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Abstract
Advances in Electron Microscopy, image segmentation and computational infrastructure have
given rise to large-scale and richly annotated connectomic datasets which are increasingly
shared across communities. To enable collaboration, users need to be able to concurrently
create new annotations and correct errors in the automated segmentation by proofreading. In
large datasets, every proofreading edit relabels cell identities of millions of voxels and
thousands of annotations like synapses. For analysis, users require immediate and reproducible
access to this constantly changing and expanding data landscape. Here, we present the
Connectome Annotation Versioning Engine (CAVE), a computational infrastructure for
immediate and reproducible connectome analysis in up-to petascale datasets (~1mm3) while
proofreading and annotating is ongoing. For segmentation, CAVE provides a distributed
proofreading infrastructure for continuous versioning of large reconstructions. Annotations in
CAVE are defined by locations such that they can be quickly assigned to the underlying
segment which enables fast analysis queries of CAVE’s data for arbitrary time points. CAVE
supports schematized, extensible annotations, so that researchers can readily design novel
annotation types. CAVE is already used for many connectomics datasets, including the largest
datasets available to date.
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Figure 1. Proofreading and analysis of connectomics datasets. (a) A rich set of ultrastructural
features can be extracted from EM images and used for analysis. The corresponding ultrastructural
features are annotated with a red *. The synapse is annotated with a red arrow pointing from the pre- to
the postsynaptic site. (b) Large connectomics datasets are proofread, annotated, and analyzed by a
distributed pool of users in parallel. (c) Proofreading adds and removes fragments from cell fragments
(left: before proofreading, center: removed and added fragments, right: after proofreading). (d) Synapse
assignments have to be updated with proofreading. All synapses (within the cutout) that were added and
removed though the proofreading process of the cell in (c) are shown. Scale bars: 100 µm (c), 1 µm (a:
synapse, mitochondria), 10 µm (a: nuclei), 20 µm (d)

Introduction
Volume Electron Microscopy (EM)1,2 provides an exquisite view into the structure of neural
circuitry and is currently the only technique capable of reconstructing all synaptic connections in
a block of brain tissue. EM imagery not only facilitates the reconstruction of neuronal circuits but
also enables scientists to combine3–8 them with rich ultrastructure visible in these images (Fig.
1a). An increasing set of ultrastructural features, such as synapses3,4,9,10, their neurotransmitter
identity4,11, and mitochondria3–7, can be extracted automatically through machine learning
methods. In addition, human experts have long used electron microscopy to make a rich set of
observations about cellular and sub-cellular processes, including the localization of a wide
range of organelles and cell-to-cell interactions12–15. When combined with neuronal
reconstructions, these datasets enable new analyses of richly annotated connectomes16–22. This
trend is mirrored in other data-intensive fields such as genome sequencing23 and large scale
astronomy surveys24, where raw data is iteratively enriched as increasingly accurate and diverse
sets of annotations are added.
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Today, neurons in EM datasets are extracted through automated approaches25–29 in order to
scale analyses to increasingly larger volumes16,18–20. However, manual proofreading of
automated segments is still necessary to achieve reconstructions suited for analysis30.
Proofreading of large datasets takes years, but even partial connectomic reconstructions
produced along the way are useful for analysis. This raises the need for software infrastructure
that facilitate concurrent proofreading within large collaborations or entire communities of
scientists and proofreaders each working on their individual analyses (Fig. 1b). However,
existing tools and workflows only support static exports after proofreading was completed31,32.

To enable this shift to collaborative proofreading and analysis of connectomics datasets, we
created the Connectome Annotation Versioning Engine (CAVE). CAVE introduces a set of new
methods for connectome analysis and combines them to a coherent system. For proofreading,
CAVE builds on the ChunkedGraph33,34. Like previous systems31,35–39, the ChunkedGraph
represents cells as connected components in a supervoxel (groups of voxels) graph. It is
currently the only system for neuron-based proofreading by a distributed community but was too
costly to be used on petascale datasets (~1mm3 of brain tissue). Here, as one part of CAVE, we
introduce the next generation of this system, the ChunkedGraph v2, which scales proofreading
to petascale dataset through a more cost-efficient storage implementation.

Ongoing proofreading presents a challenge for analysis: edits not only add and remove
fragments from cell segments (Fig. 1c), but they also change the assignment of cell labels and
ultrastructural features such as synapses (Fig. 1d), and require recalculations of morphological
neuron features (e.g. volume and area) and neuronal representations (e.g., skeletons). Previous
systems that combined reconstruction, annotation and analysis40–43 only supported manual cell
reconstructions and manual annotations.

As a second part of CAVE, we addressed the challenge of supporting analysis of proofreadable
cell segmentations in conjunction with annotations produced by automated methods and
individual users. CAVE enables fast computation of morphological neuron features and
representations at any time, including immediately after an edit, through an extension to the
ChunkedGraph. We introduce a new scheme for storing annotations which binds annotations to
segment IDs at specific points in time in a process we call “materialization.” We show that
CAVE’s annotation and proofreading systems support fast queries of the data for any point in
time by combining traditional database queries with ChunkedGraph-based tracking of neuron
edit histories. This enables CAVE to answer analysis queries with no delays after an edit, as
well as queries of the state of data at arbitrary timepoints.

Taken together, CAVE manages concurrent proofreading, annotation, and annotation
assignment while offering queries to the data for any point in time to support flexible and
reproducible analysis by a distributed group of users. CAVE is already used to host 5 published
datasets where it tracks almost 2 billion annotations and has recorded over 4 million edits by
over 500 unique users from across the globe. CAVE facilitated the reconstruction of the first
whole-brain adult connectome with FlyWire20,44, supports the FANC community reconstructing
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the Drosophila VNC45, and hosts the cubic millimeter-scale MICrONS volumes18. Currently,
CAVE is the only system to support concurrent analysis, annotation and proofreading by a
distributed community, and in particular proofreading at the cubic millimeter-scale.

