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Abstract
(under 250 words)

The National Cancer Institute (NCI) supports many research programs and consortia, many
of which use imaging as a major modality for characterizing cancerous tissue. A trans-consortia
Image Analysis Working Group (IAWG) was established in 2019 with a mission to disseminate
imaging-related work and foster collaborations. In 2022, the IAWG held a virtual hackathon
focused on addressing challenges of analyzing high dimensional datasets from fixed cancerous
tissues. Standard image processing techniques have automated feature extraction, but the next
generation of imaging data requires more advanced methods to fully utilize the available
information. In this perspective, we discuss current limitations of the automated analysis of
multiplexed tissue images, the first steps toward deeper understanding of these limitations, what
possible solutions have been developed, any new or refined approaches that were developed
during the Image Analysis Hackathon 2022, and where further effort is required. The
outstanding problems addressed in the hackathon fell into three main themes: 1) challenges to
cell type classification and assessment, 2) translation and visual representation of spatial
aspects of high dimensional data, and 3) scaling digital image analyses to large (multi-TB)
datasets. We describe the rationale for each specific challenge and the progress made toward
addressing it during the hackathon. We also suggest areas that would benefit from more focus
and offer insight into broader challenges that the community will need to address as new
technologies are developed and integrated into the broad range of image-based modalities and
analytical resources already in use within the cancer research community.
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Introduction

The cellular histopathology of cancer has been studied for hundreds of years with the first
description of a cellular origin of cancer being described by Rudolph Virchow in the 1850s1;
histopathologic evaluation of tumor samples is now an essential component of standard clinical
practice. The analysis of cancerous tissue samples has long been performed with direct visual
inspection by trained pathologists2, but, with the technological advancement of instruments to
spatially resolve tissue samples and the concomitant increase in computational power and
function, a new field of computational image analysis of cancerous tissues has evolved. With
this explosion in our ability to generate digital images of cancer has come the challenge of how
to quantitatively extract meaningful features from them in an automated way.

The National Cancer Institute (NCI) broadly supports research programs that foster
emerging areas in cancer biology and the development of new experimental models for cancer
research, including the Cancer Systems Biology Consortium (CSBC), Physical
Sciences–Oncology Network (PS–ON), the Human Tumor Atlas Network (HTAN) and the more
recent additions of the Cellular Cancer Biology Imaging Research (CCBIR), Acquired
Resistance to Therapy Network (ARTNet), Patient-Derived Xenograft Network (PDXNet), and
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TaRget Enablement to Accelerate Therapy Development for AD (TREAT-AD). Imaging is a core
technology among many research groups within these programs. In addition,
non-cancer-specific initiatives such as Human BioMolecular Atlas Project (HuBMAP)3,4 and the
Human Cell Atlas (HCA)5–7 rely on digital imaging as a major component of their programs and
are generating enormous amounts of spatially resolved data with up to hundreds or thousands
of measurements mappable to individual cells, at an ever-increasing scale. Standard image
processing techniques of image alignment and stitching, segmentation and cell type calling
have facilitated automated extraction of quantitative features from digital images8–11, and their
further refinement will continue extending their utility and capabilities. However, the next
generation of imaging data comprises many more measurements per cell and covers an
ever-expanding volume of tissue per sample. The interpretation of imaging data may therefore
be limited when analyzed using the traditional image processing pipeline that does not utilize
the richer features of modern imaging data.

In response to the changing landscape of digital image analysis across NIH-funded
programs, a trans-consortia Image Analysis Working Group (IAWG) was initiated in 2019 with
the objectives of disseminating the work of the multitude of imaging-related endeavors across all
of the research groups and developing collaborations to address common challenges. In
January 2020, the IAWG held a workshop designed to identify challenges that could be
addressed within an in-person hackathon setting, which was hosted by Vanderbilt University in
early March, 2020, a few days prior to the nationwide shutdown in response to COVID-19.
Within the proceedings of the IAWG’s combined workshop/hackathon we described several
specific challenges centered around the traditional image processing pipeline and how they
were addressed by the hackathon12, and the IAWG has continued to identify and address
outstanding challenges in the digital image analysis pipeline.

In this perspective, we discuss what we view as important open questions in the analysis of
multiplexed tissue images, the first steps toward deeper understanding of these questions, what
possible solutions may look like, what approaches were addressed during the Image Analysis
Hackathon 2022, and where further work remains. The hackathon considered eleven challenges
that fell into three main themes: 1) challenges to cell type classification and assessment, 2)
translation and visual representation of spatial aspects of high dimensional data, and 3) scaling
digital image analyses to large (multi-TB) datasets. We discuss our efforts toward addressing
specific aspects of these main themes and attempt to provide a broader view of the remaining
challenges to a more robust automated pipeline for large-scale multiplexed digital image
analysis.

