming specialized for 
the easier task (Supplementary Section E.1).

In Fig. 6 we present the median of specialization scores across 
neurons, that is, the median of Γk, in the final convolutional layer 
for Shared, Split and Separate architectures across multiple back-
bones in Biased-Cars dataset (see Supplementary Section E.2 
for results in other datasets). These results are presented sepa-
rately for the category and viewpoint neurons. We show that as 
in-distribution combinations increase, there is a steady increase in 
the specialization score for both category and viewpoint neurons, 

suggesting specialization. These trends mirror the generalization 
trends, which suggests that specialization facilitates OOD general-
ization. Invariance and selectivity scores are reported separately in 
Supplementary Section E.3. We also show that specialization builds 
up across layers (Supplementary Section E.4) as expected20,47.

Separate networks facilitate the emergence of specialized neu-
rons. Figure 6 shows that Separate architectures facilitate specializa-
tion, while the Shared architecture makes it harder for the neurons 
to specialize (lower specialization scores). This might be because 
unlike the Shared architecture, the branches of the Separate archi-
tecture are not forced to preserve features relevant to both tasks. 
Each branch can develop features that are selective to only one task, 
and invariant to the other. This may facilitate an increase in special-
ization and thus enable better performance on OOD combinations. 
Even though the Shared architecture tries to split into two special-
ized parts, this specialization is much stronger in the Separate archi-
tecture due to already having separate branches.

conclusions
We have demonstrated that CNNs generalize better to OOD cat-
egory–viewpoint combinations as the training data diversity grows, 
for constant dataset size. We have also shown that networks trained 
separately for category and viewpoint classification surpass by a 
large margin a shared network trained on both tasks when tested 
on OOD combinations. We attribute this to the branches in the 
Separate architecture not being forced to preserve information 
about both tasks, which facilitates an increase in specialization, 
that is, selectivity to category and invariance to viewpoint, and vice 
versa. These results are consistent across five CNN backbones and 
six datasets, one of them introduced in this paper as a controlled yet 
photo-realistic benchmark for CNN generalization.

We also found that the aforementioned impact of data diver-
sity and Separate architecture are the opposite for in-distribution 
and OOD combinations—increased data diversity degrades 
in-distribution performance, and Separate networks perform worse 
than Shared ones in in-distribution combinations. This highlights 
that findings from in-distribution analysis do not apply to OOD.

As a first step towards understanding generalization to OOD 
combinations, our work makes certain assumptions (summarized 
in Supplementary Section F), which present interesting directions 
for future work. These include understanding how generalization 
is impacted by a larger number of tasks, multiple objects in the 
image, object symmetries, non-rigid objects and non-uniform ways 
of holding-out the test set, among others. Finally, we are intrigued 
to explore what other factors can help learn selective and invariant 
neural representations which can generalize better and lead the way 
towards robust, trustable CNNs.
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Data availability
To access and cite the Biased-Cars dataset, please visit https://data-
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F1NQ3R&faces-redirect=true.

code availability
Source code and demos are available on GitHub at https:// 
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