Figure 2. Scaling the ChunkedGraph to petascale datasets. (a) Automated segmentation overlaid on
EM data. Each color represents an individual putative cell. (b) Different colors represent supervoxels that
make up putative cells. (c) Supervoxels belonging to a particular neuron, with an overlaid cartoon of its
supervoxel graph. This panel corresponds to the framed square in (a) and the full panel in (b). (d)
One-dimensional representation of the supervoxel graph. The ChunkedGraph data structure adds an
octree structure to the graph to store the connected component information. Each abstract node (black
nodes in levels >1) represents the connected component in the spatially underlying graph. (e) Storage
and costs for the supervoxel graph storage under the original and the improved implementation (v2). (f)
To submit a split operation users place labels for each side of the split (right top). The backend system
first connects each set of labels on each side by identifying supervoxels between them in the graph (left).
The extended sets are used to identify the edges needed to be cut with a max-flow min-cut algorithm. (g)
Examples of graph traversals for looking up the root id for a supervoxel id (top) and supervoxel ids for a
root id within a spatially defined search area (bottom). Note that only part of the graph needs to be
traversed. (h) Performance measurement from real-world user interactions measured on the
ChunkedGraph server for different types of reads and (i) edits. Scale bar: 500 nm
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Extended Data Figure 2-1. Translating user inputs to graph splits. (a) Bipartite split labels are applied
to locations in space. (b) The closest supervoxels to label points are identified (red/blue dots). The
supervoxel graph in the neighborhood of the labeled points is computed (graph), weighted by affinity
between supervoxels. (c) Vertices along the shortest paths between each pair of red/blue labels are found
(black dots and edges). Backup methods prevent overlap between paths. (d) Affinity between vertices
along shortest paths is set to infinity and min cut is computed on the path-augmented supervoxel graph.

Extended Data Figure 2-2. ChunkedGraph performance measurements on FlyWire. These
measurements are from the improved ChunkedGraph implementation using the same FlyWire supervoxel
graph that was used for the original implementation34. (a) Performance measurement from real-world user
interactions measured on the ChunkedGraph server for reads, specifically leaves to root (median=41ms,
N=13,410) and root leaves (median=55ms, N=50,001) operations, and (i) edits, specifically merge
(median=2,734ms, N=4,189) and split (median=3,486ms, N=2,875) operations.
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Results
Real-time collaborative proofreading of petascale reconstructions

In a perfect segmentation, all voxels (3D pixels) within the same cell are labeled with the same
ID (Fig. 2a). Here, we refer to a group of voxels with the same ID as a “segment”. In an
automated segmentation, most segments require subsequent proofreading to create accurate
neuron reconstructions. Here, we use the term “proofreading” exclusively for edits to the
segmentation but CAVE supports editing of annotations as well. Proofreading an automated
segmentation is 10-100x faster than purely manual reconstruction20,30,39,46,47, but proofreading of
a large dataset may still go on for years. An ideal system should allow real-time collaboration by
many proofreaders, including both humans and machines, and make the results available for
concurrent analysis and discovery efforts.

These requirements are met by the ChunkedGraph proofreading system, whose design was
described previously 33,34. Like previous proofreading systems31,35,36, the ChunkedGraph stores
the segmentation as a graph of atomic segments, called supervoxels (Fig. 2a,b). Connected
components in this graph represent neurons (Fig. 2c). The ChunkedGraph introduced a new
representation of the segmentation as a spatially chunked hierarchical graph of supervoxels
(Fig. 2d) where root nodes are individual cell segments, and leaf nodes are supervoxels. To
achieve high performance, the ChunkedGraph requires a database featuring low-latency
random row reads such as BigTable48 which can add significant cost to its deployment. CAVE
uses the ChunkedGraph as proofreading backend and hosts it as a cloud service for world-wide
access. Here, we describe two significant advancements to the ChunkedGraph to make it viable
for petascale datasets.

First, we reimplemented the ChunkedGraph creating the ”ChunkedGraph v2”. The initial
ChunkedGraph version targeted proofreading of the FlyWire34 and the MICrONS phase 1
dataset (https://www.microns-explorer.org/phase1)17,33,49 datasets but turned out to be
prohibitively costly for 50-100x larger petascale datasets like MICrONS65 (Fig. 2e). We
redesigned the storage to a hybrid scheme in which supervoxel edges (purple lines in Fig. 2d),
which are only needed for edits, are compressed and stored on conventional storage while the
octree hierarchy remains stored in BigTable (Fig. 2e, number of supervoxels in MICrONS65: 112
billion). The reimplemented ChunkedGraph v2 reduced cost by >6.5x, low enough to support
proofreading at the petascale (Fig. 2e).

Second, we improved how user edits are processed to speed up proofreading. To make
proofreading accessible, proofreaders should not need to be aware of the underlying data
structures. Instead, users perform edits by placing line connectors for merges and points for
splits (Fig. 2f). The ChunkedGraph implements splits with a max-flow min-cut operation where
user-selected supervoxels are labeled as sources and sinks to find the edges in the graph that
should be removed. To aid split operations, we implemented an algorithm that uses a small
number of locations coarsely surrounding the merge error, making the resulting topology of the
split robust to the precise location or number of labels (Fig. 2f, Ext. Data Fig. 2-1). To speed up
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merging of many fragments, we added a multi-merge operation to neuroglancer allowing users
to execute merge operations in parallel.

We measured view and edit performances during real-world proofreading of the ChunkedGraph
v2 on the MICrONS65 dataset, the largest currently available, and the FlyWire dataset which we
could use for comparison with the original implementation. For viewing the segmentation, the
user selects a supervoxel by clicking a location in space, and the system retrieves all
supervoxels that belong to the same segment within the field of view (Fig. 2f) in two steps. First,
the ChunkedGraph is traversed from the selected supervoxel to the root node (Fig. 2f top). For
MICrONS65, the ChunkedGraph v2 responded with a median time of 70.3 ms and 95th
percentile of 247 ms (server-side performance, N=94,052) (Fig. 2g). Second, the search
proceeds down the hierarchy to retrieve all supervoxels within a bounding box around the user’s
field of view (Fig. 2f bottom). Here, the ChunkedGraph leverages the octree structure to avoid
the retrieval of supervoxels out of the user’s view. We measured median response times of 104
ms and a 95th percentile of 291 ms (batched requests for multiple segments, N=182,411). Next,
we tested edit operations. The server completed merge operations with a median time of 4,114
ms (N=25,839) (Fig. 2h) and splits with a median edit completion time of 5,810 ms (server-side,
including the logic to identify sources and sinks; N=21,889) (Fig. 2h). Repeating this analysis
with the FlyWire dataset show that viewing operations performed equally for the ChunkedGraph
v2 and the original version while edit operations showed a modest slow down of ~1.5s (Ext.
Data Fig. 2-2). Notably, the performance for edits was only ~1.6x times slower on the
MICrONS65 dataset, even though it is 67x larger than FlyWire, illustrating the scalability of the
ChunkedGraph system.