Challenges to identifying and classifying cell types
Light microscopy-based digital histopathological analysis of cancer tissues has been greatly

enhanced by several recently-developed multiplexed techniques, including antibody-based
methods such as cyclic immunofluorescence (CyCIF)13, iterative indirect immunofluorescence
imaging (4i)14, imaging mass spectrometry (iMS), IMC (Imaging Mass Cytometry)15, multiplexed
immunofluorescence (MxIF), and co-detection by indexing16 (CODEX); and spatial
transcriptomic techniques such as multiplexed error-robust fluorescence in situ hybridization
(MERFISH)17 and sequential fluorescence in situ hybridization (seqFISH)18. These techniques
increase the number of features captured per cell and have greatly expanded our understanding

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.21.548450doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?kSulhb
https://www.zotero.org/google-docs/?TWGpzv
https://www.zotero.org/google-docs/?tBnomM
https://www.zotero.org/google-docs/?De1sO7
https://www.zotero.org/google-docs/?VGfHlI
https://www.zotero.org/google-docs/?xVQ4pL
https://www.zotero.org/google-docs/?qkcTUW
https://www.zotero.org/google-docs/?jJfA7O
https://www.zotero.org/google-docs/?BBK0gc
https://www.zotero.org/google-docs/?EWLQhi
https://doi.org/10.1101/2023.07.21.548450
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the high level of variation that exists among cells, including those with very similar
morphological characteristics. However, accurate quantification of these features and their
association with individual cells within the spatial context of cancerous tissue largely relies on
image segmentation and other techniques used to demarcate cellular boundaries. While deep
learning approaches have been successfully deployed to automate this task with previously
unattainable levels of accuracy (e.g., CellPose9, Mesmer19, Hover-Net20), numerous challenges
persist that limit our ability to automatically achieve accurate quantification of features at
single-cell and sub-cellular resolution. Such limitations include tissue handling artifacts (e.g.,
bubbles, dust and debris, crush and sectioning artifacts, etc.); technical artifacts (e.g.,
inaccurate image stitching, uneven illumination, and antibody aggregates) (Figure 1A); and
image projection artifacts that arise while projecting imprecise and overlapping cell boundaries
from three-dimensional structures to two dimensions resulting in apparent "lateral spillover21." All
of these can contribute to errors in the output of segmentation, gating, and cell type calling
algorithms that generally expect ideal data. Moreover, these high-dimensional feature sets must
be analyzed and visualized to compare the differences and similarities among cell types, yet no
well-accepted standardized method for these comparisons (or how to define each cell type) has
been described. Within the hackathon setting, several teams worked to specifically address
some aspects of these issues by developing new or leveraging existing tools to suppress the
contribution of these artifacts to the process of cell type classification and visualization of the
resulting classes. The specific objectives of these teams were 1) to develop a process for
automatically detecting image artifacts, with either a human-in-the-loop or a completely
automated process; 2) to suppress the effects of image artifacts on downstream analyses; 3) to
correct the effects of lateral spillover on cell type classification; and 4) to optimize the automated
visualization of high dimensional single-cell data representative of distinct cell classes.

The participants were provided with CyCIF datasets representing two tissue types -
colorectal cancer (Figure 1B, left) and tonsil (Figure 1B, right) acquired at 0.65 micrometers per
pixel with a 20X/0.75NA objective lens. The colorectal cancer data was acquired as part of the
HTAN efforts and consisted of 25 serial sections stained with 10 rounds of a 30-plex CyCIF22.
The tonsil dataset underwent 9 rounds of CyCIF and was used in the development of the
Multiple-choice microscopy pipeline10 (MCMICRO). These datasets provide examples of the
variety of imaging artifacts that plague samples even under the best conditions, providing a
suitable resource for the development of tools to address the challenges listed above.

Automatic artifact detection from the spatial feature table
Experimental artifacts alter the natural dynamic range of signal intensities and cause false

positive signals in derived single-cell data (Figure 1A). An ideal quality control (QC) tool for
quantitative multiplex microscopy should automatically account for artifacts imposed at all
stages in the data acquisition pipeline, from pre-analytical variables such as biospecimen quality
and tissue fixation conditions, to errors in tile stitching, imaging alignment, and cell
segmentation. However, the majority of QC tools for digital pathology are limited to strategies for
evaluating a subset of artifacts induced by sample preparation or data acquisition such as
out-of-focus imaging, tissue degradation, and batch effect23–28. They fail to account for
downstream errors in image processing such as tile stitching, image registration, and cell
segmentation. One such tool for identifying and removing artifacts in tissue-derived single-cell
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data from sample preparation to image acquisition and processing is CyLinter29, a tool designed
for human-in-the-loop artifact curation. While manual artifact curation is effective for limited
numbers of samples (<20) probed with relatively few immunomarkers (<20), it tends to scale
poorly with dataset size. Thus, methods for automated detection of microscopy artifacts are
needed to enhance workflow efficiency, minimize curator burden, and mitigate human bias.

