MitoEM Dataset: Large-scale 3D Mitochondria Instance Segmentation from EM Images
Springer: International Conference on Medical Image Computing and Computer-Assisted Intervention (International Conference on Medical Image Computing and Computer Assisted Intervention), 2020.
Electron microscopy (EM) allows the identification of intracellular organelles such as mitochondria, providing insights for clinical and scientific studies. However, public mitochondria segmentation datasets only contain hundreds of instances with simple shapes. It is unclear if existing methods achieving human-level accuracy on these small datasets are robust in practice. To this end, we introduce the MitoEM dataset, a 3D mitochondria instance segmentation dataset with two 30um cubic volumes from human and rat cortices respectively, 3,600x larger than previous benchmarks. With around 40K instances, we find a great diversity of mitochondria in terms of shape and density. For evaluation, we tailor the implementation of the average precision (AP) metric for 3D data with a 45x speedup. On MitoEM, we find existing instance segmentation methods often fail to correctly segment mitochondria with complex shapes or close contacts with other instances. Thus, our MitoEM dataset poses new challenges to the field.