Morphological analysis of proofread neurons

Proofreading is often driven by specific analysis goals. Being able to analyze cells as they are
being corrected is important for analysis and to guide further proofreading. For instance,
morphological information about a cell, e.g. volume and area, as well as morphological
representations such as skeletons and meshes are used in many analyses. Skeletons are
sparse representations of neurons that have proven useful for analysis and matching of neurons
between datasets, including datasets of different modalities50–52. Computing these
measurements and representations usually requires loading the entire segmentation of a cell
which can span a significant part of a dataset. Recomputing these features from scratch after
every edit is prohibitively time consuming and costly.

We leveraged the ChunkedGraph tree structure to cache and reuse meshes and morphological
features for spatial chunks, and only recompute features in the regions of a cell that changed
due to an edit. This L2-Cache (Fig. 3a), named after its use of level 2 of the ChunkedGraph
hierarchy, is populated automatically through a queuing system (here: Pub/Sub) system after
every edit. Every edit produces a list of new level 2 nodes and associated level 2 IDs (L2-IDs),
for which a scalable microservice computes new meshes and a set of features, e.g. volume,
area, representative coordinate, PCA components (see Methods).
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Figure 3. Fast calculation of morphological features and skeletons. (a) The basket cell from Fig. 1c
broken into L2 chunks where each chunk is colored differently. For each chunk, the L2-Cache stores a
number of features such as area, volume, and representative coordinate. (b) A skeleton derived from the
ChunkedGraph and L2-Cache without consulting the segmentation data. (c) Client-side timings for
calculating neuron volumes using the ChunkedGraph and the L2-Cache for neurons in FlyWire and
MICrONS65. The timing for the neuron in (b) is highlighted. (d) Client-side timings for creating skeletons
from the ChunkedGraph and the L2-Cache. (e) Client-side timings for creating skeletons plotted against
the size of the skeletons. Each dot is a query for a single neuron. Scale bars: 100 µm, insets: 5 µm

Combined with a fast retrieval of all L2-IDs belonging to a neuron (Ext. Data Fig. 3-1a),
morphological features can be computed quickly. For instance, volume information can be
computed within a median client-side time of 710 ms for FlyWire neurons and 3,176 ms for
neurons in MICrONS65. The longer times for MICrONS65 can be explained by the larger size of
the neurons (Ext. Data Fig. 3-1a-c).

To produce skeletons, the ChunkedGraph exposes a graph between L2-IDs, the L2-graph,
which, when combined with locally computed representative coordinates from the L2-Cache,
allow for rapid production of topologically correct skeletons. We implemented a graph based
generalization of the TEASAR skeletonization algorithm 53 on the L2-graph to remove short and
artificial branches introduced by the L2 chunk boundaries. Skeleton calculations of neurons in
MICrONS65 and FlyWire took a median of 5,996 ms and 1,171 ms respectively with differences
again being explained by the difference in size (Ext. Data Fig. 3-1d).
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Extended Data Figure 3-1. Analysis of timings to calculate morphological features. Each dot is a
query for a single neuron. (a) Times to retrieve a list of L2 chunks for a neuron (root id). (b) Time to look
up volume measurements for all L2 chunks belonging to a given neuron. (c) Total time to calculate
volumes for neurons.

Annotation schemes for rapid analysis queries

CAVE supports a diverse set of annotations from manual and automated sources by using
flexible annotation schemas with a generic workflow engine. Every annotation is based on
points in space that serve as spatial anchors and are accompanied by a set of metadata entries
(Fig. 4c). Users can create new schemas that fit specific needs with arbitrary numbers of points
(≥1) and metadata. To associate annotations with segments, the spatial points are bound to the
underlying supervoxels (Fig. 4d) which can then be mapped to their associated root segment for
any point in time using the ChunkedGraph. For instance, schemas describing synapses
between two neurons contain two “bound spatial points'' which are associated with the pre- and
postsynaptic segments but vary in their additional parameters (e.g. size, neurotransmitter). In
addition, reference schemas can be defined. Reference annotations are associated with
annotations in another table via foreign key constraints (SQL) and can be used to track
additional metadata without the need to create a copy of the annotation table itself.
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Figure 4. Annotations for proofreadable datasets. Basic operations of proofreading: (a) merging two
objects and (b) splitting two objects. Each edit creates one or more new root objects (cell segments) that
represent connected components of the supervoxel graph (octree levels not shown). The changes are
tracked in a lineage graph of the altered roots. (c) Spatial points can be used to capture a huge diversity
of biological metadata generated by either human annotators or machine algorithms. In CAVE
annotations can be created as reference annotations which add additional metadata to existing locations
(illustrated as dashed lines). (d) The annotation services handle all annotations through a generic
workflow that depends only on expressing all annotations as collections of spatial points and associated
metadata. (i) Spatial annotations mark the location of a feature such as a spine head. (ii) The
materialization service retrieves the supervoxel id underlying all spatial points. (iii) This enables the
materialization service to lookup the root id underneath that points at any given moment in time using the
ChunkedGraph.

In comparison to other tools 32, CAVE is designed to be flexible about how users define their
annotations so long as they include a bound spatial point. This allows the system to capture an
expanding set of rich observations about the dataset, from small ultrastructural details, to
observations about cell types and their anatomical locations. In fact, across MICrONS6518,
MICrONS phase 117,33,49, FlyWire34, and FANC45,54, users have created over 120 annotation
tables (including 29 reference tables), using 21 distinct schemas, capturing over 1.8 billion
annotations. This includes tables marking synapse detections, reference annotations on those
detections, nucleus locations, 62 distinct cell type tables, proofreading statuses, mitochondrial
locations and functional co-registration points. Some tables are associated with individual
studies making it easy to share data and reproduce analyses. We expect the diversity of
observations to grow more rich over time and as further secondary analyses are performed.