This challenge asked participants to use machine learning methods to automatically detect
visual artifacts in multiplex images (Supplementary Figure 1). Multiple supervised modeling
approaches were assessed for their ability to automatically identify each of five different artifact
categories routinely encountered in multiplex immunofluorescence (IF) images: 1) fluorescent
contaminants, 2) uneven immunolabeling, 3) coverslip air bubbles, 4) slide debris, and 5) image
blur (Figure 1A). Ground truth annotations for the different artifact categories were generated
through manual curation and provided to challenge participants, allowing them to establish three
different feature sets (FS) for model training. The first comprised per-cell mean signal intensities
from the colorectal cancer image, spanning 21 immunomarker channels plus Hoechst nuclear
dye (FS1). The second combined the features in FS1 with an additional 8 nuclear morphology
attributes derived from cell segmentation outlines (FS2), and the third consisted of a
combination of FS1 and FS2 plus 289 pixel-level summary statistics calculated on 30-pixel X
30-pixel thumbnail multi-channel images cropped from the full image (FS3).

Participants began by scaling the feature data using standard approaches and evaluating
decision-boundary classifiers such as linear and quadratic discriminant analysis (LDA and
QDA), partial least squares-discriminant analysis (PLS-DA)30, and support vector machines
(SVM)31, but these models were found to have poor predictive power when compared to
ensemble models such as random forests (RFs)32, multi-layer perceptrons (MLPs)17, and
boosted trees33 (Figure 1D; Supplementary Figure 2). Notably, the addition of nuclear
morphology features (FS2) did not significantly improve any of the algorithms compared to the
mean intensity feature table (FS1), whereas the addition of pixel-level features (FS3) resulted in
a dramatic improvement in accuracy (Figure 1D; Supplementary Figure 2).

Artifact correction/suppression directly on images
Visual examination of digital images is often used to assess spatial patterns at cellular and

subcellular resolution. The artifact detection and removal using annotations described above
does not alter the images themselves but rather the extracted information, and since artifacts
generally appear as large/abundant high intensity objects, they can be distracting and lead to
incorrect conclusions especially for audiences who are unfamiliar with biological samples or
even fluorescence microscopy itself. Thus, correcting or suppressing these artifacts directly in
the images would be useful, even if the artifact-induced corruption of the underlying image data
cannot be properly retrieved. To this end, different approaches to suppress artifacts were
developed and assessed on ground truth annotations (Figure 1C), including deep learning
methods that ranged from image in-painting using a pre-trained model to generative adversarial
networks (GAN)34. The test data consisted of four neighboring registered serial section images
with similar content that had not been used in any training sets. Accuracy was based on mean
square error (MSE) and peak-signal-to-noise-ratio (PSNR) between suppressed artifacts and a
region free from artifacts from a neighboring serial section. The accuracy for the deep learning
based methods was low-to-moderate due to the limited training data, although image in-painting
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produced the best results from the supervised methods. Ultimately, a simpler and more accurate
unsupervised approach was found that replaced artifact-corrupted pixels with content from a
neighboring section (Figure 1E). Thus, in the absence of artifact annotations, it was still possible
to detect artifacts by identifying outliers of intensity across the serial sections, which resulted in
comparable accuracy to the deep learning image in-painting approach without requiring huge
investment in time and labor to curate training data.

Lateral spillover correction using REDSEA
Attribution of pixel intensities to different cells in digital images is highly dependent on

segmentation accuracy, especially the location of a boundary between a cell and its neighbors
(Figure 2A). Any errors along this boundary can result in spatial crosstalk of marker signals and
lead to nonsensical cell types. The objective for the hackathon was to correct for lateral spillover
in a publicly available dataset (CyCIF-processed tonsil sections segmented with Deepcell35),
assess the quality of the correction, and scale the method to larger image sizes. The approach
taken by the participants leveraged a previously devised method called REinforcement Dynamic
Spillover EliminAtion (REDSEA)21. REDSEA first computes the proportion of the shared
boundary between a cell and its neighbors. It then compensates for signal intensity of each
channel along that boundary based on the overall expression of that channel in the cell relative
to its neighbors. The method was evaluated using sets of cell type markers that are known to be
mutually exclusive. Due to the restricted time available during the hackathon, evaluation
proceeded using five tiles each for two subsets of the tonsil dataset: 200 X 200 or 800 X 800
pixels. The original implementation of REDSEA was developed using high density tissue and
was discovered to crash (with a divide by zero error) when the code encountered isolated cells
(i.e., cells with no immediately adjacent cells) in the image. Most isolated cells occurred around
the periphery of the image, and is either due to an artifact of cell segmentation or image tiling.
Hackathon participants enabled REDSEA to identify these isolated cells as a distinct cluster in
high dimensional feature space, while removing them from consideration of lateral spillover
(Figure 2B). Co-expression plots for pairs of mutually exclusive markers both before and after
the modified implementation of REDSEA (Supplementary Figure 3) show that we were able to
reproduce REDSEA’s results while also increasing the proportion of single-positive cells. This
updated implementation has also been translated from MATLAB to Python36 to facilitate broader
use.

Analysis of cell type classification
To visually and quantitatively assess cell type calling it is common practice to perform some

type of clustering based on cell-specific features. However, the lack of ground truth and the
diversity of possible preprocessing inaccuracies make clustering quality hard to judge using
statistical summary measures. For effective quality control and intervention, it is thus essential
to integrate biomedical researchers into the analysis loop. This can be achieved through data
visualization and interactive interfaces, allowing experts to inspect and compare outcomes and
to make decisions on which algorithm and parameter settings perform the best. A challenge to
these visualizations is that there are numerous algorithms and data reduction techniques that
can be used to group objects (cells) using similarity measures, each with specific advantages
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and disadvantages. Likewise, there are many approaches for comparing clusterings38, but none
of them can be considered standard.

To overcome these limitations and facilitate comparisons of cell type clustering by multiple
approaches, the challenge participants considered two alternative strategies: 1) static graphical
representations of cluster quality, and 2) an interactive web-based platform for dynamic
exploratory analyses.

The first approach involved creating a range of easily configurable summary heatmaps that
provide more details on the clusters’ quality while maintaining a high-level overview of the entire
dataset. Compared to traditional heatmaps (or matrices)37 that show mean marker values per
cluster of cells (Figure 2C), violin-matrices additionally display marker distributions for each
cluster (Figure 2D) as small multiples. Alternatively, marker intensity distribution within a cluster
can be visualized in even more detail, on a single-cell level, by subdividing each cluster’s cells
into thin stripes (Supplementary Figure 4). To gauge cluster quality even further, a
color-encoding of computed silhouette scores enables rapid identification of clusters with, e.g.,
many cells of low silhouette score, a large variety of scores, or groups of low scoring instances
within a cluster, indicating the cluster may be better split into smaller clusters.

The second approach involved the development of a fully interactive web application to
explore multiple aspects of the data. The application allows inspection and simultaneous
comparison of different clustering algorithms (k-means, density-based, Gaussian mixture
models (GMMs), Self-Ordered Maps (SOMs), and Leiden) side-by-side in a spatial context, with
coordinated zooming and panning of subregions within the plots, and coloring individual cells by
cluster identity, expression value, or silhouette coefficients (Figure 2E). The web application
scales to displaying large datasets with two or three UMAP axes and real-time adjustment of
viewing angles and zoom ranges. This was achieved by utilizing scatter-gl39, a
webgl-accelerated 2D and 3D scatter plot point renderer that is part of Tensorflow’s
Embedding Projector40. The resulting tools are available on GitHub41 and can be installed on
most personal computers.

Summary, future work and remaining challenges to identifying and classifying cell types
Significant strides have been made in the development of robust image analysis tools that

can effectively handle segmentation errors and image artifacts. However, further advancements
are necessary to ensure their widespread effectiveness. One major challenge is the requirement
for more training data with well-established ground truth to thoroughly evaluate and improve
each implementation's accuracy and generalizability. This is particularly true for the multilayer
perceptron model, which was identified as the optimal solution for automatic detection of
artifacts. With all deep learning models, additional training tends to improve their accuracy with
the added costs of time and computational resources. An intriguing prospect lies in coupling
automatic artifact detection with the ability to automatically correct these artifacts within the
images. This integrated approach could provide substantial benefits, streamlining the analysis
workflow and increasing overall accuracy.

To enhance the overall utility of each of these tools, it is crucial to improve their scalability
and automation capabilities, as well as to evaluate their performance across diverse datasets
encompassing various imaging modalities, resolutions, tissues, and segmentation methods to
determine ideal conditions suited for each tool. Specifically toward addressing lateral spillover
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with REDSEA, the incorporation of non-membrane markers may reduce the reliance on manual
parameter tuning.

Tools to rapidly evaluate and compare various clustering algorithms and the underlying
feature data that gives rise to the different resulting clusters are needed. This is true not only for
imaging data but for high-dimensional clustering, in general, including single-cell RNA
sequencing data42–45. Silhouette-heatmaps offer one solution for static visualization, but other
metrics and visualizations may also be considered. Additionally, different cluster quality
measures could be incorporated into the web-based visualization tool to aid in assessment of
clustering outcomes.

Image representation learning
Emerging multiplexed imaging technologies create images consisting of a large number of

markers and provide high-dimensional single-cell feature tables, but analyzing single-cell
multiplex imaging data is still primarily limited to extracting a single mean intensity value per
channel, per cell. This classical image feature extraction approach is biased toward known and
easily measured features, does not fully leverage multiplex imaging information, and can miss
subtle but important subcellular features, such as marker polarity and staining colocalizations
across markers that might indicate divergent cell states. Improving the number, nuance, and
kinds of features extracted from multiplex imaging will improve phenotyping and give
researchers a better understanding of cell states, cell population heterogeneity, cell-cell
communication, and intercellular regions. However, the financial and temporal costs of
multiplexed imaging approaches are higher compared to the traditional imaging modalities, such
as hematoxylin and eosin (H&E) staining and brightfield microscopy. To bridge the gap,
recently-proposed deep learning approaches can extract relevant morphological features from
low-dimensional (e.g., H&E stained) images that are not easily perceived by the human eye and
use those features to infer the expression of molecular markers; these approaches are
collectively referred to as virtual staining46–48. It remains a challenge to provide such data for
human visualization in a convenient and browsable manner. Although methods for photography,
brightfield imaging, and low-plex immunofluorescence data generate RGB thumbnails by
downsizing and cropping, these are not immediately generalizable for data with 100 channels
without losing interpretability. Here we discuss methods for feature extraction using variational
autoencoders (VAEs), automated summarizing of high dimensional data with thumbnail images,
and predicting marker staining intensities from H&E images.