CAVE maintains a “live” SQL database of all annotations. Users create annotation tables with
any schema to which they add, remove and update individual annotations. Every time an
annotation is added or updated, supervoxels underlying any bound spatial points are
automatically retrieved. A service then frequently (e.g. 1/hour) updates the associated root
segments of all annotations using the ChunkedGraph, which provides a list of updated root
segments since the last database update (Fig. 4a,b). Infrequent copies of this database are
produced and serve as materialized analysis snapshots. Due to the updates the live database is
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not suited for analysis queries as we cannot guarantee consistent versioning for multiple
queries.

Figure 5. Querying the dataset for any time point. (a) Edits change the assignment of synapses to
segment IDs. The lineage graph shows the valid IDs (colors) for each point in time. (b) Analysis queries
are not necessarily aligned to exported snapshots. Queries for other time points are supported by
on-the-fly delta updates from both the annotations and segmentation through the use of the lineage
graph. (c) A neuron in FlyWire with all its automatically detected presynapses. (d) Time measurements for
snapshot aligned queries of presynapses for one proofread neuron in FlyWire. (e) The difference between
the snapshot and non-snapshot aligned presynapse queries. The two distributions differentiate cases
without any edits to the queried neurons and cases with at least one edit to the queried neuron. (f)
Presynapse query times for snapshot and non-snapshot aligned queries including cases where neurons
were proofread with multiple edits. Scale bar: 50 µm
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Extended Data Figure 5-1. Annotation query timing analysis. (a) Query times from Fig. 5d versus the
size of the query in number of presynapses. (b) Comparing snapshot and non-snapshot aligned
presynapse queries for cases where the neuron was not edited between the snapshot and the query time.
The difference is the overhead of the mapping logic. The green dashed line is a linear fit with intercept
0.44s and a slope of 1.05.

Queries for arbitrary timepoints

Data analyses often require multiple queries to different annotation tables and use filters to
reduce the data in the database to a manageable subset. A common example is the
combination of a cell type query with a synapse query for a subset of neurons. This is usually
achieved by filtering annotations with a set of root segments of interest. Because proofreading
constantly changes the assignments of annotations to segments (Fig. 5a), all queries for one
analysis need to be performed with the same version of the data, i.e. the same timestamp, to
guarantee consistency and reproducibility. One way to ensure consistent queries to all tables is
to query the materialized analysis snapshots (Fig. 5b). However, this limits a user's ability to
query the data immediately after fixing a segmentation error, a common scenario when doing
exploratory analysis and proofreading in the dataset. This makes the snapshot system
unsuitable for tracking proofreading, and requires a large number of snapshots to be kept to
support continued analysis of past time points.

CAVE combines materialized snapshots with ChunkedGraph-based tracking of neuron edit
histories to facilitate analysis queries for arbitrary time points (Fig. 5b). The ChunkedGraph
tracks the lineage of neurons as they are being edited (Fig. 5a) allowing us to map any root
segment used in a query to the closest available snapshot time point (Fig. 5a). This produces an
overinclusive set of segments with which we query the materialized database. Additionally, we
query the “live” database for all changes to annotations since the used materialization snapshot
and add them to the returned set of annotations. The resulting set of annotations is then
mapped to the query timestamp using the lineage graph and supervoxel to root lookups, and
finally reduced to only include the queried set of root IDs.

The additional logic required to execute arbitrary time point querying introduces an overhead
over querying materialized analysis snapshots directly. To quantify this overhead, we turned to
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the FlyWire dataset for which numerous actively proofread neurons were available. Starting
from a materialized snapshot we queried presynapses (Fig. 5c) for individual neurons at several
time offsets from the snapshot using the delta query logic (see Methods). The resulting
measurements can be categorized in three groups. First, we obtained measurements for
presynapse queries of FlyWire neurons that were aligned with a snapshot (median=525 ms,
N=121,400, Fig. 5d). Second, we gathered timings for non-snapshot aligned queries where the
query neuron did not see any edits since the snapshot version, though its synaptic partners may
have (median=978 ms, N=127,775), and, third, where the query neurons were edited since the
snapshot (median=1,385 ms, N=12,303).

By comparing measurements from the first two groups for queries to the same neuron, we can
obtain the overhead of the additional logic (median=447 ms, Fig. 5e). While query times were
well correlated with query size (Ext. Data Fig. 5-1a), we found this offset to be largely constant
across queries (Ext. Data Fig. 5-1b). Queries are being slowed down modestly for the third case
where the queried segment changed since the last snapshot and an overinclusive query has to
be generated (Fig. 5e, f).

Modular and open design for broad dissemination

We designed CAVE along two broad principles: modularity and openness. Rather than a
monolithic application, CAVE is designed as a set of loosely coupled services (Supplemental
Table 1). Each CAVE service serves a specific purpose, controls its own data, and is deployed
as a docker image to Google Cloud through kubernetes (see Methods). Services can always be
added to meet a specific need of a community and replaced with ones that fulfill the same
purpose and application interfaces (APIs).

CAVE services can be accessed through authenticated APIs. We developed a Python client
(CAVEclient) for programmatic access and adapted the popular viewer neuroglancer55 (Fig. 6a)
for interactive viewing and editing of the ChunkedGraph segmentation. Further, interactive
analysis is enabled through custom dash apps (python-based web apps) that can be extended
to serve the needs of any community (Fig. 6a). CAVE’s APIs can be accessed by other tools
(Fig. 6a) so long as they authenticate with CAVE’s centralized authentication and authorization
server. The analysis package natverse56 and the web applications Codex
(https://codex.flywire.ai), braincircuits.io (https://braincircuits.io), and NeuVue57 already serve as
such examples (Fig 6a).

To date, CAVE has facilitated proofreading and analysis of five published datasets with many
others in progress (Fig. 6b), including FlyWire34, FANC45, the MICrONS datasets17,18,33,49, and the
H01 human dataset19. Together, these communities accumulated over four million edits so far by
over 500 unique users across the globe. Proofreading by a community puts unpredictable loads
onto CAVE. Proofreading rates vary throughout the day with FlyWire seeing as many as >100
edits/minute (Fig. 6c). More than 150,000 edits in MICrONS65 were applied automatically58

illustrating how CAVE supports both manual and automated proofreading efforts.
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Figure 6. Integration into connectomics projects. (a) CAVE supports multiple interfaces. Besides
through programmatic access, users can explore and edit the data in CAVE interactively through
neuroglancer or CAVE’s Dash Apps. CAVE integrates with existing and new tools for connectomics
though such as natverse56, Codex, and braincircuit.io. (b) Datasets published since 2010 by volume and
year (volume is plotted on a log-scale). Datasets that were published with manual and semi-automated
means are connected with a horizontal gray line. (c) Proofreading rate in edits/min for FlyWire and (d)
MICrONS65 over one year of proofreading.