Feature extraction with VAEs
VAEs have previously been successfully trained on various biomedical data modalities such

as bulk and single-cell gene expression, and imaging data49. A potential challenge to VAE
feature extraction from single-cell imaging data is an abundance of unimportant or uninformative
morphological features driving differences between biologically similar images and skewing the
results in undesired ways11,50.

Hackathon participants trained several forms of variational autoencoders (VAEs), including
standard VAE, β-VAE51, invariant conditional VAE (C-VAE)52, and Multi-Encoder VAE
(ME-VAE)11, on immunofluorescence images of human mammary MCF10A cells treated with
TGF-β or PBS (control) and evaluated their ability to separate biologically distinct cell
populations based on latent features as well as standard morphological and spatial features.
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The participants found that most VAEs were confounded by uninformative features, with the
exception of ME-VAE, which showed strong discriminatory performance in an unsupervised
setting, improved further by subsetting the latent space to the top 10 most highly variable
features (Figure 3A).

Thumbnail generation
Thumbnails are scaled down representations of larger images that enable easier

viewing, and faster access, storage and management. Since these are miniature versions of
large images, challenges arise in techniques related to downscaling, compressing, and resizing
these larger images, while taking into account both noise as well as the higher number of the
multiplex channels.

Four different methods were developed to compress highly multiplexed images into
three-color (e.g., RGB) thumbnails to facilitate interpretation. These made use of two pre-
existing tools as starting points: Auto-Minerva53, which uses a GMM to isolate tissue foreground
signal, and Miniature54, which employs UMAP dimensionality reduction on image pixels to
embed images in the CIE L*C*h color space while ensuring image regions with similar protein
expression patterns receive similar colors. The methods were evaluated on three CyCIF
datasets that included two whole-slide images of colorectal cancer and healthy tonsil, and one
tissue microarray10, which was acquired at 0.65 microns per pixel with a 20X/0.75NA objective
lens.

The first method, called MIC (Figure 3B), builds on Miniature54 by performing k-means
clustering on the UMAP embedding, followed by calculating a variable importance metric, which
can be displayed in a compact heatmap, enabling rapid assessment of markers driving
heterogeneity within an image; the heatmap is complementary to a thumbnail and aids its
interpretation. In the tonsil CyCIF dataset, it was seen that the three clusters were driven
primarily by Keratin, α-SMA and Ki-67. The next method, Max/Top3, explored a maximum
intensity projection approach taking the top three most highly-expressed channels at each pixel
and assigning them to the red, green, and blue channels of the thumbnail. HClust is a
hierarchical clustering approach to find three informative channel groups per image, within
which intensities are aggregated and colored in the CIE L*C*h colorspace. Several aggregation
and color assignment methods were explored including the group hue, pixel maximum and pixel
sum, in combination with the cut point of the dendrogram. Finally, Animate generates an
animation that cycles through all channels after downsizing and auto-thresholding.

Virtual immunofluorescence staining
Although multiplex immunofluorescence staining can provide deep insights into quantitative

and spatial aspects of cancerous tissues, it can be prohibitively expensive and time consuming,
and repetitive processing steps risk introducing artifacts, such as tissue degradation during later
cycles. Alternatively, it may be possible to infer the expression of specific protein markers from
tissue autofluorescence using image-to-image translation, i.e., virtual staining. Ideally, by
leveraging the endogenous autofluorescence of human tissues, these techniques can recreate
pathology images without requiring arduous chemical staining procedures48,55 and can therefore
expand the utility of digital pathology. An extension of this approach is the prediction of specific
marker expression from unstained images—virtual IF46,48.
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The objectives for the hackathon were to use the SHIFT implementation56 of the pix2pix57

conditional generative adversarial network model to translate label-free autofluorescence to
immunofluorescence signals. The training data were whole-slide images of healthy human
kidney tissue samples with three channels of autofluorescence images and 10 different
immunofluorescence stains of kidney-specific markers, acquired by serial sectioning [verify].
Training SHIFT to predict the proximal tubule marker AQP1 from the label-free autofluorescence
images produced a virtually stained image that, when analyzed for single-cell expression of
AQP1, had correlated levels of predicted expression (Pearson ρ = 0.48; Supplementary Video
1) to those measured on the neighboring section stained for AQP1. However, the low
autofluorescence detected in the nuclei was insufficient for SHIFT to predict nuclear staining.

Summary, future work and open questions of image representation learning
VAEs are powerful tools for extracting and representing latent variables from

high-dimensional images and enabling interpretation of the learned representations. However,
applying VAEs to extract biologically meaningful information from single-cell imaging is
frequently driven by unimportant or uninformative features. By using a multiple-encoder VAE
and focusing on the top ten most variable features of images, hackathon participants were able
to substantially increase the discriminatory power of VAEs. While methods like ME-VAE can
learn representations without explicit labels, more effective unsupervised learning algorithms
that can discover informative features without relying on prior knowledge remain an open
challenge. Representation learning methods that can capture meaningful and transferable
features that generalize well across different tissue types, diseases, and multiplex imaging
platforms may be useful in this regard. Ideally, the learned representations will be biologically
interpretable and meaningful, which would add trust in these machine learning approaches. The
development of representation learning methods that produce interpretable and explainable
features is an intensely active area of research and progress along this front should provide
powerful new tools for cancer image analysis.

Although several methods of thumbnail generation and channel-to-color associations were
developed, their suitability across applications will differ. These applications may include
interactive data analysis and visualization (such as Mistic58), online data portals [such as those
belonging to HTAN, HuBMAP, and NCI’s Imaging Data Commons (IDC)], and local file browsers.
However, any use case is likely to have a unique feature set that would require prioritizing one
thumbnail generation method over another. Thus, thorough testing will be required to assess
whether specific tasks can be completed with more ease and accuracy.

The automated translation of one domain (e.g., autofluorescence images) to another (e.g.,
immunofluorescence images) is not yet easily implemented, especially when compared to deep
learning approaches for segmentation. Fine tuning of models remains critical to their successful
implementation. However, success remains highly subjective, based primarily on visual
inspection. An alternative approach that would provide quantitative evidence to support
“success” would be to compare the outcome of downstream analyses, like cell segmentation,
between a virtual and true immunofluorescence images. Many downstream analyses that
currently rely on true fluorescence images could act as useful quantitative metrics for
determining the accuracy of virtual staining.
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Image processing at scale
Modern highly-multiplexed imaging methods are capable of producing TB-scale datasets,

with individual images requiring dozens of GB of storage and extensive resources for
processing whole-slide images in an end-to-end pipeline. The scale of today’s images poses
substantial challenges for applying existing methods originally designed on smaller datasets.
Hackathon challenges designed to address this theme included optimization of existing methods
to increase throughput efficiency, end-to-end image analysis with Galaxy59–61, and importing
tissue volumes into Neuroglancer62, an open source volume visualization tool developed by
Google.

Deploying image segmentation at scale
The effective application of image analysis at scale requires a multi-pronged approach with

advancements in three areas: algorithm optimization, identification and exploitation of
parallelism, and scalable deployment on cloud infrastructure. The need for interactive
visualization and human-in-the-loop workflows complicates all three areas. This stands in
contrast to other molecular data modalities, such as RNA sequencing, where operations like
sequence alignment and variant calling can be carried out without continuous integration with
data visualization and user feedback63,64.

Hackathon participants examined CellPose9, a popular neural-net-based cell segmentation
method, for ways in which its processing efficiency could be improved for applications to large
datasets. Because localization of cells in images is a central step in any cancer image analysis
pipeline, inefficient cell segmentation methods can present a substantial bottleneck. The
participants first profiled individual aspects of the method (file I/O, neural net inference, and
post-processing of model outputs) to determine computational bottlenecks. The participants also
measured how the run time scales with image size and attempted to identify opportunities for
parallelization. All analyses were carried out using a CyCIF tissue microarray dataset10.
Participants determined that file I/O was not a significant bottleneck and that over ⅔ of runtime
was devoted to neural network inference, which scaled linearly with image size within the limits
of available memory. GPU-based computation within CellPose resulted in a 17.6-fold
improvement in runtime compared to CPU-based processing. A further four-fold reduction in
runtime was achieved by removing Cellpose’s redundant models that were all trained identically
but initialized from a different set of random weights. Removing these was not detrimental to
segmentation accuracy, which aligns with the general view that an effective ensemble should
contain weak, complementary predictors65.

End-to-end image analysis with Galaxy
Processing image datasets using scalable and standardized workflows enables

reproducible analysis and provides harmonized and comparable results across imaging
modalities. Galaxy is a web-based platform widely used for large-scale data processing and
analysis59–61 and is compatible with multiple computing infrastructures, which allows it to
leverage cloud computing resources and Unix/Linux based high performance computer clusters
to power large-scale data analysis. By coupling image processing, analysis, and visualization,
the entire workflow can be executed remotely with no need for downloading large files locally or
moving data to external software. The Galaxy-MTI tool suite has recently been integrated with
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the core MCMICRO10 pipeline to enable automated and reproducible image processing and
analysis but has not yet been broadly deployed. The objectives of hackathon participants were
to expand the Galaxy/MCMICRO workflow to function with imaging modalities beyond CyCIF.
This included preprocessing and registration of multiplexed immunohistochemistry (mIHC)
images using PALOM66,67 and comparing the segmentation output of two different algorithms
(StarDist68,69 and Ilastik70) within Galaxy.