Discussion
We introduced CAVE, an open-source software infrastructure for managing proofreading,
annotations, and analysis by a distributed group of scientists. It is the first system that enables
concurrent proofreading and annotation querying at arbitrary timepoints for seamless analysis,
and the only system that has successfully demonstrated proofreading of petascale
connectomics datasets.

While CAVE demonstrates significant advances, it also combines many features inspired by
prior tools for distributed connectome analysis (see 59 for a review). CAVE was particularly
influenced by CATMAID40 which enables collaborative annotation, manual neuron tracing, and
analysis, and was used by the Drosophila larva community60. Similarly, webknossos42, Viking43,
and Knossos41 (https://knossos.app) support collaborative manual tracing and annotating. For
distributed proofreading, Eyewire35 is the closest precedent and was the first tool to distribute
block-based proofreading to a community through an interactive browser interface with
remeshing capabilities after edits. NeuTu31 demonstrated neuron-based proofreading at scale
for a restricted group of people that proofread multiple Drosophila datasets61–64, including the
hemibrain16.
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Analysis of proofread data has so far relied on static exports after proofreading was completed.
For instance, NeuPrint32 provides analysis of data after it has been proofread in NeuTu and can,
in theory, also use exports and materialized snapshots from CAVE. While the reliance on static
data is limiting for their use during proofreading, such tools can provide more complex analyses,
such as graph queries, through preprocessing of the synapse graph65, as illustrated by
NeuPrint32(https://neuprint.janelia.org), Codex and FlyBrainLab66.

Connectomics data, and biological imaging data in general, are being generated at a growing
rate. Due to their size, these data are increasingly analyzed by multiple people for a long period
of time raising the demand for interoperable and flexible tools that enable simultaneous editing
and distributed analysis across multiple user groups. CAVE’s design enables anyone to
interface with it to provide specific functionality needed for a given community, providing an
example framework for addressing this challenge. This means that others do not need to
replicate CAVEs entire functionality, lowering the barrier to entry for the development of new
analysis tools. For each new dataset using CAVE, these new analysis tools can automatically be
used through CAVE’s common APIs.

In scaling up to petascale datasets, CAVE faced tradeoffs between cost, operational complexity,
and performance. In particular, to deploy CAVE a scientific project needs personnel able to
manage container based web services, as opposed to standalone desktop tools. Furthermore,
we optimized CAVE for large connectomics datasets with dense automated reconstructions and
many users. This led us to focus our engineering efforts on making CAVE scale well with
respect to cost while maintaining sufficiently high performance, as illustrated by our upgrades to
the ChunkedGraph v2. Future scaling to even larger datasets will face similar decisions to
reduce costs for proofreading and analysis infrastructure for the same volume. Another
significant source for cost is the storage of all annotations in a relational database that can be
quickly queried. Automated pipelines now provide accurate and valuable annotations at scale3,67

but storage costs grow linearly with the number of annotations. With the emergence of
multi-dimensional annotations demonstrating efficient prediction of semantic information 68, new
storage solutions will be needed to leverage their power while keeping storage cost in check.

Despite the speedup provided by proofreading of automated segmentations over manual
tracing, the manual proofreading component of the reconstruction pipeline remains one of the
costliest and slowest steps in the dataset creation process. Further advancements in automated
reconstruction will be needed to enable scaling to larger datasets69. Instead of improving the
automated segmentation directly, tools to automate the proofreading process are
emerging58,70,71. Their application will require new workflows of human-AI interaction57. Here,
CAVE’s services have already served as a backend system to ingest edits from one automated
proofreading pipeline58. Due to its broad use, CAVE systems are already holding on to a wealth
of data, both annotations and edit histories, that should be leveraged by new automated
methods to predict rich annotations of the data and help reduce the need for manual
proofreading.
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CAVE related packages

Package Description github

CAVEdeployment Kubernetes deployment scripts https://github.com/seung-lab/CAVEdeployment

ChunkedGraph Proofreading & Meshing service https://github.com/seung-lab/PyChunkedGraph

AnnotationEngine Annotation service https://github.com/seung-lab/AnnotationEngine

AnnotationDB Annotation storage https://github.com/seung-lab/DynamicAnnotationDB

Materialization Materialization service https://github.com/seung-lab/MaterializationEngine

EMAnnotationSchemas Annotation schemas https://github.com/seung-lab/EMAnnotationSchemas

MiddleAuth Auth service https://github.com/seung-lab/middle_auth

MiddleAuth Client Client interface for the auth service https://github.com/seung-lab/middle_auth_client

Info Info service https://github.com/seung-lab/AnnotationFrameworkInfoService

StateServer Neuroglancer state storage https://github.com/seung-lab/NeuroglancerJsonServer

L2Cache ChunkedGraph cache https://github.com/seung-lab/PCGL2Cache

Guidebook Proofreading guidance https://github.com/AllenInstitute/Guidebook

ProofreadingManagement Proofreading management https://github.com/seung-lab/ProofreadingManagement

DashOnFlask Dash app deployment https://github.com/AllenInstitute/dash_on_flask

CAVEcanary Error detection and notification system https://github.com/AllenInstitute/CAVEcanary

datastoreflex Hybrid Datastore and GCS interface https://github.com/seung-lab/datastore-flex

MeshParty Mesh python client https://github.com/sdorkenw/MeshParty

cloudvolume Image and mesh interface https://github.com/seung-lab/cloud-volume

cloudfiles Storage interface https://github.com/seung-lab/cloud-files

pcg_skel ChunkedGraph-based skeletonization https://github.com/AllenInstitute/pcg_skel

NGLAnnotationUI Create ngl states programmatically https://github.com/seung-lab/NeuroglancerAnnotationUI

neuroglancer Interactive UI for image and mesh data https://github.com/seung-lab/neuroglancer
https://github.com/google/neuroglancer

ngextend Neuroglancer wrapper to add
customizations

https://github.com/seung-lab/ng-extend

Supplemental Table 1: Overview of CAVE packages
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Methods

Authentication and authorization

The middle-auth service provides a dataset specific authorization layer on top of OAuth2 based
authentication. Endpoints allow services to query whether users have different permissions on
different service tables. The middle-auth service provides a mapping between service tables
and datasets, as well as individual users and groups. Groups then have permissions on
datasets.