CyCIF datasets from a breast tissue microarray and tonsil, both sampled at 0.65
micrometers/pixel, were used as reference images on which the various processing steps were
performed. The hackathon participants developed several pipelines and extensions to the
software suite, including adding several image preprocessing/registration and segmentation
algorithms, developing a new workflow optimized for non-fluorescence based multiplex tissue
imaging platforms, integrating PALOM for piecewise alignment of images66,67, and attempting to
deploy StarDist68,69 for 2D segmentation of CyCIF images. (StarDist was mostly implemented
but resulted in errors as different steps in the pipeline that require further development.) To
facilitate portability, all tools were built within Docker images.

Scalable Visualization of 3D data using Neuroglancer
The challenge objectives were to import, process, render, and navigate multichannel 3D

volumetric datasets in Neuroglancer62,71. Participants were given 3D datasets of highly
multiplexed CyCIF8 melanoma datasets, each spanning 500 x 500 x 5 micrometers, from the
Pre-Cancer Atlas. Each region was sampled at 108 nm lateral and 200 nm axial resolution.
These samples displayed a wide array of histopathological features associated with early stage
melanomas including brisk immune infiltrates, tumor regression, and pagetoid spread.

Participants converted each channel in the data into a separate 3D segmentation mask
using global thresholding or machine-learning-based pixel classification methods. From here,
the segmentation masks were converted to meshes using marching cubes62,72. The meshes
could then be loaded and displayed in Neuroglancer. To simultaneously look at multiple
channels, participants loaded multiple meshes into a single view and overlaid them with the
ability to enable or disable individual channels. In addition to 3D surface rendering, participants
used a 2D slice view to render a specific slice of the multi-volume selectable by scrolling through
the third axis. The 2D view shows the precise image data, but allows overlaying the
segmentation mask in semi-transparent layers (Figure 4). Both the 2D and 3D views can be
interactively linked for synchronous navigation.

Summary, future work and open questions
The incorporation of new tools in Galaxy is relatively straightforward due to its highly

modular architecture and the use of Docker containers. However, the generation of Docker
containers that are fully compatible with the Galaxy system and enable full functionality of the
embedded resources required diligence. Although progress was made along multiple fronts to
develop new Galaxy pipelines, none of them have been thoroughly tested and hardened. Future
efforts will specifically focus on enabling users of Galaxy to apply the new implementations to
various data sets to ensure their proper functionality and on training new neural net (or other
deep learning) models for segmentation tasks that can be deployed more broadly.
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Many of the tools and platforms are optimized for fluorescence based microscopy
platforms, but there is a growing need to expand software tools to flexibly handle multiple
imaging modalities. Additional enhancements may include more sophisticated image
registration and image pre-processing methods, robust testing, and more efficient resource
allocation. Neuroglancer was found to be suitable for scaling up multichannel 3D datasets.
However, it is still dependent on provision of high quality 3D segmentation masks especially
where there are highly intricate biological structures. To make Neuroglancer more
computationally efficient, one could adopt the more computationally efficient webGPU API and
use more scalable data formats like Neuroglancer Precomputed73 that negate the need of
loading the entire image volume into working memory.

Overall Summary
The preparation for the IAWG hackathon involved a critical review and summary of the

many remaining challenges to automating image processing and analysis for digital pathology,
some of which we attempted to specifically address within the hackathon. While the grouping of
the challenges into themes was primarily out of convenience, the three main categories appear
particularly relevant to most approaches that attempt to extract quantitative single-cell
measurements from the numerous techniques that have been developed to generate
high-dimensional multiplexed images of cancerous tissues. The first theme addresses
challenges to cell type classification and assessment and includes the detection and removal of
technical artifacts from images and downstream analyses, and how to visually and quantitatively
assess cell classifications. Since it is impossible to prevent all artifacts from entering into the
process, it is important to acknowledge their potential for introducing errors into downstream
analyses. Having tools to automatically and accurately identify these potential sources of error
will enable the quantification of their potential contribution to errors in interpretation and ideally
make their effects negligible.

The second theme related to translation and visual representation of spatial aspects of high
dimensional imaging data. While the approaches considered during the hackathon focused on
single-cell variability, their further expansion to cell neighborhood and tissue-level spatial
information, as well as integration with other data modalities, will be of high importance to a
better understanding of cancer. The techniques described here generally focus on translating or
reducing the information from a particular modality into another domain with the primary
objectives of identifying and understanding the relationships between the domains and to
facilitate their visual interpretation. We expect standardizing and hardening these approaches
will enhance our ability to interpret large datasets in an automated manner.