For example, the ChunkedGraph service has a table named minniev1, so when a user attempts
to perform an edit on that table, the service will query a middle-auth endpoint to inquire if that
user has “edit” permissions on that table. First, if the user is not logged in, middle-auth will
forward them onto Google’s OAuth2 service to authenticate their identity. Upon return, that user
is then registered with a unique ID in the middle-auth system. The “minniev1” string is mapped
in the “microns” dataset in the ChunkedGraph service namespace, and all the permissions that
groups the user is a member of are gathered to see if at least one of them has edit access. If it
does, the middle-auth endpoint returns a success, otherwise it returns an unauthorized status
code, which is forwarded to the user. This same workflow is used whether or not the user is
interacting with the service via python or via neuroglancer.

The programming of this interaction is simplified by the middle-auth-client library, which provides
a set of decorators that can be used on flask endpoints to ensure that users are logged in, or
that they have particular permissions enabled to access that endpoint. The user's ID is then
made available in the flask global variable dictionary for the service to record which user is
performing each request.

Microservice Architecture

Services are run in docker using a nginx-uwsgi implementation to distribute requests to multiple
worker processes operating in a single container. Generally, services have been written in
python using the Flask framework, with varying Flask plugins utilized by different services. We
use kubernetes to manage container deployment. Kubernetes spins up multiple container pods
to increase the number of requests which are handled by each service. Requests are distributed
across those pods though load balancing, and an nginx-ingress controller is used to route
requests from a single IP to the appropriate service based on the url prefix. Most CAVE services
are implemented with a common set of technologies and patterns, though this isn’t strictly a
technical requirement. Cert-manager is used in conjunction with CloudDNS to manage and
renew SSL certificates.

Neuroglancer state server

The neuroglancer state server was written as a Python flask app, where the json states are
stored in Google Cloud Datastore as a simple key-value store. Keys are state IDs and values
are the json encoded neuroglancer state. By passing states through an endpoint, programmatic
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migration of old state values and formats was possible and enabled seamless changing of user
experiences as systems migrated. Posting and retrieving json states are implemented as
separate endpoints. In neuroglancer, a “Share” button uses the posting endpoint to upload the
json state which returns a state ID. The user is provided with a shortened link that contains a
reference to the retrieval endpoint with that state ID as a query argument. We programmed
neuroglancer to automatically load states when they are defined in the URL, and so this
mechanism effectively allows the reduced size link to be shared easily even when the number of
annotations specified in the state is very large.

ChunkedGraph implementation

The original ChunkedGraph implementation is described elsewhere 34 and all concepts
described there apply to the ChunkedGraph v2 as well. The ChunkedGraph implements the
graphene format which is derived from neuroglancer’s precomputed format used for common
segmentations.

Supervoxel edge storage and retrieval

In the original implementation, all supervoxel edges were stored in BigTable. We devised a new
storage scheme where all edges are stored on Google Cloud Storage (GCS). Edges are only
accessed for edits. Edges are sorted by chunk and stored as protobufs of compressed arrays.
Arrays are compressed using zstandard72. We changed the edge reading logic to read edges
from a chunk in bulk to minimize access to GCS.

Cross-chunk edges are accessed more often than edges within chunks because they link
individual components from subtrees together. They are also used to create an L2 graph, a
graph between all L2 chunk components. Because of that, cross chunk edges are also stored in
BigTable.

Edges are either “on” or “off” and only the “on” edges contribute to the connected components.
The initial ChunkedGraph implementation stored this information alongside the edges. This
information was redundant with the ChunkedGraph’s hierarchy. In ChunkedGraph v2 we do not
store “on” / “off” information with the edges. We implemented logic to infer the edge state from
the ChunkedGraph’s hierarchy directly.

The edge information on GCS is never changed. If new edges need to be inserted, they are
stored in BigTable. We call such edges “fake edges” and reserved one row per chunk for them.
Every operation reading supervoxel edges from GCS also checks for fake edges. Like all entries
in BigTable, fake edges are timestamped allowing for an accurate retrieval of the supervoxel
graph for timestamps before their creation.

We implemented new logic to check whether fake edges are needed. When a user commands a
merge operation, we first check if there is a path in the local supervoxel graph. If there is, we
extract all local edges between the two components that are being merged and process the
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merge operation with them. If there are no such edges, the original user input is used to insert a
fake edge between the two selected supervoxels.

Common format for all supervoxel graphs

The reimplemented storage of the supervoxel edges does not change and can be used for
multiple ChunkedGraphs for the same dataset. This further reduces the per-ChunkedGraph
cost. This edge storage also serves as a common format from which the ChunkedGraph can
ingest supervoxel graphs created by other segmentation pipelines. In addition to edges, this
format also contains component files (protobuf) which store the connected component
information inferred by the segmentation pipeline. So far exports to this format were generated
for the flood filling segmentation pipeline 26 and the LSD segmentation pipeline 27.

ChunkedGraph Meshing

Meshing procedure

We use zmesh (https://github.com/seung-lab/zmesh) for meshing of the segmentation. Every L2
chunk component is meshed at MIP 2 and the mesh stored on GCS. Some L2 components only
consist of a few pixels and might not be meshed at all. L2 meshes are then stitched on the
layers above following the ChunkedGraph’s hierarchy up to a stop layer (e.g. 6) at which many
meshes are too large to be held in the memory of a worker node or time constraints of queueing
systems (e.g. Amazon SQS) are surpassed.

Mesh storage

The large number of L2 IDs (>109) translates into a large number of L2 meshes which would be
expensive to store as individual files on GCS because of the high cost of write operations (e.g.,
GCS charges $0.005/1,000 write operations). For the initial meshing of all segments in the
ChunkedGraph after ingest, we store meshes in sharded files. For each L2 chunk, we store all
meshes in one sharded file using cloudfiles (https://github.com/seung-lab/cloud-files). This
pattern is repeated for higher layers, where stitched versions of meshes are stored, reducing the
number of files that need to be downloaded for any given neuron. The sharded format allows
retrieval of byte ranges from each shard but adds two additional reads to the header for
retrieving the byte range. Note, this is a different arrangement from the original precomputed
sharded mesh format, where all the mesh fragments from a single neuron can be found in a
shard.