The last theme dealt with the challenges of big data and the scaling of digital image
analyses to accommodate them. Prior focus on some steps in the image processing and
analysis pipeline, such as cell segmentation using CellPose9, appears to have succeeded in
scaling well with increasing data. However, the quality and accuracy of cell segmentation still
requires substantial optimization for different datasets, which dramatically reduces the
computational efficiency gains. Resources like Galaxy60 can assist with the process of
optimizing the steps by providing a platform for executing reproducible pipelines, including
quality control tests, using a multitude of computational tools in parallel. We strongly support the
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use of tools that enhance reproducibility and enable cross compatibility, especially with the
abundance of different platforms and data types associated with cancer tissue imaging.

The virtual hackathon held in 2022 provided our community with the ability to make
progress toward multiple challenges to fully automating the analysis of highly multiplexed tissue
data—a lofty and possibly unattainable goal. However, there still remain additional open
questions and areas of research that will only be amplified by the advancement of
high-throughput multiplexed imaging, computational methods, and machine learning
architectures. Some of these challenges include: how best to integrate spatial imaging data from
fixed tissues with other single-cell modalities such as single-cell sequencing data; how to
analyze and provide broader access to large 3D imaging datasets; how to interpret results from
spatial and neighborhood analyses, such as those applied to studying tumor-immune
microenvironment interactions; and how to link the static fixed tissue imaging data to our
understanding of the highly dynamic evolutionary process that is cancer.
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Figure 1: Strategies for artifact detection and correction. A) Examples of common imaging artifacts in
fluorescence microscopy. From left to right: miscellaneous fluorescent contaminants, autofluorescent lint fibers, air
bubbles causing refractive index mismatch, antibody hindrance (broad region of low antibody reactivity), and
out-of-focus tissue. B) CyCIF datasets used for the artifact-related hackathon challenges, featuring human colorectal
cancer and tonsil tissue. C) A fibrous artifact and illumination errors are visible (left) and manually annotated (middle)
to facilitate its detection and suppression (right). D) ROC curve analysis for artifact detection performance of a
multilayer perceptron trained on mean immunomarker signals alone (Features, FS1 in main text, left), or Features
plus segmentation-based nuclear morphology attributes (Nuc Morph) and pixel-level image statistics (Pixel Thumb;
FS3 in main text, right). Also see Supplementary Figure 2. E) Comparison of before (left) and after (right) automatic
artifact correction. Artifacts that have been sufficiently removed or unresolved are shown with green or red boxes
respectively. Image intensity was left unperturbed by artifact correction in tissues without artifacts. Examples shown
with blue boxes.
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Figure 2: Spatial spillover and visual comparisons of cell type calling. A) Example of spatial cross-talk of
adjacent cells in CyCIF stained images of tonsil. Boundaries of cells identified by segmentation are indicated by the
dashed cyan lines and distinct cells are numbered. Pixel intensities from different markers are indicated by distinct
colors. Spatial spillover of CD3 into adjacent cells is indicated by cyan arrows. B) Uniform Manifold Approximation
and Projection (UMAP) of cell features and spatial representation of cells in a 200x200px tile before and after
REDSEA. A novel Cluster 5 identified by REDSEA captures isolated cells at the image border (indicated by triangles).
C) A traditional heatmap and (D) violin-matrix of cell data separated into clusters using the HDBSCAN37 algorithm. E)
Visualizations generated by a web-based interactive tool for inspecting and comparing clustered data in a spatial
context. Scatterplots of cells in UMAP embeddings with cells colored by cluster membership as a result of the
respective clustering algorithms (top row) and colored by silhouette coefficients (bottom row). The plots are
synchronized in navigation (zooming, panning, selections).
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Figure 3: Image representation learning by VAEs and for thumbnail generation. A). Each implementation of VAE
was qualitatively assessed for their ability to distinguish control- (PBS-)treated from TGF-β-treated MCF10A cells
using all morpho-spatial features or the top 10 variable (var) features compared to preselecting the top 10
discriminatory (discr) features extracted from the images. Feature space is reduced to two dimensions using UMAP
embedding. Class labels of TGF-β- or PBS-treated cells are shown in pink and blue, respectively. B) Example
thumbnail images. Each panel shows a thumbnail (or associated comparative plot) generated by the methods
described in the main text (panel labels). All approaches were applied to a 0.9 mm2 (9 megapixels) 9-channel CyCIF
image of a human tonsil germinal center.
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Figure 4. Data Processing and Visualization pipeline developed during the challenge for Neuroglancer. Highly
multiplexed CyCIF data are stored as multi-channel imaging volumes (top, left), where each volume represents one
channel. For simplicity, volumes are depicted as single slices in this figure. Each volume is segmented, either via
thresholding or more complex machine learning approaches and stored as binary segmentation volume (top, middle).
Subsequently, for each segmentation volume (i.e., segmented channel) the geometry of the segmented structures is
extracted and stored as a geometry mesh for subsequent 3D surface rendering (top, right). The visualization pipeline
supports a slice view that can combine an original imaging volume with several segmentation volumes (bottom, left)
and a 3D view (bottom, right). The 3D view can represent the volume as extracted meshes or a clipping plane.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.21.548450doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.21.548450
http://creativecommons.org/licenses/by-nc-nd/4.0/