Sharded files cannot be extended, only rewritten. This posed a problem for meshes that were
created for new components after an edit. However, these are few in number in comparison to
the number of meshes from the initial meshing run. Consequently, we store each of these newly
generated mesh fragments as a single file on GCS. We refer to this format as “hybrid mesh
format” because it uses both sharded and single file storage.

Each mesh is compressed using the Draco format for which we wrote and maintain a Python
client (https://github.com/seung-lab/DracoPy). The Draco format is a lossy mesh compression
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format where every mesh vertex is moved to the closest grid node. The grid’s spacing
determines the compression factor. We place a global grid onto the dataset such that meshes
retrieved from different chunks can be merged through overlapping vertices.

Mesh retrieval

Neuroglancer’s precomputed format requires a manifest per segment outlining the mesh
fragments that need to be read from GCS to produce a complete rendering of a segment. Every
edit creates a new cell segment ID with a new manifest. Instead of precalculating and storing all
manifest, the ChunkedGraph produces manifest for segments on the fly from the hierarchy of a
neuron. Using the timestamp of the fragment ID, the ChunkedGraph can determine whether the
fragment is stored in sharded or file-based storage and provide instructions to accordingly.

Cloudvolume implements all necessary interactions with the ChunkedGraph and can be used to
programmatically read meshes. MeshParty wraps this functionality and adds convenience
functionality such as caching of meshes, on-disk and in-memory, and provides further
capabilities such as mesh rendering using VTK.

L2-Cache

Features for each L2 ID are calculate on the binarized segmentation. For each L2 ID, we
currently calculate the following features:

Representative coordinate, volume, area, principal components, mean and maximum value of
the euclidean distance transform, number of voxels at each chunk boundary intersection.

Area calculations are difficult to perform and are easily inflated by rough surfaces. However,
smoothed measurements are ill-defined and expensive to obtain. Thus, our area measurements
overestimate the actual area of a neuron. We calculate areas by shifting the segmentation in
each dimension and finding all voxels where the segment of interest overlaps with other
segments. We count up the surfaces and adjust for resolution. L2 features are stored in
BigTable. Every L2 ID matches to a row in BigTable and contains a column for each feature.

L2 skeletonization

Skeletons were generated using a graph-based generalization of the TEASAR algorithm 53

using L2 chunks. For a given root id, we query the ChunkedGraph for its component L2 ids and
the list of which L2 chunks are directly adjacent with which others, either via supervoxels that
spanned chunk boundaries or proofreading edits that introduced edges between chunks. We
next query the L2-Cache to identify the representative coordinate (and other properties) for each
L2 id and use this information to generate a graph where each vertex is a single L2 chunk and
edges have a weight given by the distance between representative coordinates of adjacent
chunks. Following the TEASAR algorithm, we identify a root node (for example, the closest
vertex to a cell body centroid or the base of the axon from a peripheral sensory neuron) and find
the most distant vertex on the graph. The vertices along the shortest path from the distant
vertex to the root node are assigned to the skeleton and we “invalidate” vertices within a
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distance parameter provided by the user. Importantly, we store a mapping from each invalidated
graph vertex to the closest skeleton vertex. We iterate this process, using the most distant
un-invalidated vertex and the shortest path to the existing skeleton, until all vertices are
invalidated.

To associate synapses with vertices on the skeleton, we get the supervoxel id of the bound
spatial point(s) associated with the annotation and use the ChunkedGraph to look up its
associated L2 id(s). We then assign synapses to graph vertices via L2 id and use the
invalidation mapping to associate graph vertices to supervoxel vertices. Similarly, L2 properties
such as volume or surface area for regions of a skeleton can be computed by summing the
appropriate values from the L2 Cache via the associated graph vertices. The core
skeletonization process was implemented in MeshParty and the interaction with the
ChunkedGraph is handled through the python library “pcg_skel”.

Schemas implementation

Annotation schemas were defined in python code, where they are constructed using the
Marshmallow library. Each schema contains at least one field of the custom class
“BoundSpatialPoint”. This field implicitly creates fields for positions, supervoxel and their
associated root ids. The annotation and materialization process can thus also dynamically
locate BoundSpatialPoint fields and use them to execute the generic workflow of supervoxel
and root id lookup described in the materialization process.

Reference annotations were defined as a custom Schema subclass with a target id field
associated with them. Postgres data access and storage was facilitated by a module which
automatically constructed SQLalchemy models, using GeoAlchemy to describe spatial positions
as spatially indexed 3D points. This model creation code automatically adds spatial indices to
spatial points, and SQL indices to associated root id columns to facilitate fast querying. It also
generates the foreign key constraints associated with reference annotations. Each schema is
assigned a unique string for identification, and is used by libraries to indicate what schema a
table utilizes. Reference annotations may or may not have their own set of BoundSpatialPoints,
and their model creation requires an extra parameter to create a foreign key between the target
id column of the reference table and the id column of the table that is being referenced.

The EMAnnotationSchemas repository is the source of truth for what kinds of schemas can be
initialized, and the community can contribute suggestions through pull requests to this library.
Because all model creation code is written generically, extending the schemas supported is
easy. This code is then used both as a library in other services, but also as a flask based web
service which makes a dynamic list of schemas and their structure as jsonschema, facilitated by
the marshmallow-jsonschema library, available.

Annotation Service

The annotation service manages the creation of new annotation tables as well as creation,
deletion and updating of annotations within tables. Annotation tables are stored in Google Cloud
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SQL using PostgreSQL through a library called DynamicAnnotationDB. Annotation tables of any
schema can be created and multiple tables with the same schema may exist. When creating a
table users provide metadata about the table via a REST endpoint. These include a description,
read and write permissions, and the resolution of the spatial points. The permission model
currently allows for 3 levels of permission for both read and write. “PRIVATE” allows only that
user to read or write, “GROUP” allows for users in the same group (see authorization) to read or
write, “PUBLIC” allows for all users with read or write permissions on the dataset to read or write
that table. The default permissions are “PRIVATE” write but “PUBLIC” read to encourage data
sharing and reuse within communities.

If the user is creating a table with a reference schema, then they also must specify the name of
the table that is being referenced. The service then utilizes the DynamicAnnotationDB library to
create the table within the live SQL database and stores the metadata about the table in a
separate metadata table. Annotations can be posted through a separate endpoint which accepts
json serialized versions of annotations. Annotations are then validated against the schema
using marshmallow and the SQLalchemy model is dynamically generated by the schema library.
Annotations are then inserted into the PostgreSQL database, after associating a creation
timestamp to the annotation.

Upon insertion, the annotation service sends a notification to the Materialization service to
trigger supervoxel lookups for the recently added annotations. Deletion is implemented virtually
by marking the timestamp of deletion in order to enable point in time consistent querying.
Updates are represented as a combination of remove and add operations. The CAVEclient has
python functions for facilitating client side validation and packaging of annotations for the REST
endpoint, including support for processing pandas dataframes. In addition to the API, the
service provides a human readable website interface for browsing existing tables.

Materialization implementation

The Materialization Engine updates segmentation data and creates databases that combine
spatial annotation points and segmentation information. There are two types of databases that
the system uses, one database for the “live” dataset and multiple for materialized snapshots.
The live database is the one written to by the Annotation Service, and actively managed by the
Materialization service to keep root ids coherent and up to date for all BoundSpatialPoints in all
tables. The frozen databases are copies of a time-locked state of the live database’s
segmentation and annotation information, used to facilitate consistent querying. To keep the
data in sync the backend leverages Celery, a python based distributed task queue, that allows
for scaling and distributing parallel workloads. Using dynamic Celery-based workflows, the
Materialization Engine runs periodic tasks to keep the segmentation information up to date from
the proofreading efforts and provides copies of “frozen” datasets at a fixed interval for analysis.

The Materialization Engine is deployed to a kubernetes cluster where celery is run on pods. Two
types of celery pods are deployed for CAVE: producers and consumers. Producers create
workflows that dynamically generate tasks that the consumer pods will subsequently execute.
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Annotation query implementation

The Materialization service also provides a query API for users to query both materialized
versions of the database, as well an endpoint which implements a workflow that enables
arbitrary moment in time querying of the data, with nearly identical features. Both sets of
endpoints enable arbitrary filters on columns from the annotation tables, with inclusive,
exclusive and strictly equal filter options, as well as bounding box spatial queries on all spatial
points. By filtering on the segment id columns of associated BoundSpatialPoints, users can
efficiently extract all annotations for individual cells. For example, this lets users retrieve all input
or output synapses from a particular set of neurons, or allows users to query what cell type
annotations are associated with a particular set of cells. A join query endpoint allows users to
create arbitrary inner join queries on annotation tables, with the same filter criteria. Queries
return data either as PyArrow binary dataframes, which is faster and more efficient, or as json
serialized objects, which is more cross platform compatible, depending on a query parameter
option. To prevent queries from accidently requesting multiple gigabytes of data, an arbitrary
configurable upper bound on the number of rows that are requested from the SQL database is
enforced. Presently our deployed systems have configured this to be 500,000 rows, though
users can distribute more data by executing multiple requests in parallel.

Although the live query endpoint appears similar to the materialized endpoint to the user, the
workflow in the background is more complex. In addition to the filters described above, users
must specify a timestamp they are interested in querying for a live query. First, the system uses
the ChunkedGraph’s lineage graph to translate all the filter parameters referencing segment IDs
into an over-inclusive set of related segment IDs that are present in the closest materialized
timepoint. Equality filters are translated to inclusive filters in this process. This translated query
is then executed against the materialized database to retrieve all the annotations that are
potentially related to the users query. Then, for all the segment IDs that are not valid at the user
provided timestamp, the ChunkedGraph API is queried using the associated supervoxel ids to
determine the correct segment ID for those BoundSpatialPoints. This covers any changes that
might have happened in the segmentation data between materialization and the queried
timepoint, but does not account for changes in the annotation data that might have happened in
that interval. Therefore, a second query is executed on the “live” database using a filter on the
created and deleted columns to extract any annotation rows that were added or removed on the
queried tables. Note, if the closest materialization point is in fact in the future, then the meaning
of addition and removal is inverted with respect to this step. The annotation service also tracks a
timestamp for when a table was last modified to skip this step if there is no possibility the table
was altered in the interval between materialization and the query. Filters on segment IDs must
be ignored in this process because there can be no guarantee of consistency on the live
database due to ongoing and distributed update operations. Once these new and deleted
annotation rows are retrieved, the same process of updating expired segment IDs using the
ChunkedGraph API is applied. Rows from the materialized query which exist as deletions in the
live database query are removed, and rows which were added are concatenated to the result.
Finally, the original query filters on segment IDs are applied to these aggregated results to
remove any annotations which are not relevant to the users query.
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ChunkedGraph performance measurements

We measured server response times for all endpoints served by the ChunkedGraph from all
users for several weeks while proofreading was progressing as normal. These numbers reflect
real interactions and are affected by server and database load and are therefore an
underestimate of the capability of our system. The most common requests are root to leave
requests as they are executed every time a user moves their field of view in neuroglancer. We
sampled a random set of these interactions. For all others, we sampled all interactions.

Morphological feature performance measurements

We used a compute node on Google Cloud to execute programmatic queries to CAVE. First, we
selected representative sets of neurons from each dataset (FlyWire, MICrONS65): We used
neurons from MICrONS65 that were included in a recent circuit analysis73 representing most
proofread neurons in the dataset, and all neurons that were marked as proofread from FlyWire.
Then we randomly sampled neurons from each list and queried: (1) All L2 IDs from the
ChunkedGraph, (2) All volume measurements from the L2 Cache for these L2 IDs. We finally
added up all volume measurements for a total volume. We processed neurons sequentially for
multiple days and recorded all measurements. We average time measurements for neurons for
which we gathered multiple measurements. Measured performances were affected by the
current load on the system.

Annotation query performance measurements

We used the proofread neurons from FlyWire for this analysis. Starting from materialization 571,
we executed presynapse queries at time offsets of 0, 1, 10, 20, 40, 100, 400, 800 hours
recreating realistic queries. It should be noted that most queries are within 24 h of a
materialization version. We precomputed the neuron IDs and number of edits after the
materialization version for those timepoints and created a list of tuples containing (segment id,
timestamp) from which we randomly sampled entries and executed a presynapse queries.
Queries were executed sequentially.
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